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ScienceDirect
The regenerative response of ensheating glia to central nervous

system (CNS) injury involves proliferation and differentiation,

axonal re-enwrapment and some recovery of behaviour.

Understanding this limited response could enable the

enhancement of it. In Drosophila, the glial progenitor state is

maintained by Notch, an activator of cell division and Prospero

(Pros), a repressor. Injury provokes the activation of NFkB and

up-regulation of Kon-tiki (Kon), driving cell proliferation.

Homeostatic switch-off comes about as two negative feedback

loops involving Pros terminate the response. Importantly, the

functions of the kon and pros homologues NG2 and prox1,

respectively, are conserved in mammalian NG2 glia. Controlling

these genes is key for therapeutic manipulation of progenitors

and stem cells to promote regeneration of the damaged CNS.
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Regeneration occurs in some animals, revealing that in

principle cells might ‘know’ how to achieve and

restore organismal integrity. However, the adult mam-

malian and insect central nervous system (CNS) do

not regenerate upon damage, disease or injury. This

leads to permanent disability, and an important neu-

roscience goal is to discover how to enhance CNS

regeneration. Both in mammals and fruit-flies, injury

induces a stereotypic response that reveals a natural

yet limited tendency of the CNS to mend itself: the

lesion first expands and then shrinks [1,2��]. Lesion

expansion correlates with increased cell death and

the formation of vacuoles; whilst shrinkage correlates

with the activation of glial repair and regenerative

responses [1,2��,3]. ‘Repair’ means to restore some-

thing damaged to a good condition; ‘regenerate’ means

to grow again. Different glial cell types elicit distinct

responses [1].
Current Opinion in Neurobiology 2017, 47:182–187 
Some glial cell types repair the damaged site, by clearing

cell debris and forming a glial scar. Debris clearance is

initiated by an inflammatory reaction, glial cells migrate

to the lesion, engulf and dissolve axonal fragments, apo-

ptotic cells and vacuoles [1]. In the adult mammalian

CNS, this response is carried out by microglia (supported

by extravasated monocytes), and most glial cell types can

become phagocytic in Drosophila [2��,4,5]. The rapid

formation of a glial scar isolates the wound, restores tissue

barriers and prevents further tissue expansion. It is eli-

cited by activated astrocytes in mammals. This response

may have evolved in warm-blooded animals, as no scar

appears to form upon injury in the fish or insect CNS

[2��,6,7��,8]. These glial repair responses will not be dealt

with further here.

Glial cells of ensheathing cell lineages regenerate them-

selves upon injury [1]. Ensheathing glial cell lineages,

like oligodendrocyte progenitor cells (OPCs, also called

NG2 glia) in mammals respond to injury by undergoing

compensatory proliferation to regenerate themselves,

provide trophic support for neurons and re-enwrap axons,

leading to some recovery of neuronal function and behav-

iour [1,8–10,11�]. This regenerative response is evolu-

tionarily conserved across animal phyla, for example, in

insects, fish, rodents and humans. In the cockroach, injury

induces extensive glial proliferation followed by recovery

of normal conduction [12]. In Drosophila, neuronal genetic

ablation in the embryo, and stabbing and crush injury in

the larva, all induce proliferation of axon-associated

neuropile glia [2��,7��,13,14�,15�]. In fish, rodents and

humans, injury induces oligodendrocyte (OL) death,

followed by the regenerative response of NG2 glia

described above, leading to remyelination [8,11�]. This

response is induced after spinal cord injury, traumatic

brain injury and stroke, and correlates with the remitting

phases of multiple sclerosis [1,9,16]. However, despite

extensive NG2-glia proliferation after injury, insufficient

daughter cells differentiate into OLs, limiting axonal re-

enwrapment and functional recovery. A crucial challenge

to regenerative biologists focused on functional rescue of

the damaged mammalian CNS is to find out how to

enhance the differentiation of OPCs into OLs, and their

subsequent progression to remyelination [1,17]. On the

other hand, transplantation of olfactory ensheathing glia

(OEG), NG2 glia and/or stem cells to the injury site, in

the retina and spinal cord, have yielded encouraging

results in the pursuit of functional restoration of the

damaged CNS, in animal models and in humans

[18,19]. Why such remarkable functional recovery takes

place is not understood, but as well as involving glial

regeneration and remyelination, it is likely to involve also
www.sciencedirect.com
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neuronal events. For instance, transplanted glia might

provide trophic support for neurons, aid axonal navigation

and re-growth. Either way, therapeutic cell transplanta-

tions rely on the prior precise manipulation of stem cells,

OEG or OPCs [20]. In this context, discovering genes that

control glial responses to injury, and their operating

principles, is critical.

