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METHODOLOGY Open Access

Understanding the cluster randomised
crossover design: a graphical illustration of
the components of variation and a sample
size tutorial
Sarah J. Arnup1, Joanne E. McKenzie1, Karla Hemming2, David Pilcher3,4,5 and Andrew B. Forbes1*

Abstract

Background: In a cluster randomised crossover (CRXO) design, a sequence of interventions is assigned to a group,
or ‘cluster’ of individuals. Each cluster receives each intervention in a separate period of time, forming ‘cluster-periods’.
Sample size calculations for CRXO trials need to account for both the cluster randomisation and crossover aspects
of the design. Formulae are available for the two-period, two-intervention, cross-sectional CRXO design, however
implementation of these formulae is known to be suboptimal. The aims of this tutorial are to illustrate the intuition
behind the design; and provide guidance on performing sample size calculations.

Methods: Graphical illustrations are used to describe the effect of the cluster randomisation and crossover aspects
of the design on the correlation between individual responses in a CRXO trial. Sample size calculations for binary and
continuous outcomes are illustrated using parameters estimated from the Australia and New Zealand Intensive Care
Society – Adult Patient Database (ANZICS-APD) for patient mortality and length(s) of stay (LOS).

Results: The similarity between individual responses in a CRXO trial can be understood in terms of three components
of variation: variation in cluster mean response; variation in the cluster-period mean response; and variation between
individual responses within a cluster-period; or equivalently in terms of the correlation between individual responses
in the same cluster-period (within-cluster within-period correlation, WPC), and between individual responses in the
same cluster, but in different periods (within-cluster between-period correlation, BPC).
The BPC lies between zero and the WPC. When the WPC and BPC are equal the precision gained by crossover aspect
of the CRXO design equals the precision lost by cluster randomisation. When the BPC is zero there is no advantage in
a CRXO over a parallel-group cluster randomised trial. Sample size calculations illustrate that small changes in the
specification of the WPC or BPC can increase the required number of clusters.

Conclusions: By illustrating how the parameters required for sample size calculations arise from the CRXO design and
by providing guidance on both how to choose values for the parameters and perform the sample size calculations, the
implementation of the sample size formulae for CRXO trials may improve.

Keywords: Cluster randomised, Crossover, Sample size, Intracluster correlation, Within-period correlation, Between-
period correlation, Components of variability
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Background
Individually randomised trials are considered the ‘gold
standard’ for evaluating medical interventions [1]. How-
ever, situations arise where is it necessary, or preferable,
to randomise clusters of individuals, such as hospitals or
schools, rather than the individual patients or students,
to interventions [2, 3]. A cluster randomised trial will
generally require a larger sample size compared with an
individually randomised trial to estimate the interven-
tion effect to the same precision [4].
In a two-period, two-intervention, cluster randomised

crossover (CRXO) design, each cluster receives each of
the two interventions in a separate period of time, lead-
ing to the formation of two ‘cluster-periods’. In a cross-
sectional design, each cluster-period consists of different
individuals, while in a cohort design, each cluster-period
consists of the same individuals. The order in which the
interventions are delivered to each cluster is randomised
to control for potential period effects [5, 6]. Like in an
individually randomised trial, this adaption has the bene-
fit of reducing the required number of participants [7].
The key to understanding the CRXO design is to recog-
nise how both the cluster randomisation and crossover
aspects of the design lead to variation between individ-
ual responses in a trial; and how these aspects of the
design give rise to similarities in the responses of
groups of individuals.
Sample size formula have been published for the two-

period, two-intervention, cross-sectional CRXO design
[8–10]. These formulae require a-priori specification of
two correlations: the similarity between two individuals
in the same cluster-period, typically measured by the
within-cluster within-period correlation (WPC); and the
similarity between two individuals in the same cluster,
but in different cluster-periods, typically measured by
the within-cluster between-period correlation (BPC).
However, there is little guidance for informing the value
of the BPC, nor on the sensitivity of the sample size to
the chosen values of both correlations [11, 12].
A 2015 systematic review of CRXO trials found that

both the cluster randomisation and crossover aspects of
the design of the CRXO was appropriately accounted for
in only 10% of sample size calculations and 10% of ana-
lyses [13]. This suggests that the CRXO design is not
well understood.
The aims of this tutorial are to illustrate the intuition

behind the CRXO design; to provide guidance on how
to a-priori specify the WPC and BPC; and perform sam-
ple size calculations for two-period, two-intervention,
cross-sectional CRXO trials.
In the ‘Understanding the CRXO design’ section, we

describe how the cluster randomisation and crossover
aspects of the design leads to variation between individ-
ual responses in a two-period, two-intervention, cross-

sectional CRXO design, using intensive care unit (ICU)
length(s) of stay (LOS) as an example. In the ‘Performing
a sample size calculation’ section, we outline how to per-
form sample size calculations and discuss how to specify
values of the WPC and BPC for sample size calculations.
In the ‘Common mistakes when performing a sample
size analyses’ section, we outline common mistakes
made by trialists when performing sample size calcula-
tions for CRXO trials and the likely consequences of
those mistakes. We conclude with a general discussion,
considering extensions and larger designs.

Understanding the CRXO design
In this section we illustrate graphically how the cluster
randomisation and crossover aspects of the CRXO de-
sign leads to variation in the responses of individuals in
a CRXO trial, and how these aspects of the design can
be used to measure the similarity between individuals
using the WPC and BPC.
We illustrate the sources of variation and measures of

similarity that arise in the two-period, two-intervention,
cross-sectional CRXO design by considering a hypothet-
ical CRXO trial conducted in 20 ICUs over a 2-year
period. We consider the ICU LOS of all patients admitted
to these 20 ICUs, and assume (for ease of exposition) that
the number of patients in each ICU is infinitely large (or
at least very large). As LOS is non-normally distributed
and right skewed, we use the logarithmic transform of
ICU LOS throughout our illustration.
Each ICU is randomly assigned to administer one of

two interventions to all patients admitted during the
first year (period 1). In the subsequent year, each ICU
administers the alternate intervention (period 2). All
patients admitted to a single ICU over the 2-year period
can be thought of as belonging to a cluster. Within each
ICU (cluster), the patients admitted during a 1-year
period can be thought of as belonging to a separate
cluster-period. Therefore, in each ICU (cluster) there are
two cluster-periods.
The allocation of interventions to patients in the

stratified, multicentre, parallel-group, individually rando-
mised trial (IRCT) design, the parallel-group cluster ran-
domised trial (CRCT) design, and the CRXO design are
shown in Fig. 1. In each design, each intervention is
given for one 12-month period. In the IRCT design half
the patients in each centre (ICU) receive each interven-
tion. In the CRCT design, all patients in a single ICU
are assigned the same intervention.

