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• The papers reports for the first time experimental results on full-scale stainless steel beam-

to-column joints

• Stainless steel joints are shown to possess excellent ductility and high strength

• Current design standards are assessed and found overly conservative in the strength 

prediction of stainless steel joints

• Current design standards do not accurately predict the observed failure mode
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Abstract

Research on stainless steel structures has primarily focused on the structural response of individual members, 

whilst the response of joints has received far less attention to date. This paper reports for the first time full-scale 

tests on stainless steel beam-to-column joints, subjected to static monotonic loads, whilst the companion paper 

reports numerical studies on similar connection typologies to the ones studied herein. The joint configurations 

tested include one flush and one extended end plate connection, two top and seated cleat connections, and two 

top, seated and web cleat connections of single-sided beam-to-column joints. All connected members and 

connecting parts including bolts, angle cleats and end plates are in Grade EN 1.4301 stainless steel. The full 

moment-rotation characteristics were recorded for each test and the experimentally derived stiffness and 

moment resistance for each joint was compared to the codified provisions of EN1993-1-8. It was verified that 

the connections displayed excellent ductility and attained loads much higher than the ones predicted by design 

standards for carbon steel joints.
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1 Introduction

The increasing importance of sustainability and a transition towards whole life costing has led to an increased 

interest in the use of stainless steel as a primary structural material [1-4]. The design of stainless steel structures 

has traditionally relied upon assumed analogies with carbon steel design thus not accounting for the actual 

material response which exhibits significant strain hardening and absence of a yield plateau. Thanks to 

numerous research efforts, several international standards covering the design of stainless steel structures were 

either recently published or revised recently [5-7] in line with the observed structural response for cross-sections 

in compression, bending [8] and shear [9]. 

Most published research on structural stainless steel design has focused on the behaviour of individual cross-

sections and members, whilst the response of connections remains largely unverified. No significant difference 

between stainless steel and carbon steel joints is expected regarding the initial rotational stiffness, as the 

Young’s modulus of both materials is similar and hence the geometric configuration will be determining the 

rotation stiffness. However, given that connections are subjected to localized high deformation demands in 

conjunction with the pronounced strain-hardening of stainless steel, carbon steel connection details commonly 

assumed pinned, may be able to transmit significant moments if they are employed in stainless steel. Moreover, 



due to the higher material ductility of stainless steel, significant gains in terms of rotation capacity and hence 

overall ductility and resilience of the structure are expected, however they have not been quantified to date.

Some early experimental research on stainless steel bolted and welded connections was conducted by Errera et 

al [11], whilst more recently, the curling of bolted thin-walled stainless steel connections in shear was 

investigated by Kim et al [12, 13]. Ryan [14] reported tests on thick stainless steel bolted connections and Salih 

et al [15, 16] validated numerical models against the test reported in [14] and studied the net cross-section 

failure and the bearing failure of stainless steel bolted lap joints including austenitic, ferritic and duplex grades 

in their study. Moreover, they also studied numerically the behaviour of stainless gusset plate connections [17]. 

Bouchair et al [18] investigated numerically the response of stainless steel lap joints and t-stubs, whilst Cai and 

Young [19, 20] studied the response of stainless steel bolted joints at room and elevated temperatures. 

Departing from studies on simple connections primarily transmitting shear forces, Tao et al [21] have recently 

published a paper on blind bolted connections of steel beams to concrete filled stainless steel columns where 

SHS and CHS concrete filled stainless steel sections were connected to a steel beam with or without a slab. Both 

monotonic and cyclic loading was considered. With the exception of this paper, no other study on full-scale 

stainless steel beam to column joints has been published to date. Moreover, [21] focuses on a composite joint 

configuration which does not facilitate the assessment of current design provisions for stainless steel joints [10], 

as the presence of concrete slab and the interaction of concrete infill and blind bolts complicate the response. An 

attempt to study numerically the response of top and seat cleat stainless steel beam-to-column joints was also 

recently reported by [22]. However, due to the absence of relevant test data, the validation of the numerical 

models was based on existing carbon steel experimental results, and assumptions regarding the material 

response and the interaction of the various stainless steel components in the numerical model were made.