Go and stops signals drive the glial
regenerative response to CNS injury
The fruit-fly Drosophila is a very powerful model organism

to discover evolutionarily conserved molecular mecha-

nisms. The neuropile of the Drosophila ventral nerve cord

(VNC), which is equivalent to the mammalian dorsal

spinal cord, is populated by neuropile glia (NG)

[2��,13]. NG have been subdivided into ‘astrocytes’ and

‘ensheathing glia’ [4,21–23] (Figure 1a, mauve and green,

respectively), but this nomenclature is not always helpful.

The so called ‘astrocytes’ project into the neuropile and

interact with synapses, but they also enwrap individual

axons and clusters of axons. Larger axons are enwrapped

individually, and thinner axons are enwrapped in clusters

resembling Remak bundles of the mammalian peripheral

nervous system [2��]. Axonal enwrapment is not as tight as

in mammals, myelin is not produced, and no Nodes of

Ranvier are formed [2��]. These glia express the genes

Notch and prospero ( pros) [2��,13,22,24]. Pros is required

for axonal enwrapment within the neuropile [2��].
In mammals, the pros homologue prox1 is expressed in

OPCs and OLs, but not astrocytes [25�,26�]. The so-called

‘ensheathing glia’ do not enter the neuropile, but they

wrap around the outside of the neuropile instead, cannot

divide and do not express Notch or pros [2��,4,7��,13,21,22].
Both Pros+ and Pros-negative glia express factors involved

in neurotransmitter recycling [2��,22], a feature shared

with astrocytes, OPCs and OLs. Notch+Pros+NG are

the only glia to retain mitotic potential and divide in

development or upon injury [2��,7��]. Like mammalian

NG2 glia and Schwann cells, Notch+Pros+NG are at once

progenitors and differentiated cells. Thus, NG share prop-

erties with mammalian astrocytes, NG2 glia/OPCs and

OLs. To avoid further confusion, here we will refer to these

cells called astrocytes by others, as Pros+NG.

Pros+NG proliferation is sensitive to neuronal interac-

tions. During development, Pros+NG initially divide

without G phases, and the G1 phase starts when NG

contact axons bearing Serrate and Delta, which activate

Notch signaling in these glia [13,27,28]. After axonal

engagement, Notch+Pros+NG divide once more, and

as glial cells are produced they sort axons into fascicles

[13,27]. After axon guidance, VNC NG do not divide

further, and Notch+Pros+NG remain quiescent or slow

cycling until at least the end of larval life (they have not

been studied later) [2��,13]. Notch+Pros+NG remain in a

progenitor state as they retain mitotic potential and divide

quickly if provided with Cyclin E [2��,13]. In contrast,
www.sciencedirect.com 
Notch-negative, Pros-negative NG cannot divide, even if

provided with Cyclin E [13]. Mitotic potential is main-

tained by the combined action of Notch, an activator of

cell division, and Pros, an inhibitor of cell division. Notch
and pros maintain each other’s expression, thus their

antagonistic functions prevent cell division but keep cells

ready to divide [13] (Figure 1b). Although divisions are

rare, they occur in wild-type larvae in around 1/1000

VNCs, thus they are experimentally challenging to detect

[2��]. Most likely, these divisions are homeostatic, taking

place as required. By contrast, genetic neuronal ablation

in the embryonic VNC and stabbing and crush injury in

larval VNCs, induce extensive Notch+Pros+NG prolifer-

ation [2��,7��,13]. Thus, the antagonistic functions of

Notch and Pros endow NG with a mechanism that

enables them to adjust their number during neural circuit

formation, to maintain homeostasis, and to promptly

divide on injury (Figure 1a,b).