Variation in the length of stay between patients
To illustrate the sources of variation and measures of
similarity that arise in the CRXO design, we assume that
the true difference between interventions is zero. In the
hypothetical situation where we have an infinite number
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of patients, the overall mean LOS for all patients in the
trial will be equal to the true overall mean LOS for all
patients who could be admitted to the 20 ICUs. The
variation in LOS arises from both patient and ICU fac-
tors. In a CRXO design, the ICU (cluster) and the time
period of admission (cluster-period) are both factors that
could affect the patient’s LOS and, therefore, explain
some of the variation seen in patient LOS. For example,
each ICU may have a different case mix of patients,
different operating policies and procedures, and different
staff. And within an ICU, changes to staff or policy over
time could lead to differences in LOS between time
periods. The following sections describe how the ICU
and time period of admission can explain part of the
variation in the LOS between patients.

Variation in the length of stay between ICUs
Each ICU has a true mean LOS for the infinite number of
patients who could be hypothetically admitted to that
ICU. When there is true variability between ICUs, the true
mean LOS for each ICU will differ from the mean of all
true ICU mean LOS. In the hypothetical situation where
we have an infinite number of patients, the overall mean
LOS for all patients and the mean of all true ICU mean
LOS will be equal to the same true overall mean LOS.
Figure 2a, b, e and f show four scenarios that each

illustrate variation in the true mean LOS across ICUs
(red circles). The true mean LOS in each ICU may be
similar and, therefore, close to the true overall mean
LOS (black line) (Fig. 2a); or the true mean LOS of each

ICU may be more dispersed about the true overall mean
(Fig. 2b). The difference in the spread of true ICU mean
LOS between Fig. 2a and b indicates greater variability
in the true ICU mean LOS across ICUs in Fig. 2b than
in Fig. 2a. The same comparison can be made between
Fig. 2e and f.

Variation in the length of stay between time periods in
an ICU
Within each ICU, there is also a true mean LOS for the
infinite number of patients who could be hypothetically
admitted in each 1-year period (i.e. each cluster-period).
Figure 2a, b, e and f show also that there is variation in
the difference between the true cluster-period mean LOS
(green circles) and the true ICU mean LOS (red circles).
The true cluster-period mean LOS may be similar to the
true ICU mean LOS Fig. 2a); or the true mean LOS of
each cluster-period may be more dispersed about the true
ICU mean (Fig. 2e). The difference in the spread of the
true cluster-period mean LOS between Fig. 2a and e indi-
cates greater variability in true cluster-period mean LOS
within ICUs in Fig. 2e than in Fig. 2a. The same compari-
son can be made between Fig. 2b and f.

Variation in length of stay between patients in a cluster-
period
While there is a true mean LOS for all patients admitted
in each cluster-period, the individual patients within
each cluster-period will show variation in their LOS due
to other patient factors (e.g. severity of their condition).

Fig. 1 Schematic illustration of the stratified, multicentre, parallel-group, individually randomised trial (IRCT), parallel-group cluster randomised trial
(CRCT), and cluster randomised crossover (CRXO) design with the same total number of participants
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Two of the 20 example ICUs are depicted in Figs. 2c,
d, g and h. ICU 1 is shown with solid lines and ICU 2 is
shown in dashed lines. As previously, the mean LOS in
each ICU is marked by a red line, and the mean LOS in
each cluster-period is marked by a green line. The distri-
bution of the individual patient LOS within each cluster-
period follows a normal distribution, and is shown with
four yellow or blue curves. The distribution of the LOS
for patients receiving intervention S are coloured yellow,
and the distribution of those receiving intervention T are
coloured blue.
Within each cluster-period, patients have a range of

individual LOS centred at the true cluster-period mean
LOS (green line). Nonetheless, the patients in each
cluster-period are from distinct distributions labelled as
A, B, C, and D in Fig. 2h (these labels apply also to
Fig. 2c, d and g). In each cluster-period, we assume that

the variability of the individual patient LOS is the same,
and hence the yellow and blue curves have the same
shape and are only shifted in location between the four
cluster-periods.

Summary of the sources of variation in the CRXO design
We have illustrated how the cluster randomisation
aspect of the CRXO design leads to the formation of
clusters of patients defined by ICU, while the crossover
aspect of the design leads further to the formation of
cluster-periods of patients within each cluster.
We have also illustrated how the cluster randomisa-

tion and crossover aspects of the CRXO design can lead
to three sources (or components) of variation in the
responses of patients in a CRXO trial: variation in the
mean LOS between ICUs; variation in the mean LOS

Fig. 2 Variation in true mean length(s) of stay (LOS) between intensive care units (ICUs) and between periods within ICUs. Low variation in the
true mean LOS between ICUs is shown in the left column (a, c, e, g) and high variation in the right column (b, d, f, h). Low variation in the true
mean LOS between periods within ICUs is shown in the top row (a, c, b, d) and high variation in the bottom row (e, g, f, h). a, b, e, f the true
mean LOS for each of the 20 hypothetical ICUs are marked by a red circle, with the difference between the true overall mean LOS and the true
mean LOS for each ICU indicated by a dashed red horizontal line. The two true cluster-period mean LOS for each ICU are marked with a green
circle to the left and right of the true ICU mean LOS. The difference between the true ICU mean LOS and the true cluster-period mean LOS is
indicated by a green horizontal line. The black vertical line indicates true overall mean LOS. c, d, g, h the red vertical line indicates the true ICU
mean LOS and the green vertical line indicates the true cluster-period mean LOS for each period in each of two ICUs. For (a) WPC = 0.02, BPC =
0.01; for (b) WPC = 0.06, BPC = 0.05; for (e) WPC = 0.06, BPC = 0.01; for (f) WPC = 0.10, BPC = 0.05. ICU 1 is shown with solid lines and ICU 2 is shown
in dashed lines in (h). The yellow (blue) curve indicates a normal distribution of patient LOS within each cluster-period where the cluster was
allocated to intervention S (T). For (d) the distribution of patient LOS in each of the four cluster-periods are labelled A to D. WPC: within-cluster
within-period correlation (ρ); BPC: within-cluster between-period correlation (η)
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between cluster-periods; and variation between individual
patient LOS within a cluster-period.

The within-cluster within-period correlation and the
within-cluster between-period correlation
In this section we show how the three sources of vari-
ation outlined in the preceding section can be used to
quantify the similarity in LOS between the groups of
patients defined by ICU (cluster) and cluster-period.
The within-cluster within-period correlation (WPC)

quantifies the similarity of outcomes from patients in
the same cluster-period. The within-cluster between-
period correlation (BPC) quantifies the similarity of
outcomes from patients in the same cluster, but in
different periods. Specification of these two correla-
tions are required to perform sample size estimates
for a CRXO trial.
In the hypothetical circumstance where the LOS of an

infinite number of patients admitted to each ICU is
measured, we can determine the true WPC and BPC. In
practice, the LOS can only be measured on a sample of
patients, and the true WPC and BPC will be estimated
from this sample of patients, with some amount of ran-
dom sampling error.
We first describe the sources of variation underlying

the BPC, and then extend the description to the WPC.