This brief literature survey clearly highlights the need for full-scale tests on stainless steel beam-to-column 

joints. Experimental characterization of the behaviour of stainless steel joints will allow certain restrictions in 

EN 1993-1-4 [6] to be overcome, as for example plastic global analysis is currently not allowed in the absence 

of experimental evidence as “there should be evidence that the joints are capable of resisting the increase in 

internal moments and forces due to strain hardening “. To this end an experimental programme on structural 

response of stainless steel joints and joint components is underway. Six full scale tests on single-sided stainless 

steel beam-to-column joints are reported herein, whilst a comprehensive numerical study on stainless steel joints 

is reported in the companion paper [23]. Tests on stainless steel t-stubs under tension have been recently 

conducted and are reported in [24]. The tests will allow current design provisions of EN 1993-1-8 [10] to be 

assessed and particularly the provisions for plastic moment resistance, rotational stiffness available rotation 

capacity. It is envisaged that the reported experimental results will enable other researchers to conduct 

numerical studies on stainless steel joints based on FE models validated against relevant test data. 

2 Experimental study

2.1 Details of tested specimens

All specimens employed a welded stainless steel section I 240×120×12×10 (i.e. outer depth h=240 mm, flange 

width b=120 mm, flange thickness tf=12 mm, web thickness tw=10 mm) for both the column and the beam. Four 



joint types, commonly encountered in practice, have been considered. These include the extended end plate 

connection (EEP), the flush end plate connection (FEP), the top and seat angle cleat connections (TSAC) and 

the top, seat and double web cleat connection (TSWAC). Typically, equivalent carbon steel TSWAC and EEP 

connections are on the stiff side of the semi-rigid range depending on the connection geometry and material 

properties relative to the beam size and strength, whilst the TSAC and the FEP connections are usually closer to 

the flexible bound of the semi-rigid range [25]. As the focus of the paper lies in the response of the joint, the 

connections have been designed so that failure is confined in the connection region. Hence all joints were 

designed as partial strength joints and, due to their geometry, they were also semi-rigid. 

Fig.1 shows the geometry of the four connection types considered. In all cases the bolts used are fully threaded 

M16 in Grade A4-80 (equivalent of 8.8 for carbon steel bolts) in 18 mm clearance holes. For the TSAC and the 

TSWAC connections the top and bottom angle cleat geometry is identical (including bolt hole locations) and 

two thicknesses for the angle cleats were considered to study the effect of angle cleat thickness on stiffness, 

strength and rotation capacity. It should be noted that the selection of the thickness for the end plates and the 

angle cleats was based on the maximum recommended thickness of an end plate or an angle cleat for which the 

connection may be assumed to possess sufficient rotation capacity according to Eq. (1) as given in EN 1993-1-8 

[10]. 
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In Eq. (1) the nominal bolt strength and the nominal yield stress of the angle cleats/end plates as stated in the 

mill certificates was used. The mill certificate values for the nominal yield stress (i.e. 0.2% proof stress) σ0.2, the 

1% proof stress σ1.0, the ultimate tensile stress σu and the strain at fracture εf are summarized in Table 1. The 

resulting allowable thickness according to Eq. (1) was equal to 8.4 mm for the angle cleats and 8.9mm for the 

end plates. 

2.2 Material properties

Flat coupons were extracted from the flange and the web of the I-section, from the angle cleats and from the 

same material from which the end plates were cut. The coupons were tested under strain control with an applied 

strain rate of 0.007%/s up to the 0.2% proof stress σ0.2 and then a strain rate of 0.025%/s was applied until 

fracture in accordance with [26].  Fig.2 shows some representative stress strain curves for the material coupons 

extracted from the I-section and the angles. In addition to the material coupons, bolts from the same batch as the 

ones used for the specimens were tested in tension and in double shear to obtain the basic material response and 

facilitate the analysis of the experimental results. Figs.3 and 4 illustrate the load-deflection curves and failure 

modes of stainless steel bolts in double shear and in tension resepctively. Table 2 reports the key material 

properties obtained from the tensile tests. In all cases the proof stresses and ultimate tensile stresses reported in 

Table 2 are lower than the respective mill certificate values. This is attributed to possible differences in the 

orientation in which the coupons were tested, which coupled with stainless steels’ anisotropy can have a 

significant effect on the obtained results. An additional reason for the observed discrepancy is the lower strain 

rate at which the material coupon tests were conducted in the lab compared to the strain rate used for the mill 

certificate tests. In the remainder of the paper and in the companion paper [23] the material properties reported 



in Table 2 are used. The allowable end plate/angle cleat thickness based on Eq. (1) and the measured material 

properties is 9.7 mm.

2.3 Experimental setup and instrumentation

Fig. 5 illustrates the experimental setup and instrumentation employed in all tests. The length of the members 

and the support conditions were designed to allow a stress pattern representative of typical single-sided beam-to-

column joints to develop in the joint, whilst ensuring that all deformations are confined in the joint and that 

failure occurs in either the beam or the column outside the joint region. All beams and columns were 1.5 m long. 