Quiescent progenitors are also present in the adult brain,

but went undetected for a long time [15�,29�]. No prolif-

eration can be observed with mitotic markers in the adult

brain, but they can be detected, for example, with Mosaic

Analysis with a Repressible Cell Marker (MARCM) clones

as slow cycling progenitors [15�,29�]. Apoptosis, stabbing

injury and genetic neuronal ablation in the adult brain all

induce cell proliferation [14�,15�,29�]. At least some of the

adult progenitors are glia [14�,15�], but whether all are glia,

or if they are Notch+Pros+, like in the VNC, is unclear.

Some of the progenitors for both neurons and glia in

developing adult brain are Pros+Notch+, and Notch+

determines gliogenesis [30]. Either way, Drosophila neu-

ropiles in VNC and brain retain quiescent or slow cycling

progenitors throughout the life-course that regulate neu-

ronal and glial cell number, enable homeostatic cell num-

ber adjustments, and are activated in response to injury.

A key driver of NG proliferation is kon-tiki (kon), the

Drosophila orthologue of mammalian NG2. NG2 and kon
encode transmembrane proteins and are highly evolution-

arily conserved, with large extracellular domains, and

smaller intracellular domains, both of which can be

cleaved [31]. kon is dynamically expressed in NG during

development [7��]: it is expressed in proliferating Notch

+Pros+NG during axon guidance, is switched off as glial

division ceases, and is switched on again in pupal and

adult brain. Kon triggers proliferation of Notch+Pros

+NG, but it cannot induce proliferation of Pros-negative

NG. Kon is also required for the onset of glial differentia-

tion in daughter cells, but glial differentiation mainte-

nance depends on Pros [7��]. Pros regulates the expres-

sion of factors involved in neurotransmitter recycling, like

Glutamine Synthetase and Ebony, and is required for

axonal enwrapment [2��,7��,13,22].

Upon CNS injury, the lesion typically first expands and

then shrinks (Figure 1a) [2��]. The expansion coincides
Current Opinion in Neurobiology 2017, 47:182–187
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Figure 1
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Current Opinion in Neurobiology

The glial regenerative response to CNS injury in fruit-flies and mammals. (a) The Drosophila larval ventral nerve cord. The Notch+Pros+NG (mauve)

have cell bodies surrounding the neuropile, with part of their cytoplasms extending into regions of the neuropile, where axons and dendrites are

located (white). Neuronal cell bodies and other glial cell types are located in the cortex (grey). Notch+Pros+NG divide during axon guidance, but

they rarely divide in larval life, which lasts for five days. Divisions in larva are homeostatic. Upon injury to the larval VNC, the lesion first expands

as many cells die. Injury induces compensatory proliferation of surviving NG. Subsequently, proliferation ceases, glial cells differentiate and the

lesion shrinks. (b) Molecular mechanism underlying the glial regenerative response in Drosophila. NG are kept ‘ready to divide’ through the

mutually dependent, yet antagonistic functions of Notch and Pros. Injury induces the activation of NFkB/Dorsal and Notch-dependent up-

regulation of kon (homologue of NG2) expression. Kon induces proliferation of Notch+Pros+NG. Kon also activates the expression of pros. Pros

inhibits proliferation and activates glial differentiation. Negative feedback by Kon on Notch, and by Pros on kon expression, terminates the

response to injury. Pros regulates the expression of NFkB/dorsal, which remains in the cytoplasm ready to respond to future injuries. (c) The

mammalian dorsal spinal cord. NG2 glia populate the white matter, that is, neuropile with myelinated axons (in white). Some of these NG2 glia

normally divide producing meylinating oligodendrocytes (OLs, not shown). Injury induces cell death, lesion expansion and subsequent

compensatory proliferation of remaining NG2 glia. Newly produced glia can then differentiate into astrocytes or OLs, and can spontaneously re-

myelinate axons, as the lesion shrinks. Genes and resulting molecular mechanisms in these responses are evolutionarily conserved.
with extensive local cell death, and tissue shrinkage is

associated with the glial regenerative response. Injury

causes the up-regulation of kon expression in NG, and

Kon induces proliferation of Notch+Pros+NG [7��]
(Figure 1a,b). Following proliferation, Kon activates glial
Current Opinion in Neurobiology 2017, 47:182–187 
differentiation genes, including pros [7��]. This may also

