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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

         Air conditioning system in transport applications is a great challenge due to the frequently fluctuated load which causes 
comfort degradation and even healthy concern. In our previous study, a compact energy storage device filled with PCM was 
designed and experimentally tested which showed great potential for thermal comfort improvement and efficiency improvement. 
In this study, charging properties of the energy storage device for train air conditioning systems are experimentally investigated. 
Time evolutions of PCM temperature during the charging process are presented. The charging performances including charging 
time, transient charging rate, thermal efficiency and exergy efficiency are revealed. The results show that the designed device has 
excellent heat transfer behaviors with exergy efficiency up to 78%. The designed device is feasible to be used in transport air 
conditioning systems due to the quick charging. 
© 2017 The Authors. Published by Elsevier Ltd. 
Peer-review under responsibility of the scientific committee of the 9th International Conference on Applied Energy. 
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1. Introduction 

Unlike the buildings, the operating conditions of transport air conditioning systems are more challenging due to 
its fast-changing ambient. The passenger load is always flexible and the peak load can surpass 30% of the designed 
condition [1]. Besides, fluctuated cooling load caused by air infiltration will lead to the frequent change of the output 
power of the compressor [2]. As a result, the traditional air-conditioning systems will not be sufficient to respond to 
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the load changes. This will cause comfort degradation and low system efficiency. Hence, an effective method is 
urgently needed to smooth the cooling load for thermal comfort improvement and energy savings. 

Latent heat thermal energy storage systems (LHTESS) based on phase change materials (PCMs) have been 
widely used to handle the unbalance between energy demand and supply [3-5]. The large energy storage capacity at 
a relatively constant temperature is particularly attractive for solving the fluctuation problem of transport air-
conditioning systems. Attempts using LHTESS to settle the mismatch issues in air conditioning systems have been 
made. Previous research showed, when integrating LHTESS with traditional air conditioning system, the system 
efficiency could be improved. Zhao et al. [6] proposed a PCM energy storage system used in water-cooled air 
conditioning systems. The results showed that COP of the integrated system can be increased by 25.6%. Hence, it is 
feasible and attractive to employ LHTESS to deal with the frequent load fluctuation issues.  

For the LHTESS, charging is a great challenge. Due to the relatively low thermal conductivity of PCMs, the 
charging rate and efficiency is always insufficient to meet the real applications, especially for the transport air 
conditioning systems. This is due to that, for the existing transport air conditioning systems, air is used as the heat 
transfer fluid, which has lower heat transfer coefficients. Hence, investigations on the charging behaviors including 
the heat transfer enhancement of LHTESS used in transport air conditioning applications are essential.  
     In previous research, various kinds of methods had been used to improve the heat transfer performance of 
LHTESS. Al-Abidi et al. [7] used fins for PCM melting in a triplex tube heat exchanger and shortened the total 
melting time by 34.7%. Research by Xiao et al. [8] showed that nickel and copper foam can increase the thermal 
conductivity of the PCM by nearly 3 times and 15 times respectively. Among the existing enhancements, adding fins 
are very attractive and effective [9,10].  
     The transport air conditioning system has a strict requirement of weight and space. Hence, in this study, a 
compact energy storage device using fins is designed and manufactured. To the best of our knowledge, there is still 
no comparable approach to investigate the charging behaviors of such a device, especially using cold air as the 
charging medium. The charging properties of the energy storage device are experimentally investigated. Time 
evolutions of PCM temperature during the charging process are presented. The charging performances including the 
charging time, transient charging rate, thermal efficiency and exergy efficiency are revealed.  

2. Experimental setup 

2.1. Phase Change Material 

Table 1. Thermal-physical properties of PCM  
Latent heat 220 kJ/kg 

         Melting range  17-19 °C (18 °C) 
Congealing range  19 -17 °C (17 °C) 

Specific heat capacity  2 kJ/(kg·K)) 

       Thermal properties of the PCM including latent 
heat, phase change temperature and specific heat 
capacity were measured using a differential scanning 
calorimeter (DSC-2, Mettler Toledo) which are 
shown in Table1. 