The column was inserted and wedged in a steel sleeve rigidly connected to the strong floor of the lab thereby 

facilitating fixed end conditions, as shown in Fig. 6. The horizontal displacement of the top of the column in the 

plane of the joint was restrained by a reaction frame. The load was applied vertically at 1.47 m from the column 

face via a hydraulic actuator, which was connected to the beam free end via a special bracket designed to 

eliminate any rotation of the beam end and hence any lateral torsional buckling of the beam, as shown in Fig. 6. 

The employed instrumentation is partly shown in Fig.5. It consists of eleven LVDTs used to monitor 

displacements in key parts of the specimens, a load cell recording the horizontal reaction force exerted by the 

reaction frame to the top of the column, a load cell embedded in the actuator that records the applied force and 

strain gauges at key locations of the connections to monitor the evolution of strains and possible strain 

concentrations and localized plastic deformations, as shown in Fig. 7. The LVDTs, marked as L followed by a 

number in Fig. 5, were used to obtain the rotation of the beam Φb (independently computed from L1 -L2, L3-L4 

and L3-L11), the rotation of the column Φc (L8-L9), possible separation of the end plate/angle cleat from the 

column face due to bolt elongation or bolt stripping (L5-L6) and to check that the employed details at the 

column ends (L7, L10) are stiff enough to restrain any displacement at the column ends. All instrumentation was 

connected to a data acquisition system and readings were recorded every two seconds.

2.4 Testing procedure

Prior to testing, the column of each specimen was inserted and wedged in the steel sleeve, as shown in Fig. 6. 

The beam was connected to the column with bolts, which were hand-tightened to obtain a snug tight connection, 

since preloaded bolts were beyond the scope of the project. Loading was applied via a hydraulic actuator with a 

maximum capacity of 400 kN and a maximum stroke travel of 250 mm. Upon connecting the LVDTs and strain 

gauges to the data acquisition system, the test commenced. The load was applied at a rate of 1.5mm/minute at 

the beam end. At regular intervals of about 10% of the expected ultimate load the test was halted for at least 2 

minutes to obtain the quasi-static force. In practice, the test was halted for longer periods to allow the specimen 

to be photographed and to conduct some initial processing of the results and check that the specimens were 

behaving as expected. When large inelastic deformations developed and the failure seemed imminent the 

loading rate was decreased to 1 mm per minute and the test was halted more frequently. All specimens were 

tested to failure, which, as discussed later, was in all cases ultimately due to bolt failure in tension/bending or 

shear. From the tests conducted on the FEP and the TSWAC specimens, which were the first to be tested, it 

became apparent that the deformation of the joint between the attainment of the maximum load and the fracture 

of a bolt was insignificant, compared to the very large rotations corresponding to the maximum applied load. 



Hence the remaining tests were terminated shortly after the maximum load was attained (i.e. the applied load 

started decreasing with increasing applied displacement).  In those cases, inspection of the most heavily loaded 

bolts revealed crack initiation in the bolts.

3 Results

In this section, the obtained results are discussed in detail. Emphasis is placed on the observed failure modes and 

the overall moment rotation response, which are discussed separately for each type of joint hereafter. The 

moment acting on the joint was determined by multiplying the force applied by the actuator by the distance of 

the actuator from the column face (1.47 m), whilst the joint rotation Φ was determined by subtracting the 

rotation of the column Φc from the rotation of the beam Φb. These rotation values were obtained from the 

relevant LVDT readings as previously mentioned.  A typical moment-rotation curve is shown in Fig. 8, where 

the rotation is based on different LVDT readings. Very little difference can be observed between the beam 

rotation calculated by LVDTs L1-L2 and L3, L4 and L11, hence, only the beam rotation as determined by L1 

and L2 is considered in the remainder of the paper.

3.1 Flush and extended end plate connections

Fig.9 depicts the obtained moment-rotation response for the FEP and EEP specimens. Both graphs exhibit an 

initial linear elastic response until about a third of the maximum recorded moment, whereupon a gradual loss of 

stiffness occurs followed by another almost linear region, as indicated by the smooth transition between the two 

lines. The second linear part of the response curves sharply once the maximum moment Mj,u is reached. The 

FEP specimen exhibits a sharp linear post-ultimate response following the attainment of the maximum load 

which coincides with the failure of the bolt and is terminated upon the fracture of the bolt. This post-ultimate 

response was not recorded for the EEP specimen as the test was terminated shortly after the maximum load was 

reached. As expected, EEP is characterized by a stiffer response and a higher moment resistance, since the bolts 

beyond the top flange of the beam are more effective in transmitting the bending moment. However, FEP has 

markedly higher ductility with a rotation at ultimate load Φj,u more than 150 mrad, whilst the corresponding 

value for the EEP specimen is 119 mrad. The excellent ductility and the sharp increase in the moment resistance 

with increasing strain exhibited by both specimens is arguably partly attributable to material characteristics of 

stainless steel.