Within-cluster between-period correlation (BPC)
The BPC measures how much of the total variability in
the LOS is due to variability in the ICU mean LOS or
analogously how similar patient responses are within the
same cluster, but in different periods. The formula for
the BPC, η, is:

η ¼ σ2C
σ2C þ σ2CP þ σ2I

; ð1Þ

where σC
2 is the variance in mean LOS between clusters

(ICUs), σCP
2 is the variance in mean LOS between

cluster-periods, and σI
2 is the variance in individual LOS

within a cluster-period.
The BPC measures the similarity between the LOS of

two patients from the same ICU with one patient from
the first period (cluster-period C) and one patient from
the second period (cluster-period D).
The similarity between the LOS of patients in an ICU

between cluster-periods arises from the variability in the
ICU mean LOS only. We now refer to Fig. 2 to describe
how this relationship between similarity and variability
arises. As the ICU mean LOS (red lines/red circles)
become more dispersed between ICUs, relative to the
dispersion (i.e. distance) between cluster-period mean
LOS within an ICU (green lines/green circles), the distri-
bution of the patient LOS (yellow/blue curves) in the

cluster-periods A and B become more similar to each
other, as do the distribution of patient LOS in cluster-
periods C and D.
For example, in Fig. 2c there is little variation in the

ICU mean LOS around the overall mean LOS (black
line) and the distribution of patient LOS in cluster-
periods A, B, C and D almost all coincide. As a result,
the similarity between the LOS of patients in different
cluster-periods within the same ICU (e.g. one patient
from cluster-period A and one patient from cluster-
period B) is comparable to the similarity between the
LOS of patients in different ICUs (e.g. one patient from
cluster-period A and one patient from cluster-periods C
or D). In contrast, in Fig. 2d, there is more separation
between the ICU mean LOS and only the distributions
of patient LOS from the same ICUs coincide (i.e.
cluster-periods A and B, and cluster-periods C and D,
coincide). As a result, the LOS of patients in different
cluster-periods within the same ICU (e.g. one patient
from cluster-period A and one patient from cluster-
period B) are more similar to each other than to the
patients in other ICUs (e.g. one patient from cluster-
period A and one patient from cluster-periods C or D).
Hence, the BPC is larger in Fig. 2d than in Fig. 2c. The
same comparison can be made between Fig. 2g and h.

The within-cluster within-period correlation (WPC)
The WPC measures how much of the total variability in
the LOS is due to variability in the ICU mean LOS and
the cluster-period mean LOS or analogously how similar
patient responses are within a cluster-period. The
formula for the WPC, ρ, is:

ρ ¼ σ2C þ σ2
CP

σ2C þ σ2CP þ σ2I
: ð2Þ

The WPC measures the similarity in the LOS from
two patients in the same cluster-period, e.g. cluster-
period C.
The similarity between the LOS of patients within a

cluster-period arises from the variability in the ICU
mean LOS and cluster-period mean LOS. We now refer
to Fig. 2 to describe how this relationship between simi-
larity and variability arises. We describe the relationship
in two parts: variability in the ICU mean LOS; and vari-
ability in the cluster-period mean LOS.
As the ICU mean LOS (red circles/red lines) becomes

more disperse, relative to the dispersion (i.e. distance)
between the cluster-period mean LOS (green circles/
green lines), the distribution of the individual patient
LOS (yellow/blue curves) in the four cluster-periods A,
B, C and D become more distinct from each other, and
hence patients within a cluster-period appear more simi-
lar to each other. For example, in Fig. 2c there is little
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variation between the ICU mean LOS around the overall
mean LOS (black line) and the distribution of patient
LOS in cluster-periods A, B, C and D almost all coin-
cide. As a result, the similarity between the LOS of two
patients in cluster-period A is comparable to the similar-
ity between the LOS of one patient from cluster-period
A and one patient from cluster-period B (or C or D). In
contrast, in Fig. 2d, there is more separation between
the ICU mean LOS and hence more separation of the
patient LOS in ICUs 1 and 2. As a result, the LOS of
two patients in cluster-period A are more similar to each
other than to one patient from cluster-period A (cluster
1) and another patient from cluster-periods C or D
(cluster 2). Hence, the WPC is smaller in Fig. 2c than in
Fig. 2d. We note that the same comparison can be made
between Fig. 2g and h.
Likewise, as the cluster-period mean LOS (green

circles/green lines) becomes more disperses, relative to
the distance between the ICU mean LOS (red circles/red
lines), the distribution of the individual patient LOS
(yellow/blue curves) in the four cluster-periods A, B, C
and D also become more distinct from each other, and
hence patients within a cluster-period become more
similar to each other. For example, in Fig. 2d there is
little variation between the cluster-period mean LOS
around the ICU mean LOS and thus the distribution of
patient LOS in cluster-periods A and B (and equivalently
C and D) almost coincide. As a result, the similarity
between the LOS of two patients in cluster-period A is
comparable to the similarity between the LOS of one
patient from cluster-period A and one patient from
cluster-period B. In contrast, in Fig. 2h, there is more
separation between the cluster-period mean LOS and
the distribution of patient LOS. As a result, the LOS
of two patients in cluster-period A are more similar
to each other than to one patient from cluster-period
A and another patient from cluster-period B (and
even more similar than one patient from cluster-
period A and another patient from cluster-periods C
or D). Hence the WPC is again smaller in Fig. 2d
than in Fig. 2h. We note that the same comparison
can be made between Fig. 2c and g.

Precision of the CRXO design compared to the parallel-
group cluster randomised design and parallel-group,
individually randomised design
In this section, we discuss how the WPC and BPC affect
the precision of the estimate of the difference between
interventions, and hence the sample size requirement, in
a two-period, two-intervention, cross-sectional CRXO
trial. We illustrate the two extremes of the CRXO
design: when the precision in the CRXO design is
equivalent to an IRCT design; and equivalent to a CRCT

design. The allocation of interventions to patients in the
IRCT, CRCT, and CRXO design are shown in Fig. 1.
To illustrate the effect of the WPC and BPC on preci-

sion (and equivalently the components of variation), we
continue to assume that the true difference between
interventions is zero. We consider a large sample of
patients admitted to one cluster in a CRXO design, such
that the sampling error in the estimated mean LOS for
patients is assumed negligible. Therefore, in the single
cluster shown in Fig. 3, the separation between the
distribution of LOS from patients receiving intervention
S (yellow curve) and intervention T (blue curve) arises
solely from the variation in the mean LOS between
cluster-periods (σCP