include genes involved in the repair response, such as

draper, which encodes an engulfment receptor, as over-

expression of kon greatly enhances repair [7��]. Kon is

necessary and sufficient for the glial regenerative
www.sciencedirect.com



Go and stop signals for glial regeneration Hidalgo and Logan 185
response to injury. If kon expression is knocked-down, the

wound does not shrink and is heavily vacuolated; when

kon is over-expressed, the wound shrinks further than in

controls, and vacuolization is reduced [7��]. The injury-

induced up-regulation of kon expression depends on

Notch. Following cell division, Kon represses Notch, thus

limiting the lifetime of kon expression to a narrow time

window [7��]. Thus, the Notch-Kon loop enables glial

proliferation, whilst setting a timer for the regenerative

response (Figure 1b).

The injury-induced up-regulation of kon might also

depend on NFkB homologue Dorsal, [2��,7��]. NFkB
normally rests inactive in the cytoplasm, but injury causes

the TNF-dependent nuclear translocation of NFkB Dor-

sal in Pros+Notch+NG [2��]. Here, NFkB regulates gene

expression and can activate cell proliferation. One of the

targets of NFkB/Dorsal is pros [2��], which is activated in

daughter cells enabling glial differentiation. In turn, Pros

activates NFkB/Dorsal in daughter cells too, restoring the

levels of NFkB protein in the cytoplasm, where it resides

in the inactive state. NFkB/Dorsal is only activated again

in response to injury. In this way, Pros prepares glia to

respond to subsequent injuries [2��]. Thus, the Pros-

NFkB loop primes glia to respond to injury (Figure 1a,b).

As well as restoring glial cell number, the regenerative

response also enables glial differentiation (Figure 1a,b).

The onset of glial differentiation depends on Kon, as kon
activates pros expression, and loss of kon in development

results in loss of the glial cell markers Repo, Ebony, GS,

Naz and Pros [7��]. However, maintenance of the differ-

entiated glial state does not depend on Kon, but on Pros

instead [2��,7��,13]. After regenerative proliferation, Pros

also represseskon expression [7��]. Thus, theKon-Pros loop

enables glial differentiation and cell number homeostasis.

The sequential switch-off of Notch by Kon, and of kon by

Pros, terminates the response to injury (Figure 1b).

This mechanism has two fundamental components: posi-

tive feedback loops (Pros-Notch and Pros-NFkB/Dorsal)

that create ‘go signals’, driving a fast regenerative response

to injury with nuclear translocation of NFkB/Dorsal, and a

surge in Kon protein levels, possibly also Notch, together

triggering glial proliferation; and negative feedback loops

(Notch-Kon and Kon-Pros) that deliver ‘stop signals’ that

switch off Notch and kon and activate pros, to repress

proliferation and consolidate differentiation [2��,7��]
(Figure 1b). If the relative contributions of these genes

are changed experimentally, the response to injury can be

shifted from promotion to prevention of the regenerative

response, or induction of tumourous over-growth [2��,7��].

To conclude, the glial regenerative response is both

plastic and homeostatic. The glial regenerative response

is the re-activation of a developmental programme that

coordinates glial proliferation with neural circuits, and
www.sciencedirect.com 
maintains structural homeostasis throughout the life-

course. This explains why such a mechanism would have

been evolutionarily conserved. Importantly, it means that

understanding developmental mechanisms is key to pro-

moting regeneration and repair.

Conserved mechanisms for NG-2 glia
proliferation and differentiation
As in Drosophila, the mammalian spinal cord and brain are

also populated with glial progenitors, NG2-glia that can

divide (Figure 1c). Similar to flies, injury induces cell

death and lesion expansion, followed by the compensa-

tory proliferation of remaining NG2-glia and lesion

shrinkage (Figure 1c). In mammals, NG2 is expressed

in OPCs, pericytes and microglia, but not in astrocytes,

OLs or neurons [25�]. Similarly to Drosophila NG, NG2

+OPCs have active Notch1 signaling, which maintains

their proliferative state and inhibits their differentiation

into OLs [32]. NG2 is required for OPC proliferation in

development and upon injury (Figure 1c). NG2�/�
knock-out mice have reduced OPC proliferation and