In Figs.10a and 10b the failure modes for FEP and EEP can be seen together with the most heavily stressed bolt 

for each specimen. In the case of the FEP, very large plastic deformations of the end plate can be observed, 

together with plastic bending of the column flange which is also clearly seen. The large deformations of the 

plate forced the heavily stressed top bolts of the connection to rotate leading to failure by fracture of one of the 

top bolts, whereupon the connection failed and the test was terminated. The fracture of the bolt occurred in the 

shank close to the bolt head, without any pronounced plastic deformation or necking, thus verifying that fracture 

of the bolt was primarily due to the forced rotation/flexure of the bolt head. In the case of the EEP specimen, a 

classical deformation of the t-stub comprising the beam tension flange and the end plate between the top and 

middle row of the bolts can be seen. The deformation of the t-stub corresponds to complete yielding of the 

flange between the bolt rows (Mode 1 according to [10]) and is known to be a ductile failure mode. Little 

deformation of the column flange in contact with the t-stub can be observed, whilst bearing of the beam 



compression flange against the column flange has led to clear bending of the column flange in the compression 

zone. Failure was ultimately due to bolt failure, which can be seen in Fig.10b to have significant plastic 

deformations corresponding to tension and single shear as expected. A close inspection of the bolt revealed the 

initiation of tensile cracking, which triggered failure. It should be noted that in neither FEP or EEP specimens 

were any signs of weld fracture or fracture of the plate observed, thus verifying the excellent ductility of 

austenitic stainless steels. 

In Fig. 11 the evolution of strains with increasing rotation are shown, with tensile strains being assigned a 

negative sign.). As expected, Fig. 11(a) shows high inelastic tensile strains in locations 1, 2, which lie the 

farthest from the joint’s centre of rotation with decreasing tensile strains recorded in locations 4, 5 and 6 which 

lie closer to the centre of rotation and hence are subjected to smaller deformations. In accordance with the 

deformation pattern of the flush plate shown in Fig. 10(a), high inelastic compressive strains are observed in 

location 3. Similarly, Fig. 11(b) illustrates the evolution of very high tensile strains in locations 1 and 3 

(between the top and the second bolt row) due to the pronounced bending of the end plate with decreasing 

tensile strains for locations 5 and 6 (between the second and the bottom bolt row). Compressive strains have 

been recorded in locations 2 and 4 which lie at the top and the second bolt row respectively.

3.2 Top and seat angle cleat connections

The moment-rotation response of the TSAC-8 and TSAC-10 specimens is shown in Fig.12. Both specimens 

exhibit similar response with an initial non-linear response attributable to the gaps between the bolts and the bolt 

holes followed by a linear elastic response leading to a gradual transition to a second, less stiff, linear region. 

For the thinner TSAC-8 specimen, the second linear region is followed by a nonlinear hardening region prior to 

failure. This is due to the change in shape of the top angle cleat, which with increasing deformation, transfers 

higher loads via tension rather than bending, hence displaying a stiffer response as it flattens. As expected, the 

thicker TSAC-10 specimen displays higher strength and stiffness compared to its thinner counterpart. In terms 

of ductility, both specimens reached similar values of rotation Φj,u corresponding to the maximum recorded load 

Mj,u in excess of 150 mrad. 

Fig.13 shows the observed failure modes, which include plastic deformation of the top cleat in the tension zone, 

limited plastic bending of the seat cleat in the compression zone and significant bending of the column flange in 

the compression zone due to bearing of the compression flange of the beam. As in the case of EEP and FEP, 

failure of the joint was ultimately triggered by bolt failure, which exhibited high inelastic deformations in shear 

and tension. In Fig.13, a hairline crack at the location of the shearing plane can be observed. 

Fig.14 shows the evolution of strains in the top angle cleat connecting the top flange of the beam to the column 

face for specimens TSAC-8 and TSAC-10 with increasing rotation. The compressive strains are assigned a 

positive sign and the tensile strains a negative one. The strains between the two bolt holes of the horizontal leg 

of the angle cleat connecting it to the beam’s top flange (location 1) remain fairly small throughout the loading 

process, as that part of the angle cleat does not deform significantly. As expected, high tensile strains develop in 

the vicinity of the toes of the angle legs as the angle cleats deform in an opening mode with increasing rotation. 