2 ). In this section, we show which par-
titioning of the total variation in LOS into the compo-
nents of variation leads to the most precision and to the
least precision in the CRXO design.
In the CRXO design, the observed mean LOS of

patients receiving each intervention can be compared
within each cluster because each intervention is delivered
in each cluster. As an illustration, in Fig. 3a, the observed
difference in mean LOS between patients receiving each
intervention could be due to a difference in true cluster-
period mean LOS (green lines) but not due to differences
in the true ICU mean LOS because this component of
variation is removed when the two interventions are com-
pared within an ICU.
As the variation in the true cluster-period mean LOS

increases, and hence the separation between the green
lines in Fig. 3a increases, the separation between the
yellow and blue curves within an ICU increases. Corres-
pondingly, from Eqs. 1 and 2, the difference between the
WPC and BPC increases. In conclusion, increasing vari-
ability in the cluster-period means leads to increasing
uncertainty in the observed difference in the mean LOS
between patients receiving each intervention.
In the CRXO design, precision is maximised when there

is no variation in LOS between periods within a cluster. In
this scenario the separation between the green lines in
Fig. 3a shrinks and the yellow and blue curves coincide,
yielding Fig. 3b. The LOS of two patients in the same
cluster-period are as similar as the LOS of two patients
from the same ICU but in different cluster-periods. Also,
from Eqs. 1 and 2, the WPC equals the BPC. Figure 3b
now approximates the diagram that one would expect
from an IRCT with two ICUs (with the mean LOS for
each centre indicated by the green lines) and half the
patients within each cluster receiving each intervention.
This diagram arises in an IRCT because, for large sample
sizes and under the assumption of no true differences
between interventions, randomisation ensures that the
distributions of LOS in each intervention (yellow and blue
curves) are identical. The CRXO design will, therefore,
have the same precision as an IRCT design.
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Conversely, the precision of the CRXO design
decreases when the cluster-period variability increases.
As the variability between periods within a cluster
increases, the separation between the green lines, and
correspondingly the yellow and blue curves, in Fig. 3a
increases. The increased separation results in greater
variability in the comparison of patient LOS in each
intervention within each cluster. For a fixed total
variability in ICU LOS, as the variability between
periods within a cluster increases, the variability
between different clusters must reduce. In the limiting
case there is no variation at all between clusters (σC

2 = 0),
resulting in the BPC equalling zero (Eq. 1). In this case
each cluster-period effectively resembles a separate cluster
(Fig. 3c). Two patients in different cluster-periods in the
same ICU are no more similar than two patients in differ-
ent ICUs. Therefore, there is no advantage to the

crossover component of the CRXO design and the CRXO
will have the same precision as a CRCT design.
In most situations, the BPC will lie between zero

and the WPC. In the following section, ‘Performing a
sample size calculation’, we discuss the effect of the
BPC and WPC on the sample size required to be able
to detect a specified true intervention effect in a
CRXO trial with a given level of power, and provide
guidance on how to choose values for the BPC and
WPC for a sample size calculation.

Performing a sample size calculation
The sample size required to detect a specified true dif-
ference between interventions with a given level of
power decreases as the precision of the estimate of the
intervention effect increases. In the ‘Understanding the
CRXO design’ section, we considered precision in the

Fig. 3 A single cluster in the cluster randomised crossover (CRXO) design where (a) ρ > η, η > 0. b η→ ρ. c η→ 0. The green solid vertical lines
indicate difference between true intensive care unit (ICU) mean length of stay (LOS) and true cluster-period mean LOS. The yellow (blue) curve
indicates a normal distribution of patient LOS within each cluster or cluster-period where the patient or cluster was allocated to intervention S
(T). The true difference between intervention S and T is zero. The total variance in LOS remains constant
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CRXO design when the true difference between inter-
ventions was assumed to be zero. However, even when
the true difference is not zero, the effects of the WPC
and BPC on precision described in the previous section
continue to hold.
The sample size required for a CRXO trial increases as

the cluster-period variability increases, or equivalently as
the difference between the WPC and BPC increases. As
the value of the BPC increases from zero to the WPC, the
sample size required for the CRXO design will decrease
from that required for a CRCT design towards the sample
size for an IRCT. Therefore, using an appropriate specifi-
cation of the difference between the WPC and the BPC is
essential for performing sample size calculations for the
CRXO design.
We now illustrate how to perform a sample size calcula-

tion for a two-period, two-intervention CRXO trial with a
continuous and binary outcome using ICU LOS and in-
ICU mortality data, respectively, from the Australian and
New Zealand Intensive Care Society (ANZICS) Adult
Patient Database (APD) [14, 15]. There are 37 tertiary
ICUs in Australia and New Zealand, of which 25 to 30
might be expected to participate in a trial.
We compare the sample size requirement for number

of individuals and number of clusters (ICUs) from the
CRXO design with the requirement from the stratified,
multicentre, parallel-group, individually randomised de-
sign (IRCT) and the parallel-group cluster randomised
design (CRCT) conducted over one period.
Comparisons of the sample size requirements for these

different designs can either be made by fixing the total
number of clusters across all designs; or by treating the
CRXO design as lasting twice as long, i.e. two periods,
instead of one period as in the IRCT and CRCT designs.
We take the latter approach here so that the WPC is the
same in each period.
We include Stata do-files to estimate the required

sample size for each trial design, for a chosen set of sam-
ple size parameters (see Additional files 1 and 2).

The sample size formulae for a one-period IRCT design,
a one-period CRCT design, and a two-period, two-
intervention, cross-sectional CRXO design
The sample size formula for the total number of partici-
pants required for a normally distributed continuous
outcome in a two-period, two-intervention CRXO trial,
across all clusters and interventions, assuming a con-
stant number of participants recruited to each cluster-
period is [8]:

NCRXO ¼ 2 zα=2 þ zβ
� �2 2σ2

μA−μBð Þ2 1þ m−1ð Þρ−m ηð Þ þ 4m;

and for a one-period, two-intervention CRCT:

NCRCT ¼ 2 zα=2 þ zβ
� �2 2σ2

μA−μBð Þ2 1þ m−1ð Þρð Þ þ 2m;

and for a one-period, two-intervention, parallel-group
IRCT, stratified by cluster, across all clusters and in-
terventions is [16]:

NIRCT ¼ 2 zα=2 þ zβ
� �2 2σ2

μA−μBð Þ2 1−ρð Þ;

where zα/2 and zβ are the standard normal values corre-
sponding to the upper tail probabilities of α/2 and β,
respectively; α is the two-sided significance level, typic-
ally 0.05; 1 − β is the power to detect the specified differ-
ence (μA − μB) with probability α; σ2 is the variance of
the outcome; μA and μB are the outcome means in each
arm; m is the number of participants per cluster-period;
ρ is the WPC; and η is the BPC.
The formulae presented above include a correction

for when the number of clusters small, as suggested
in Eldridge and Kerry (p. 149) [2] and Forbes et al.
[9]. This leads to an additional 4m participants in the
CRXO design and 2m participants in the CRCT de-
sign. No correction is necessary for the IRCT because
the number of individual participants will be large in
the example settings.