2.2. Experimental rig 

       In order to test the heat transfer characteristics of the compact energy storage device, an experimental testing 
system was set up which is shown in Fig. 1.       
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Fig. 1 Schematics of the experimental rig for testing the energy storage device 
 

         K-type thermocouples (0.3 % accuracy) were fixed at the inlet and outlet of the device and distributed inside 
the PCM. RH &T transmitters (3.0 % accuracy) were used to measure the inlet and outlet air relative humidity. A 
thermal anemometer (1.0 % accuracy) was employed to measure the inlet air velocity.  

3. Performance indexes 

3.1. Charging rate 

Charging rate of the energy storage device, ra, is the amount of cold energy released by the air, and could be 
calculated as follows. 

, ,
0 0

t t

a a a out a inr m h h   
 
                                                       (1) 

        where, am is the average mass flow rate of air; t is the time; ha,in and ha,out are the inlet and outlet enthalpy of 
air respectively. 

3.2.  Charging thermal efficiency 

        The charging thermal efficiency, t , is defined by Eq. (2). 
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         where, QPCM and QAl are the total energy absorbed by PCM and the frame of the energy storage device, 
respectively. Qa is total energy released by air. 

3.3. Charging exergy efficiency 

      The charging exergy efficiency, ηe, is defined by Eq. (3).         

                 PCM Al
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       where, EPCM and EAl are the total exergy absorbed by PCM and the frame of the energy storage device, 
respectively. Ea is total exergy released by air. 
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4. Results and discussion 

4.1.  Time evolution of PCM temperature 

  Fig. 2 shows the temperature distribution of PCM in the air flow direction. When time is at 125 s, the PCM with 
the axial distance of 50mm begins to freeze, while PCM with longer axial distances remains in superheating; when 
time is above 235, 315, 455 and 550 s, the PCM with axial distances of 100, 150, 200 and 250 mm starts to freeze 
respectively. When time increases to 1275 s, PCM at 50 mm becomes solid totally which indicates the complete 
charging. PCM with other axial distances finishes charging at 2100, 2900, 3420 and 3775 s respectively. 

 
                              Fig. 2 Time evolution of axial temperature of PCM with                Fig. 3 Charging time with different inlet air temperature and velocity 
                                   inlet temperature and velocity at 11 oC and 0.70m/s 

4.2. Charging time 

Charging time is a parameter showing how long the energy storage device can be fully charged. Fig. 3 illustrates 
the variations of charging time with different inlet air temperatures and velocities. In general, higher inlet air 
temperature or lower velocity will increase the charging time. When the air velocity is 0.7 m/s, as inlet air 
temperature decreases from 15 to 11 oC, charging time decreases gradually from 10450 s to 5340 s. This is due to 
the fact that higher temperature difference of heat transfer will lead to larger heat transfer capacity, and 
correspondingly cold energy of the air will be stored in the PCMs faster. As inlet air temperature is 15 oC, when air 
velocity increases from 0.7 to 1.2 m/s, charging time decreases generally from 10450 s to 7635 s, which results from 
the increase of heat transfer coefficient. 

4.3. Charging rate 

      Charging rate is of great importance to the energy storage device, which reflects its heat transfer characteristics. 
Fig. 4 illustrates the transient charging rate under different inlet air temperature and velocity. For one given inlet air 
temperature, when air velocity increases, the steady charging rate goes up correspondingly, as shown in Fig. 4(a)-
(b). When the inlet air temperature is 11 oC, the steady charging rate increases from 0.80 to 1.30 kJ/s as air velocity 
increases from 0.70 to 1.20 m/s.  
      With the inlet air velocity at 1.20 m/s and temperature at 15 oC, charging rate decreases sharply from 3.75 kJ/s 
and then keeps relatively stable at 0.62 kJ/s for 5020 s, as shown in Fig. 4(b). After that, the rate decreases until 0 
kJ/s. At the beginning stage, the highest rate is due to the high temperature difference of heat transfer between air 
and PCM, and the stable rate indicates the phase change. 
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Fig. 4 Transient charging rate under different inlet air temperature (a: 0.70 m/s; b: 1.20 m/s) 

4.4. Charging thermal efficiency

Table 2. Charging thermal efficiency  

 Inlet air velocity(m/s) 
Inlet air 

temperature(°C) 0.70 0.85 1.20 

11 72.91% 87.01% 84.72% 
13 70.82% 82.22% 79.94% 
15 66.74% 77.35% 71.98% 

       Charging thermal efficiency is a parameter that 
assesses thermal heat transfer and insulation 

performance of the energy storage device, which is 
shown in Table 2. It could be seen that the charging 
thermal efficiency is quite high, which indicates good 
thermal heat transfer and insulation. For the velocity 
at 0.7, 0.85 and 1.2 m/s, the thermal efficiency for the 
given temperature range could reach 72.91%, 87.01% 
and 84.72%, respectively. The obtained results also 
show that when inlet temperature increases, the 
thermal efficiency drops. This is due to the longer 
charging time caused by higher inlet air temperature, 
leading to more cold loss to the ambient. 