The strains in the horizontal leg of the cleat (beam side - location 2) increase faster than the strains in the 

vertical leg (column side - location 3) and the two curves diverge increasingly with increasing deformation. This 

is more pronounced for the thinner angle cleat (Fig. 14 (a)), which displays higher plastic deformation, whilst 

for the thicker angle cleat (Fig.14 (b)) the curves for locations 2 and 3 diverge less. Finally, high compressive 

strains can be observed between the bolt holes in the vertical leg of the angle cleat (location 4) due to the 

localized bending of the angle cleat. Overall the recorded strains are in good agreement with the observed 

deformation.

3.3 Top, seat and web cleat connections

Fig.15 shows illustrates the recorded moment-rotation for the TSWAC-8 and TSWAC-10 joints. The response 

of both specimens is similar and exhibits the initial non-linear part of reduced stiffness due to lack of contact 

between the bolts and the clearance holes as discussed before. As expected, the TSWAC specimens are stiffer 

and stronger than their counterparts without the web cleats. Regarding the effect of the employed angle cleat 

thickness, there seems to be a marked effect on the initial stiffness and the rotation at maximum moment Φj,u, 

however the maximum moment itself remains unaffected, as is the stiffness of the second linear branch of the 

moment-rotation curve.

Failure of both specimens occurred due to failure of the top bolt connecting the web cleat to the beam in double 

shear, as can be clearly seen in Fig.16, where the failed bolt can be clearly seen to exhibit plastic shear 

deformations and the two slip planes in the bolt shank are clearly visible. Some plastic bending of the column 

flange due to bearing of the beam compression flange on the column can also be observed, this however 

occurred at very high rotation values. Fig.17 illustrates the evolution of strains in the top and web angle cleats 

connecting the top flange and the web of the beam respectively to the column face for specimens TSWAC-8 and 

TSWAC-10. The strain evolution in the top angle cleat follows closely the trends observed in Fig.14 for the 

TSAC specimens, with high inelastic strains being present in the vicinity of the angle toe and in the vicinity of 

the bolt holes of the vertical angle cleat leg (locations 2, 3 and 4). High inelastic strains develop in the web cleat 

toe on the beam side (location 6), thus indicating the concentration of high plastic deformations in this region. 

The development of strains in location 6 overall follow the evolution of strains in locations 2 and 3 but are 

slightly lower, since location 6 is closer to the centre of rotation of the joint than locations 2 and 3, hence the 

imposed deformation due to the joint rotation is smaller. Significant strains develop in the leg of the web cleat 

on the column side of TSWAC-8 specimen (Fig. 17 (a)), which, as shown in Fig. 16(a), deforms with increasing 

rotation. For the thicker TSWAC-10 specimen (Fig. 17(b)) virtually no strain is seen to develop in location 7. 

Similar to location 1, very low strains can be observed in location 5.

3.4 Key joint response characteristics

Several useful parameters relating to strength, stiffness and rotation capacity were extracted from the graphs and 

are summarized in Table 3, to allow the recorded response to be characterized and compared to the one 

predicted by EN 1993-1-8 [10]. These include the initial stiffness Sj,ini , the pseudo plastic moment resistance 

Mj,R and its corresponding rotation Φj,R, the maximum obtained moment Mj,u its corresponding rotation Φj,u and 



the maximum recorded rotation Φc, which are obtained from the moment rotation curves. All symbols are 

defined in Fig. 18. 

The initial stiffness Sj,ini was obtained by regression analysis of the initial linear part of the curve prior to the 

development of any plastic deformations. For specimens FEP, EEP, TSAC-8 and TSAC-10, where the initial 

linear part is preceded by a nonlinear region due to the existence of gaps between the bolts and the clearance 

holes, the initial linear part is ignored and the regression analysis is carried out over the part of the curve which 

exhibits linear response. Similarly, the maximum moment Mj,u, the corresponding rotation Φj,u and the 

maximum recorded rotation Φc were also unambiguously determined. With respect to the pseudo plastic moment 

resistance Mj,R which will be later on compared to the Eurocode moment resistance predictions there are several 

procedures according to which it can be determined from an experimental moment-rotation curve. These include 

the intersection between the second less stiff linear region of the curve with the vertical axis of the moment 

rotation curve [27], the moment value corresponding to the intersection between the lines tangent to the first (i.e. 

elastic) linear part of the curve and the second (i.e. hardening) linear part of the curve [28] and the moment 

value of the curve at a secant stiffness defined as a fraction of the initial elastic stiffness [29]. The first 

procedure has the advantage of being independent of any initial nonlinear response of the moment-rotation 

curve, the second one is similar but less conservative than the first and the third one has been adopted by 