For a binary outcome we can replace 2σ2

μA−μBð Þ2 with

pA 1−pAð ÞþpB 1−pBð Þ
pA−pBð Þ2 in the above formulae [12], where pA and

pB are the proportions of the outcomes in each arm.
For the CRXO design, CRCT design and IRCT design,

respectively, the formulae to determine the number of
clusters (ICUs) needed to achieve the required number
of participants are:
nCRXO ¼ NCRXO

2m , nCRCT ¼ NCRCT
m , and nIRCT ¼ NIRCT

m .

Australian and New Zealand Intensive Care Society –
Adult Patient Database (ANZICS-APD): estimates of the
WPC and BPC
The ANZICS-APD is one of four clinical quality regis-
tries run by the ANZICS Centre for Outcome and
Resource Evaluation and collects de-identified informa-
tion on admissions to adult ICUs in Australia and New
Zealand. A range of data is collected during patients’
admissions, including ICU LOS and in-ICU mortality. In
this section we use the ANZICS-APD data from 34 tertiary
ICUs to estimate the correlations required to perform sam-
ple size calculations for CRXO trials. We estimate the
values of the WPC and the BPC from two 12-month
periods of data between 2012 and 2013 (Appendix 1).

Continuous outcomes
We follow the methods of Turner et al. to estimate the
WPC and BPC (Appendix 1). Using the ICU LOS data,
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the estimated WPC was ρ̂ ¼ 0:038, and the BPC was
η̂ ¼ 0:032 (Table 1). The overall mean LOS was 5.3
log-hours, with a standard deviation 1.39 log-hours.

Binary outcomes
We follow the methods of Donner et al. to estimate the
WPC and BPC (Appendix 1). Using the in-ICU mortality
data, the estimated WPC was ρ̂ ¼ 0:010 , and the BPC
was η̂ ¼ 0:007. The overall mortality rate was 8.7%.

Sample size example for ICU LOS
Suppose we wish to design a two-period, two-
intervention, CRXO trial to have 80% power to detect a
true reduction in ICU LOS of 0.1 log-hours (1.1 h)
using a two-sided test with a Type-I error rate of 5%. In
practice, the choice of reduction in ICU LOS should be
the minimally clinically important reduction, deter-
mined in consultation with subject matter experts. A
0.1 log-hours’ reduction is equivalent to a 10% reduc-
tion, and is a reasonable minimally clinically important
reduction in ICU LOS.
The standard deviation is estimated to be 1.2 log-hours

(3.3 h). As an illustration, we assume that in a 12-month
period, 200 patients in each ICU will meet the inclusion
criteria for the trial. The CRXO trial will, therefore, run
for 2 years and include 400 patients per ICU, with 200
patients receiving each intervention in each ICU.
For comparison, we consider an IRCT and a CRCT run

for a 12-month period, with 100 patients receiving each
intervention in each ICU in the IRCT and all 200 patients
receiving one intervention in each ICU in the CRCT.
Using the estimates that we calculated from the

ANZICS-APD data for the WPC and BPC, the total
number of patients and ICUs for each design are sum-
marised in Table 2 (see Appendix 2 for calculations).T3
The total number of participants required for the CRXO

design is NCRXO = 10,564. To include 10,564 participants,
we require nCRXO = 27 ICUs, each recruiting 200 partici-
pants in each of the two 12-month periods. If instead we
conducted a CRCT over a single 12-month time period,
the total number of participants required would be NCRCT

= 39,065. Assuming that 200 patients are eligible in each

ICU, we would need nCRCT = 196 ICUs. The total number
of participants required for an IRCT conducted over a
12-month period is NIRCT = 4345. With 200 patients per
ICU (100 patients per intervention), the total number of
ICUs required is nIRCT = 22.
In this example, the CRXO design required five more

clusters (ICUs) than the IRCT design; however, the
CRXO design is run for twice as long. The CRCT
design would require 7.3 times as many clusters as the
CRXO design. Given that there are only 37 tertiary
ICUs in Australia and New Zealand, a CRCT trial
would not be feasible.
We can examine the sensitivity of the CRXO sam-

ple size calculation to a different BPC. If the BPC
was η = 0.010 rather than η = 0.032, then the CRXO
design requires NCRXO = 30,433 participants. The total
number of ICUs required to obtain the required
number of participants is nCRXO = 77. The total num-
ber of ICUs required has now increased by 50, and
the trial would no longer be feasible in the Australia
and New Zealand region within tertiary ICUs only.
Note that when the number of patients admitted in

Table 1 Calculation of the within-cluster, within-period
correlation (WPC) and within-cluster, between-period correlation
(BPC) for intensive care unit (ICU) log-length of stay (LOS) in the
Australian and New Zealand Intensive Care Society – Adult
Patient Database (ANZICS-APD)

σ̂ 2
ICU ¼ 0:045

σ̂ 2
CP ¼ 0:008

σ̂ 2
I ¼ 1:360

ρ̂ ¼ σ̂ 2
ICUþσ̂ 2

CP

σ̂ 2
ICUþσ̂ 2

CP
þ σ̂ 2

I ¼ 0:045þ0:008
0:045þ0:008þ1:360 ¼ 0:038

η̂ ¼ σ̂ 2
ICU

σ̂ 2
ICUþσ̂ 2

CP
þ σ̂ 2

I ¼ 0:045
0:045þ0:008þ1:360 ¼ 0:032

Table 2 Number of individuals and number of clusters required
for a cluster randomised crossover (CRXO), cluster randomised
controlled trial (CRCT) and individually randomised controlled
trial (IRCT) trial with ρ = 0.038 for all designs and specified η for
CRXO design

Number of required
individuals

Number of
required ICUs

CRXO

ρ = 0.038, η = 0.032 10,564 27

ρ = 0.038, η = 0.010 30,433 77

CRCT 39,065 196

IRCT 4345 22

ICU intensive care unit

Table 3 Number of individuals and number of clusters required
for a cluster randomised crossover (CRXO), cluster randomised
controlled trial (CRCT) and individually randomised controlled
trial (IRCT) trial with ρ = 0.010 for each design and specified η
for the CRXO design

Number of required
individuals

Number of
required ICUs

CRXO

ρ = 0.010, η = 0.007
(equal cluster sizes)

51,581 22

ρ = 0.010, η = 0.006
(equal cluster sizes)

63,811 27

ρ = 0.010, η = 0.007
(unequal cluster sizes)

41,208 23

CRCT 13,4792 113

IRCT 10,090 9

ICU intensive care unit
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each cluster-period is relatively large, we would
observe a similar increase in the sample size if we
had underestimated the WPC by 0.023, rather than
overestimated the BPC by 0.023.