4.5. Charging exergy efficiency

Table 3. Charging exergy efficiency  

 Inlet air velocity(m/s) 
Inlet air 

temperature(°C) 0.70 0.85 1.20 

11 59.88% 77.92% 68.51% 
13 66.09% 78.63% 70.57% 
15 65.54% 78.16% 70.40% 

 
Charging exergy efficiency presents the 

irreversible energy loss due to the temperature 
difference of heat transfer. Table 3. shows the 
influence of air velocity and temperature on exergy 
efficiency.  
        The obtained results show that for all the given 

temperature, with the increase of inlet air velocity, 
the charging exergy efficiency performs an upward 
and then downward trend. For instance, The charging 
exergy efficiency increases from 59.88% to 77.92% 
and then decreases to 68.51% when the velocity 
changes from 0.70 to 0.85 and then 1.20 m/s for the 
given temperature at 11 oC. This is due to that at the 
given inlet temperature, the total air exergy is the 
product of the air specific exergy difference, air mass 
flowrate and charging time. Through higher velocity 
increases total air mass flowrate, it also leads to less 
charging time. Besides, the overall exergy efficiency 
for the given experimental conditions is relative high, 
with an average charging exergy efficiency at around 
70%. 

5. Conclusions 

In this paper, the charging behaviours of a latent heat energy storage device using air as heat transfer fluid have 

a b 
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been experimentally investigated for transport air conditioning applications. Time evolutions of PCM temperature 
are shown. The charging performances including charging rate, charging time, thermal and exergy efficiency are 
disclosed. 
       The energy combined with exergy analyses reveal the designed device has excellent heat transfer behaviours 
with energy efficiency and exergy efficiency up to 87% and 78%, respectively. Besides, the obtained results show 
that both lower inlet air temperature and higher air velocity can shorten the charging time, with the minimum 
charging time of 3000 s in this study. The designed energy storage device is suitable for transport air conditioning 
applications due to its fast charging, high energy and exergy efficiencies. Prototypes based on the obtained results 
have been designed, and test results will be open in next publications. 
 

References 

[1] Chow W K, Yu Philip C H. Simulation on energy use for mechanical ventilation and air conditioning (MVAC) systems in train 
compartments. Energy 2000;25:1-13. 

[2] Bolton G. Auxiliary power systems for rolling stock, Professional Development Course on Electric Traction Systems. IET 13th. 
[3] Ibrahim Dincer, Marc A. Rosen, Thermal energy storage systems and applications. Wiley 2011. 
[4] Tyagi V V, Buddhi D, Kothari R, Tyagi S K, Phase change material (PCM) based thermal management system for cool energy storage 

application in building: An experimental study. Energy and Buildings 2012;51:248-254. 
[5] Dutil Y, Rousse D R, Salah N B, Lassue S, Zalewski L, A review on phase-change materials: mathematical modeling and simulations. 

Renewable and Sustainable Energy Reviews 2011;15:112-130.  
[6] Zhao D L, Tan G, Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application. Applied Energy 

2015;138:381-392. 
[7] Al-Abidi AA, Mat S, Sopian K, Sulaiman MY. Internal and external fin heat transfer enhancement technique for latent heat thermal energy 

storage in triplex tube heat exchangers. Applied Thermal Engineering 2013;53:147-156. 
[8] Xiao X, Zhang P, Li M, Preparation and thermal characterization of paraffin/metal foam composite phase change material. Applied Energy 

2013;112:1357-1366. 
[9] Peng H, Ling X. Numerical modeling and experimental verification of flow and heat transfer over serrated fins at low Reynolds number. 

Experimental Thermal and Fluid Science 2008;32:1039-1048. 
[10] Kamkari B, Shokouhmand H, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial 

fins. International Journal of Heat and Mass Transfer 2014;78:839-851. 
 