EN1993-1-8 [10], but relies on the accurate prediction of the joint stiffness, which can display significant scatter 

for bolted connections due to gaps between the bolts and their clearance holes. All three procedures are 

schematically shown in Fig.18. In this and the companion paper [23], the Mj,R values are determined from the 

intersection between the initial elastic stiffness and the  line tangent to the hardening part of the curve as 

outlined in [28], since this procedure has been widely adopted by researchers [30, 31]. The obtained values for 

Mj,R are reported in Table 3 and are used hereafter to assess the accuracy of the design equations of EN 1993-1-

8 [10]. Finally, the value of the moment corresponding to a rotation of 30 mrad, which is widely considered as a 

sufficient rotation capacity for beam-to-column joints [30-32] has also been included in Table 3. It should be 

noted that the value of 30 mrad is inbetween the minimum required values for the rotation capacity of a plastic 

hinge specified for steel dissipative connections in [33] as 35 mrad and 25 mrad for ductility class high (DCH) 

and ductility class medium (DCM) respectively.

4 Discussion

Having obtained the basic characteristics of the response of the tested joints, the predictions of EN 1993-1-8 

[10] for carbon steel joints with respect to the initial rotational stiffness, strength and ductility are hereafter 

compared to the experimental ones.

4.1 Initial rotational stiffness

The initial rotational stiffness Sj,ini of the tested joints is calculated from Eq. (2) according to the provisions of 

EN 1993-1-8 [10]: 
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where E is the Young’s modulus, z is the leverarm and ki are the stiffness coefficients of the basic joint 

components considered for each connection. 

In addition to the column web in tension and compression, the column flange in bending and the bolts in 

tension, which are considered for all joints, the end plate in bending is considered for the FEP and EEP joints, 

the angle cleats in bending and bearing and beam flanges and beam web in bearing and the bolts in shear are 

considered for the TSAC joints and TSWAC specimens. The measured values for Young’s modulus were used 

for each component considered, whilst the ki values are determined according to EN 1993-1-8 [10]. For the 

determination of the stiffness of the FEP, EEP and TSAC joints, [10] gives specific provisions relating to the 

determination of z and, whilst the determination of the stiffness of TSWAC joints is not fully covered. 

Therefore, design recommendations for the strength and stiffness of TSWAC joints proposed in [34], which are 

essentially an extension of the component method of [10] have been employed herein. 

The predicted values for the initial stiffness of the tested connections are summarized in Table 4 where the ratio 

of the predicted stiffness values over the experimental ones is also reported. On average, the EN 1993-1-8 [10] 

procedure overestimates the initial rotational stiffness by 94%. Similar conclusions were also reached for carbon 

steel end plate joints [30, 31], where the predicted stiffness was on average more than twice the experimental 

one, and for carbon steel TSAC and TSWAC specimens where a large scatter of the predictions has been 

reported [35, 36]. Hence the apparent inaccuracies of the design provisions for the rotational stiffness in [10] do 

not relate to a specific material, but are arguably attributable to the gaps and slips between the various bolted 

components of non-preloaded bolted connections, which cannot be easily quantified and are not taken into 

account in design standards. 

4.2 Plastic moment resistance

The plastic moment resistance of all tested connections is obtained according EN 1993-1-8 [10], using the 

measured σ0.2 values in place of the yield strength for the relevant components. The predicted plastic moment 

resistance Mj,R is reported in Table 4 where the ratio of predicted over experimental plastic moment resistance is 

also reported. As expected, all Eurocode predictions are conservative with an average value of predicted over 

experimental moment resistance of 0.53 and a coefficient of variation 0.13. This indicates that the Eurocode 

consistently underestimates the capacity of stainless steel connections, at least for the six joints tested in this 

study. High levels of conservatism were exhibited by the Eurocode for other stainless steel components with 

much simpler structural behaviour, such as the moment resistance of restrained beams [8] and relate to the 

pronounced strain-hardening exhibited by stainless steel.



4.3 Rotation capacity and failure modes

The rotation capacity of steel connections is not quantified in [10]. Instead, simple design provisions are given, 

which, if followed, allow the designer to assume that the joint possess adequate rotation capacity. These include 

fulfilment of Eq.(1) and ensuring that the design moment resistance Mj,R is governed by a ductile failure mode 

[36], such as column web panel in shear, column flange in bending or beam end plate or tension flange cleat in 

bending. As earlier discussed, how much rotation capacity is considered adequate depends on the application, 

with the European seismic design code specifying 25 mrad and 35 mrad as the minimum required connection 

rotations for DCH and DCM respectively. All joints tested in this study fulfilled the conditions specified in [10], 

and were thus expected to develop adequate rotation capacity, which is seen to be the case with recorded 

rotations ranging from 91 mrad to 165 mrad.