Sample size example for in-ICU mortality
In a second example, suppose that we wish to design a
study to have 80% power to detect a true reduction in in-
ICU morality from 8.7% to 7.2% (absolute difference of
1.5%) using a two-sided test with a Type-I error rate of
5%. From the ANZICS-APD admission data, we estimate
that in a 12-month period, 1200 patients will be admitted
in each ICU and eligible for inclusion in the trial. The total
number of patients and ICUs for each design are sum-
marised in Table 3 (see Appendix 2 for calculations).
For a CRXO design, using the estimates for the WPC,

the BPC, and the cluster-period size we calculated from
the ANZICS-APD, the total number of participants
required is NCRXO = 51,581. Since we expect 1200
patients in each ICU for each of the two 12-month
periods, the required number of ICUs is nCRXO = 22. If
we had used a CRCT, the required number of partici-
pants is NCRCT = 134, 792. Assuming that 1200 patients
admitted over a single 12-month period, we would need
nCRCT = 113 ICUs. The total number of participants
required for the IRCT design is NIRCT = 10,090. For a
trial run over 12 months, with 1200 patients per ICU
(600 patients per intervention), the total number of
ICUs required is nIRCT = 9.
In this example, the CRXO design required 2.4 times

as many clusters (ICUs) as the IRCT design, and is run
for twice as long. Despite the increase in required clus-
ters, the CRXO is still a feasible design, unlike the CRCT
design, which would require 5.1 times as many clusters
as the CRXO design.
We can examine the sensitivity of the CRXO sample

size calculation to a different BPC. If the BPC was η =
0.006, rather than η = 0.007, then the total number of
participants required is NCRXO = 63,811. Since we expect
1200 patients for each cluster-period, we would need to
include nCRXO = 27 ICUs, i.e. 54 cluster-periods. This
demonstrates that a small change in the assumed BPC
can have a marked impact on the number of required
ICUs and patients.

Unequal cluster-period sizes
We have so far assumed that the cluster-period size is
constant. In reality, it is likely that different ICUs will in-
clude a differing number of participants [17, 18]. An ex-
tension to the sample size formula for this scenario is
provided by [9]. When the analysis is based on un-
weighted cluster-period means, the arithmetic mean in

the sample size formula given for the CRXO design can
be replaced by the harmonic mean:

mh ¼ n
Xn

i¼1

1
mi

:

We assume that the cluster-period size is the same in
each period within a cluster. For further extensions, see
Forbes et al. [9].
From the ANZICS-APD data, we estimate that the

harmonic mean is mh = 900. Therefore then the required
number of patients is NCRXO = 41,208, and the required
number of ICUs is:

nCRXO ¼ 41208
2 � 900

¼ 23:

Allowing for unequal cluster-period sizes has increased
the required number of clusters slightly from 22 to 23.

Guidance on how to choose the WPC and the BPC for the
sample size calculation
As was seen in the ‘Understanding the CRXO design’
section, the difference between the WPC and BPC is key
in determining the sample size for a CRXO design.
Approaches for choosing the within-cluster intracluster

correlation (ICC) in sample size calculations for parallel-
group CRCTs have been discussed [19–22]. Similar
considerations apply when choosing the WPC in a CRXO
design. In particular, because the ICC estimates are subject
to large uncertainty [23], reviewing multiple relevant esti-
mates of the ICC is recommended. These ICC estimates
may be obtained from trial reports, lists published in jour-
nal articles or from routinely collected data.
Identification of the factors which influence the mag-

nitude of the within-cluster ICC can assist trialists in
selecting ICC estimates that are relevant to their planned
trial. Typically, the trial outcome itself is less predictive
of the value of the ICC than factors such as: the type of
outcome variable (i.e. process outcomes that measure
adherence to protocol and policy or individually mea-
sured outcomes) [19], the prevalence of the outcome
[20], the size of the natural cluster of individuals that the
randomised clusters are formed from [20], and the char-
acteristics of the individuals and clusters [22].
The duration of time over which the outcome vari-

ables were measured may also affect the value of the
within-cluster ICC. As the measurements of individuals
within a cluster become further apart, the similarity
between the measurements might be expected to de-
crease. Using an estimate of the within-cluster ICC that
was determined over a different duration of time than
the intended period length of the planned trial assumes
that there is no variation in the within-cluster ICC over
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time, and we are unaware of any research investigating if
this is justified.
In contrast, we are aware of only two publications

reporting estimates of the BPC [24, 25]. Therefore, until
reporting of the BPC becomes more common [26], esti-
mates of the BPC are likely to rely on the analysis of
routinely collected data, pilot or feasibility study data, or
a reasoned best-guess. As for the within-cluster ICC in
cluster randomised trials, estimating the BPC from feasi-
bility or a single routinely collected data source is likely
to be subject to considerable uncertainty [27].
In forming a best guess, it is helpful to recognise that

the difference between the WPC and BPC is a measure
of changes over time within a cluster’s environment that
affect the outcomes of each individual in that cluster
(e.g. a change in policy in one ICU). Over short time
periods or in clusters with stable environments and
patient characteristics, it might be reasonable to expect
little change over time and, therefore, the BPC will be
similar to the WPC. However, if this assumption is
untrue and the BPC is less that the WPC, a sample size
calculation assuming that the two correlations are equal
will lead to an underpowered study. It may be prudent
to assume that the BPC is less than the WPC. To this
end, suggestions have been made to set the BPC to: half
the WPC [12]; and to 0.8 of the WPC [11].
In the ANZICS-APD the ratio of the BPC to WPC

is 0.7 for ICU mortality and 0.8 for ICU LOS, which
is consistent with the suggestion made by Hooper
and Bourke [11]. In the absence of multiple estimates
or precise estimates of the ICCs, a conservative ap-
proach in selecting the BPC is recommended to avoid
an underpowered trial. Further, a sensitivity analysis
exploring the effect of the choice of ICC on the sam-
ple size is recommended.

Common mistakes when performing sample size
calculations and analyses
Many trialists have made strong assumptions about the
values of the WPC and the BPC in their sample size and
analysis methodology [13]. In this section we illustrate
the consequences of using incorrect sample size meth-
odology on the estimated sample size and power.

Assume the outcomes are independent
In a review of CRXO trials, 34% of sample size calcula-
tions made the assumption that the observations were
independent [13]. There are two scenarios where this as-
sumption is reasonably appropriate: when the WPC and
the BPC are equal and the sample size calculation was
stratified by centre; or when the WPC and the BPC are
both zero.
The first scenario arises when the outcomes of two

individuals in the same cluster are equally similar if the

individuals are in different periods as if the individuals
are in the same period (i.e. there is no change in the
WPC over time within a cluster). In this fortuitous case
the precision gained by crossover aspect of the CRXO
design equals the precision lost by cluster randomisation
(apart from a factor of 1-WPC, which is usually small
[16]). The second scenario arises when there is no simi-
larity between the outcomes of any two individuals,
which is unlikely.
The effect on power of assuming that the outcomes

are independent will depend on the cluster-period
size and the difference between the WPC and the
BPC. Loss of power will increase as both the differ-
ence between the two ICCs increases and the cluster-
period size increases.
We illustrate the potential effect on power and sample

size assuming the outcomes are independent using a
published sample size calculation. Roisin [28] estimated
that the seven wards (clusters) participating in their trial
required a minimum of 3328 patients to have 80% power
to detect a reduction in proportion of hospital acquisi-
tion of methicillin-resistant Staphylococcus aureus
(MRSA) from 3% to 1.5%. From the ANZICS-APD data,
we estimate a WPC of 0.010, and a BPC of 0.007 for in-
ICU mortality in the ICU setting. As an example only,
we assume that the estimates of the correlations for ICU
mortality are similar to the correlations for ICU MRSA
acquisition. Given that a total of 2505 patients were eli-
gible for inclusion in the study, we determined the
average cluster-period size to be 179. From these esti-
mates, we determine that a sample size of 5385 is re-
quired to achieve the specified power, which is a 62%
increase from the published sample size requirement of
3328.