fewer OLs [33��]. NG2 is also involved in the glial

regenerative response, although results differ with the

injury method. Upon cuprizone-induced demyelination,

loss of NG2 expression in knock-out mice does not affect

proliferation or differentiation of OPCs [34]. However,

loss of NG2 function exacerbates the damage caused by

traumatic brain injury [35]. And lysolecithin-induced de-

myelination in NG2�/� knock-out mice leads to reduced

proliferation of OPCs [36,37��]; and with conditional NG2
knock-out either in OPCs or in myeloid cells, it reduces

OPC proliferation, neuronal loss and cell debris clearance

[37��]. In essence, the disparities reflect that NG2 is also

required for the inflammatory response, and the common-

alities that, much like in fruit-flies, NG2 is required for

OPC proliferation in development and upon injury.

NG2 is not only expressed in OPCs but also in stem cells

in adipose tissue and muscle, in pericytes that line the

blood vessels and phagocytic macrophages/microglia

[38,39]. Like NG2, kon in Drosophila is also expressed

in cells of the circulatory system (the dorsal vessel or

heart), in muscles and in phagocytic glia (Drosophila NG

are phagocytic) [40]. Such shared profiles indicate deep

evolutionary conservation and relevant functions. NG2
and kon and their interacting partners could reveal novel

mechanisms for cell proliferation, phagocytosis and cell

fate that could operate in multiple contexts.

In mammals, whilst injury readily induces NG2 glia

proliferation, the differentiation of daughter cells into

myelinating OLs does not always proceed successfully

[1,3]. The sustained up-regulation of Notch is one cause

for OL differentiation failure [32], and a key challenge is

to identify genes that antagonize Notch, and promote OL

differentiation. Drosophila pros and its mammalian ortho-

logue prox1 encode homeo-domain transcription factors
Current Opinion in Neurobiology 2017, 47:182–187
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with a universal function in repressing cell proliferation

and activating cell differentiation. pros orthologues are

expressed and required by glia in flies, worms and mam-

mals [2��,13,27,41��,42��]. In the mouse, prox1 is not

expressed in astrocytes, it is expressed in some OPCs

at low levels, and at high levels in all OLs [25�,26�]. Thus,

either there are two types of NG2+OPCs (Pros+ and

Prox1�), or Prox1 levels rise gradually as OPCs differen-

tiate into OLs [26�]. The co-existence of NG2, Notch and

Prox1 in OPCs mirrors the colocalisation of Notch, Pros

and Kon in Drosophila NG. Conditional prox-1 knock-out

in the NG2+OPC cell lineage reduces OL number, pre-

vents OL differentiation and increases NG2 cells and

NG2 proliferation [26�]. Thus, like in Drosophila, Prox1 is

required to promote OL differentiation in the mouse

[26�]. This strongly indicates that prox1 is a key gene

to target in NG2 glia to promote the transition from OPCs

to OLs, and sustain OL differentiation.

Conclusion
To conclude, evolutionarily conserved molecular mecha-

nisms regulate regenerative glial proliferation and differen-

tiation in the fruit-fly VNC and mammalian spinal cord. Next

it will be important to find out how general this molecular

mechanism is - for instance, whether it functions also in

injury responses in the brain - and why glial regeneration has

such a remarkable effect on neuronal recovery. Intriguingly,

glial Pros-1 regulates non-autonomously neuronal shape and

function in C. elegans [41��, 42��]. Both fruit-flies and mam-

mals bear slow cycling brain progenitors, but findings are

either limited (fruit-flies) or controversial (mammals). For

instance, in mammals whether progenitors are astrocytes or

NG2 glia, and may be able to produce multiple CNS glial cell

types and/or  neurons, is highly debated [3,43,44]. Some

striking similarities between fruit-fly and mammalian pro-

genitors [11�,14�,15�,45�] invoke further investigation. The

manipulation of stem cells for transplantations and in vivo

reprogramming to restore function following CNS damage

[20] will continue to benefit from the discovery of molecular

mechanisms through Drosophila genetics.
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