Table 5 reports the predicted failure modes according to [10], the observed failure modes at ultimate load, the 

recorded maximum rotation and the ratio of the experimentally derived ultimate moment over the 

experimentally determined plastic moment of the joint. The predicted failure modes are all ductile and include 

bending of the plate or angle cleats. However, as earlier discussed, in all cases failure was triggered by bolt 

failure either in tension or in shear. It should be noted that the predicted failure modes relate to the minimum 

strength of the weakest component at the attainment of the plastic moment resistance of the connection Mj,R, 

whilst the experimental failure modes, relate to the failure of a component when the maximum recorded moment 

Mj,max was reached. The predicted failure modes according to [10] did indeed develop but the connections 

possessed significant overstrength and reached higher moments due to the excellent ductility and pronounced 

strain-hardening of the stainless steel plates and angle cleats, until the less ductile bolts failed. The Mj,max over 

Mj,R ratio, which can be considered an additional measure of ductility, ranges between 1.36 and 2.83. Both the 

minimum Mj,max over Mj,R ratio and the minimum joint rotation occur for the TSWAC10 specimen, the ultimate 

failure of which was due to shearing of the top bolt connecting the web cleats to the beam web. 

5 Conclusions

Both this and the companion paper address the issue of very limited research on stainless steel joints, the design 

provisions for which are based on assumed analogies with carbon steel joints. Six full-scale tests on single sided 

beam to column joints made of austenitic stainless steel has been conducted and reported in detail. The tested 

joints included FEP, EEP, TSAC and TSWAC joints and exhibited high rotation capacity and overstrength due 

to the excellent ductility and pronounced strain-hardening of stainless steel. In all cases, significant inelastic 

deformations occurred in the end plates or angle cleats prior to failure which was ultimately due to bolt failure 

either in tension or in shear. Based on these limited experimental results, the provisions of EN1993-1-8[10] 

which are also assumed to be applicable to stainless steel joints have been assessed. Similar to studies on carbon 

steel joints, the stiffness model of the Eurocode was found to overestimate the initial rotation stiffness of the 

joints and the predictions displayed significant scatter. On the other hand, the strength predictions were found to 

systematically underestimate the plastic moment resistance of the tested joints. An important observation relates 

to failure always being triggered by bolt failure even in cases where according to EN 1993-1-8 [10] failure of 

the T-stub due to the formation of plastic hinges was expected. The T-stub did indeed develop the predicted 



plastic deformation, but due to the significant strain-hardening of stainless steel, the stresses in the yielded 

regions and hence the moment resistance of the connection kept increasing until the less ductile bolts failed in 

tension as clearly exhibited in Figs 10 and 13. Hence, basing the prediction of the failure mode on the EN 1993-

1-8 [10] design equations should be done with caution as failure to account for strain-hardening of the T-stubs 

results in the bolts potentially being subjected to much higher tensile forces than anticipated.  Based on the six 

tests reported herein, numerical models for FEP, EEP, TSAC and TSWAC joints are developed and validated in 

the companion paper [23], and detailed parametric studies are conducted to allow a more comprehensive 

assessment of the provisions on EN 1993-1-8 [10]. 
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(a) Extended End Plate (EEP) connection (b) Flush End Plate (FEP) connection

(c) Top and Seat Angle Cleat connection (TSAC)    (d) Top, Seat  and double Web Cleat (TSWAC) connection

Fig. 1 Geometric configuration of the tested specimens 

        

Fig.2 Typical stress strain curves of tested stainless steel tensile coupons.



            

Fig.3 Load-deflection curve and failure mode of M16 bolt Grade A4-80 loaded in double shear.

      

Fig.4 Load-elongation curve and failure mode of M16 bolt Grade A4-80  loaded in tension.



Fig.5 General arrangement of experimental setup and instrumentation.

Fig.6 Experimental setup during testing of TSWAC-8



 

(a) FEP

        

(b) EEP

(c) TSAC-10 & TSAC-8 (d) TSWAC-10 & TSWAC-8 

Fig.7 Location of strain gauges for each specimen

Fig.8 Moment rotation curves of EEP with different definitions of beam rotation Φb  



Fig.9 Moment-rotation response for FEP and EEP specimens

  

(a) Flush End Plate (FEP) connection failure mode 

and fractured top bolt

 

(b) Extended End Plate (EEP) connection failure 

mode and deformed top bolt

Fig.10 Failure modes of FEP and EEP specimens

(a) Measured strains for FEP specimen (b) Measured strains for EEP specimen

Fig.11 Strain evolution with increasing rotation for FEP and EEP specimens



Fig.12 Moment-rotation response for TSAC-8 and TSAC-10 specimens

  