Assume a parallel-group cluster randomised design
instead of a cluster randomised crossover design
Another common approach when performing sample
size calculations for CRXO trials is to use methods
designed for parallel-group CRCT trials. Applying CRCT
sample size methodology to a CRXO design makes the
assumption that: the BPC is zero; and that the WPC
calculated over all periods in the trial is the same as the
WPC calculated for a single period. Under the assump-
tion that the BPC is zero, the outcomes of individuals
within a cluster, but in different periods, are no more
similar than outcomes of individuals in different clusters.
That is, the individuals in different periods are assumed
to be independent. When the BPC is not zero, the
CRCT design effect does not account for the gain in
precision achieved by the crossover aspect of the CRXO
design, leading to a potentially overpowered trial. Trials
that use CRCT sample size methods become
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progressively more overpowered as the true BPC be-
comes larger and the cluster-period sizes increase.
We illustrate the potential effect on power and the

sample size requirement using CRCT sample size meth-
odology by means of a published sample size calculation.
van Duijn [29] estimated that eight ICUs (clusters) par-
ticipating in their trial would include 135 patient mea-
surements per cluster-period. Using CRCT sample size
methodology, each of the 16 cluster-periods (two periods
per ICU) were assumed to be separate clusters of 135
patients. van Duijn [29] assumed a within-cluster ICC of
0.01, and hence they estimated that the trial required
1842 patients to have 80% power to detect a reduction
in proportion of ICU patients with antibiotic-resistant
gram-negative bacteria from 55% to 45%. From the
ANZICS-APD data, we estimate a WPC of 0.010, and a
BPC of 0.007, as in the example in the previous section.
From these estimates, we determine that a sample size
of 1623 is required to achieve the specified power, which
is 12% less than the sample size required for a CRCT.

Discussion
Sample size calculations for CRXO trials need to ac-
count for both the cluster randomisation and crossover
aspects of the design to ensure that an appropriate
number of participants are recruited to adequately
address the trial’s hypotheses. There are simple, sample
size formulae available for a two-period, two-intervention,
cross-sectional CRXO design; however, the implementa-
tion of these formulae has been limited [13]. Such limited
use of the formula may be due to a lack of recognition that
formulae are available, a lack of availability of estimates of
the parameters required within the formulae, or a lack of
trialists’ understanding of those parameters.
We have illustrated how the cluster randomisation and

crossover aspects of the CRXO design give rise to simi-
larity in both the responses of individuals within the
same cluster and within the same cluster-period; and
have described the parameters required to perform sam-
ple size calculations for CRXO trials. We have provided
guidance on how to choose the parameters required for
the sample size calculation and perform sample size
calculation using those parameters.
While our focus has been on the two-intervention, two-

period, cross-sectional CRXO design, more complex
designs with additional periods and interventions are pos-
sible. The sample size and analysis methodology is more
complex in these designs. For example, in a design with
more than two periods, additional assumptions are
required about the similarity between individuals in the
same cluster in the same time period, and 1, 2, or 3, etc.
time periods apart. Careful consideration should always be
given to whether cluster randomisation is necessary [30],

and whether the risk of the intervention effect from one
period carrying over to the next period is minimal [6].
In addition to consideration of the sample size meth-

odology, it is also essential to appropriately account for
the cluster and the cluster-period in the analysis. Very
few published trials do so [13]. Failure to account for the
cluster-period in an individual level analysis leads to
inflated Type-I error rates [31]. Methods to analyse
CRXO trials have been published by Turner et al. and
Forbes et al. [5, 9].

Conclusions
Sample size calculations for CRXO trials must account
for both the cluster randomisation and crossover aspects
of the design. In this tutorial we described how the
CRXO design can be understood in terms of compo-
nents of variation in the individual outcomes, or equiva-
lently, in terms of correlations between the outcomes of
individual patients. We illustrated how to perform sam-
ple size calculations for continuous and binary out-
comes, and provided guidance on selecting estimates of
the parameters required for the sample size calculation.

Appendix 1
Estimates of the WPC and BPC
To illustrate the impact of the WPC and BPC on the
sample size calculation, we estimate the values of the
WPC and BPC by using previously published methods
for continuous and binary outcomes [5, 12].

Continuous outcomes
ICU LOS is right-skewed, so we begin by log-
transforming this variable, so that the assumptions of the
model used to estimate the correlations are more likely to
be met. We use LOS to represent log(LOS) throughout.
We estimate the values of the WPC and the BPC from the
variances estimated by fitting the following model [5]:

Y ijk ¼ μþ π þ ui þ vij þ eijk ;

where there are i = 1, …, n ICUs, j = 1, 2 12-month
periods and k = 1, …, mij patients in the ith ICU (cluster)
and jth period; Yijk is the LOS for the kth patient in the
jth cluster-period in the ith ICU (cluster); μ is the overall
mean LOS; π is the fixed period effect; ui ~ N(0, σC

2 ) is
the difference from the overall mean LOS for each ICU
mean LOS; vij ~ N(0, σCP

2 ) is the difference from the
ICU mean LOS for each cluster-period mean LOS, and
eijk ~ N(0, σI

2) is the difference from the cluster-period
mean LOS for each patient LOS; σC

2 , σCP
2 , and σI

2 are the
variances for the ICU (cluster) mean LOS, cluster-
period mean LOS and patient LOS within each cluster-
period, respectively.
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Because we are fitting the model to registry data, ra-
ther than clinical trial data of the actual treatments to be
considered, we estimate the model parameters under the
assumption of a null treatment effect, and hence have
not included a fixed treatment effect. A fixed treatment
effect should be included when estimating the variance
components from data from the actual clinical trial.
The model was fitted in Stata 14 with the mixed com-

mand using restricted maximum likelihood estimation:
mixed log(LOS) periodeffect || cluster: || cluster_
period:, reml.

Binary outcomes
We estimate the value of the WPC for within-ICU
mortality by fitting the analysis of variance (ANOVA)
estimator for the intracluster correlation [12]:

ρ̂ ¼ MSC−MSW
MSC þ m0−1ð ÞMSW

;

MSC ¼
X2

j¼1

Xn

i¼1
mij P̂ ij−P̂ j

� �2
X2

j¼1
n−1ð Þ

;

MSW ¼
X2

j¼1

Xn

i¼1
mijP̂ ij 1−P̂ ij

� �
X2

j¼1
Nj−n
� � ;

m0 ¼
N−

X2

j¼1

Xn

i¼1
m2

ij=NjX2

j¼1
n−1ð Þ

;

where there are i = 1, …, n ICUs and j = 1, 2 12-month
periods; mij is the number of patients in the ith ICU
(cluster) and jth period; Nj is the total number of patients
in each period and N is the total number of patients
overall; P̂ ij is the estimated mortality rate in each

cluster-period; and P̂ j is the estimated mortality rate in
period j.
And by fitting the Pearson pairwise estimator for the

BPC [12]:

η̂ ¼
Xn

i¼1
Y 1i−m1iP̂ 1
� �

Y 2i−m2iP̂ 2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
m2i Y 1i−2Y 1iP̂ 1 þm1iP̂

2
1

� �� � Xn

i¼1
m1i Y 2i−2Y 2iP̂ 2 þm2iP̂

2
2

� �� �
;

r

where Y1i and Y2i are the number of deaths in two adja-
cent time periods on the ith ICU.

Appendix 2
Sample size calculations
In this section we provide the details of the sample size
calculations presented in the ‘Performing a sample size
calculation’ section, using the estimates for the WPC
and BPC that we calculated from the ANZICS-APD data
in Appendix 1.

Sample size calculation for ICU LOS
Total number of participants and ICUs required for the
CRXO design

NCRXO ¼ 2 zα=2 þ zβ
� �2 2σ2

μA−μBð Þ2 1þ m−1ð Þρ−m ηð Þ þ 4m;

NCRXO ¼ 2 � 1:96þ 0:84ð Þ2 2� 1:22

5:3−5:2ð Þ2 ð1þ 200−1ð Þ0:038−200

� 0:032Þ þ 4� 200 ¼ 10564

Since we expect 200 patients in each ICU for each of
the two 12-month periods, the number of ICUs needed
to achieve the required number of participants is:

nCRXO ¼ NCRXO

2m
¼ 10564

2 � 200
¼ 27:

If the BPC was η = 0.010 rather than η = 0.032, then:

NCRXO ¼ 2 � 1:96þ 0:84ð Þ2 2� 1:22

5:3−5:2ð Þ2 ð1þ 200−1ð Þ0:038−200

� 0:010Þ þ 4� 200 ¼ 30433

The total number of ICUs required to obtain the
required number of participants is:

nCRXO ¼ NCRXO

2m
¼ 30433

2 � 200
¼ 77:

Total number of participants and ICUs required for
the CRCT design

NCRCT ¼ 2 zα=2 þ zβ
� �2 2σ2

μA−μBð Þ2 1þ m−1ð Þρð Þ þ 2m;

NCRCT ¼ 2 1:96þ 0:84ð Þ2 2� 1:22

5:3−5:2ð Þ2 1þ 200−1ð Þ0:038ð Þ

þ2� 200 ¼ 39065

Assuming that 200 patients are eligible in each ICU
over the 12-month trial period, we would need to
include:

nCRCT ¼ NCRCT

m
¼ 39065

200
¼ 196 ICUs:

Total number of participants and ICUs required for
the IRCT design

NIRCT ¼ 2 zα=2 þ zβ
� �2 2σ2

μA−μBð Þ2 1−ρð Þ;

NIRCT ¼ 2 1:96þ 0:84ð Þ2 2� 1:22

5:3−5:2ð Þ2 1−0:038ð Þ ¼ 4345:

For a trial run over 12 months, with 200 patients per
ICU (100 patients per intervention), the total number of
ICUs required is:
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nIRCT ¼ NIRCT

m
¼ 4345

200
¼ 22:

Sample size calculation for in-ICU mortality
Total number of participants and ICUs required for the
CRXO design

NCRXO ¼ 2 � zα=2 þ zβ
� �2 pA 1−pAð Þ þ pB 1−pBð Þ

pA−pBð Þ2 1þ m−1ð Þρ−m ηð Þ þ 4m;

NCRXO ¼ 2 � 1:96þ 0:84ð Þ2 0:087� 1−0:087ð Þ þ 0:072� 1−0:072ð Þ
0:087−0:072ð Þ2 1þ 1200−1ð Þð

�0:010−1200� 0:007Þ þ 4� 1200 ¼ 51581

The number of ICUs needed to achieve the required
number of participants is:

nCRXO ¼ NCRXO

2m
¼ 51581

2� 1200
¼ 22:

If the BPC was η = 0.006, rather than η = 0.007, then
the total number of participants required is:

NCRXO ¼ 2 � 1:96þ 0:84ð Þ2 0:087� 1−0:087ð Þ þ 0:072� 1−0:072ð Þ
0:087−0:072ð Þ2

1þ 1200−1ð Þ � 0:010−1200� 0:006ð Þ þ4� 1200 ¼ 63811

We would need to include:

nCRXO ¼ NCRXO

2m
¼ 63811

2 � 1200
¼ 27 ICUs:

Total number of participants and ICUs required for
the CRCT design

NCRCT ¼ 2 zα=2 þ zβ
� �2 pA 1−pAð Þ þ pB 1−pBð Þ

pA−pBð Þ2 1þ m−1ð Þρð Þ þ 2m;

NCRCT ¼ 2 1:96þ 0:84ð Þ2 0:087� 1−0:087ð Þ þ 0:072� 1−0:072ð Þ
0:087−0:072ð Þ2

1þ 1200−1ð Þ � 0:010ð Þ þ 2 � 1200 ¼ 134792

We would need nCRCT ¼ NCRCT
m ¼ 134792

1200 ¼ 113 ICUs:

Total number of participants and ICUs required for
the IRCT design

NIRCT ¼ 2 zα=2 þ zβ
� �2 pA 1−pAð Þ þ pB 1−pBð Þ

pA−pBð Þ2 1−ρð Þ;

NIRCT ¼ 2 1:96þ 0:84ð Þ2 0:087� 1−0:087ð Þ þ 0:072� 1−0:072ð Þ
0:087−0:072ð Þ2

1−0:010ð Þ ¼ 10090

The total number of ICUs required is:

nIRCT ¼ NIRCT

m
¼ 10090

1200
¼ 9:

Additional files

Additional file 1: Continuous outcomes sample size Stata do file. Stata
do file to perform sample size calculations for continuous outcomes
using formulae presented in the ‘Performing a sample size calculation’
section, for a given set of sample size parameters. (DO 1 kb)

Additional file 2: Binary outcomes sample size Stata do file. Stata do file
to perform sample size calculations for binary outcomes using formulae
presented in the ‘Performing a sample size calculation’ section, for a
given set of sample size parameters. (DO 2 kb)
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