  (a) TSAC-8 connection failure mode and deformed 

top bolt

 

(b) TSAC-10 connection failure mode and 

deformed top bolt with crack initiation

Fig.13 Failure modes of TSAC-8 and TSAC-10 specimens

(a) Measured strains for TSAC-8 specimen (b) Measured strains for TSAC-10 specimen

Fig.14 Strain evolution with increasing rotation for TSAC-8 and TSAC-10 specimens



Fig.15 Moment-rotation response for TSWAC-8 and TSWAC-10 specimens

  
(a) TSWAC-8 connection failure mode and   

deformed top bolt

   

(b) TSWAC-10 connection failure mode and 

deformed bolt in beam web failed in double shear

Fig.16 Failure modes of TSWAC-8 and TSWAC-10 specimens

     

(a) Measured strain for TSWAC-8 specimen (b) Measured strain for TSWAC-10 specimen

Fig.17 Strain evolution with increasing rotation for TSWAC-8 and TSWAC-10 specimens



a) After Jaspart [27] b) After Zenon and Zandonini [28]

c) After Weynard [29, 10]

Fig.18 Various definitions of plastic moment resistance



Table 1 Material properties according to mill certificates

Specimen σ0.2    

 (N/mm2)

σ1.0    

 (N/mm2)

σu    

 (N/mm2) 

εf

%

I-240×120×12×10 341 369 635 53

L-100X100X8 373 441 675 54

L-100X100X10 378 445 673 55

Endplate (thickness 8mm) 335 379 630 54

Table 2 Material properties from tensile tests  

Specimen E

 (N/mm2)

σ0.2    

 (N/mm2)

σ1.0    

 (N/mm2)

σu    

(N/mm2

) 

εf

%

I-240×120×12×10 - flange 196 500 248 306 630 66

I-240×120×12×10 - web 205 700 263 320 651 65

Angle cleat (8 mm) 197 600 280 344 654 55

Angle cleat (10 mm) 192 800 289 353.5 656 56

End plate 198000 282 343 655 54

M16 bolt (A4-80) 191 500 617 703 805 12

Table 3 Key experimental results from the moment-rotation curves. 

Rotation Φ (mrad)Specimen Initial 

stiffness 

Sj,ini 

(kNm/rad)

Maximum 

moment 

Mj,max

(kNm)

Moment at 

30 mrad 

Mj,30 (kNm)

Plastic 

Moment 

resistance 

Mj,R (kNm)

at maximum  

moment Φj,u

maximum 

recorded Φc

FEP 3913 65,40 41 40 157 165

EEP 4464 80.40 48 42 119 121

TSAC-8 1237 34.10 12 12 157 157

TSAC-10 1521 41.50 21 23 162 162

TSWAC-8 1920 73.30 30 39 125 131

 TSWAC-10 2769 74.70 44 55 91 95

                   

Table 4 Comparison of experimental results with EC3 predictions 

Initial stiffness Sj,ini  (kNm/mrad) Moment Capacity Mj (kNm)

Specimen Sj,ini,

(EC3)

Sj,ini

(TEST) EC3/Test

Mj,R

(EC3)

Mj,R

(TEST) EC3/Test

FEP 5740 3913 1.47 18.6 40 0.47

EEP 9360 4464 2.10 27.2 42 0.65

TSAC-8 1800 1237 1.48 6.6 12 0.55

TSAC-10 2520 1521 1.68 11.1 23 0.48

TSWAC-8 5240 1920 2.73 19.25 39 0.49

TSWAC-10 6140 2769 2.22 30.3 55 0.55



                   Table 5 Failure modes and measures of ductility

Specimen
Predicted failure mode Actual failure mode

maximum 

recorded rotation 

Φc (mrad)

Mj,max/ 

Mj,R

FEP End plate in bending Fracture of bolt in tension 165 1.63

EEP End plate in bending Bolt failure in tension 121 1.91

TSAC-8 Bending of flange cleat/mode1 Bolt failure in tension and shear 157 2.83

TSAC-10 Bending of flange cleat/mode 1 Bolt failure in tension and shear 162 1.80

TSWAC-8

Bending of flange/mode 1- 

bending of web 

cleat /mode 1

Bolt failure in tension and shear 

(flange cleat bolt)
131 1.88

TSWAC-10

Bending of flange/mode 1- 

bending of web 

cleat /mode 1

Bolt failure in shear (top bolt 

connecting  web cleat to beam 

web)

95 1.36


