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Abstract 

In this work CrAlO and CrAlO/CrAlN multilayers deposited by cathodic arc 

evaporation are evaluated as protective films in metal and ceramic powder FAST 

sintering tool dies fabricated in titanium-zirconium-molybdenum allows (TZM). The 

films have been characterised in terms of their composition, microstructure, mechanical 

properties and thermal stability in air at high temperatures between 800 ºC and 1100 ºC; 

in addition the tribological performance has been analysed at room temperature and at 

400 ºC.  

The crystalline structure and composition of the CrAlO based coatings are compatible 

with the formation of a mixture of α-corundum and a cubic fcc (Cr,Al)2O3. The 

crystalline structure of the multilayer is, on the other hand, dominated by the cubic fcc 

lattice plane reflections of the CrAlN.  

The deposited specimens have high hardness, between 25 and 30 GPa, which are stable 

even after annealing at 1000 ºC. Even more, the multilayer coating also exhibited good 

mechanical stability at 1100 ºC. The multilayer coating also exhibited an excellent 

behaviour against wear at 400 ºC. 

Sintering trials using coated TZM dies have been carried out using Ti90Sn10 and Al2O3 

high energy ball milled powders. The experimental results show that the oxide based 

coating formulations are potentially able to protect the tools from wear, sticking and 

oxidation of their surfaces. This may allow the use of TZM material as an alternative to 

other substrates such as graphite. 

 

 

  



4 
 

Keywords 

Cathodic arc evaporation; oxide coating; wear resistance; hardness; sintering. 

  



5 
 

Main text 

1. Introduction 

Titanium-Zirconium-Molybdenum alloys (TZM) have excellent strength and creep 

resistance at elevated temperatures. These properties make TZM alloy a candidate 

material for tooling die in electric field sintering techniques (FAST). FAST is a recently 

developed technique for multimaterial complex shape component manufacturing, 

including the production of parts of small sizes and complex geometries [1]. Applying 

heat by external electric current, the plasticity induced in the sintered material (also 

called electroplasticity) paves the way [2], to enable the forming of difficult-to-process 

materials such as titanium alloys and hard ceramics. FAST process is particularly 

suitable for mass production of miniature or micro-parts due to its rapid heating nature 

as described in the literature [2]. 

Today, graphite is the most used material for FAST tool dies, due to its mechanical 

stability at high temperatures; required to be up to 800-900 ºC for metal powders and up 

to 1300 ºC for ceramic powder sintering. However, graphite is brittle and difficult to 

machine. Given that the FAST tool dies should withstand pressures of up to 150 MPa, 

under high temperatures [3], TZM seems an appropriate alternative tool material for this 

specific application. However, TZM alloy shows poor oxidation resistance at 

temperatures above 400 ºC [4]. In this case, when the size of the tools and components 

is scaled down to millimetres, soldering due to severe adhesion between the mould and 

the working material would occur and therefore, the demoulding may become a major 

challenge. For this reason, and as a part of the EU research project FP7-MicroFast-

608720, this work focuses on the investigation of high oxidation protection coatings to 

enable the use of this alloy in FAST processes, specifically those deposited by vacuum 

physical vapour deposition (PVD) techniques [5], [6]. 
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High oxidation resistance coatings deposited by PVD or CVD techniques have been 

extensively investigated in the literature [7]–[9]. Chromium or titanium nitrides 

containing either Al (ternary) or Al and Si (quaternary) have demonstrated excellent 

thermal stability and oxidation resistance at temperatures of up to 900 ºC [10]–[12]. 

Above these temperature ranges (i.e. 1000 ºC and higher) the coatings decompose under 

different mechanisms and evolve to oxides with different compositions and 

microstructures, thus experiencing volumetric changes which cause film structural 

failures due to cracking. 

Cr-Al-O coating systems deposited by PVD have been investigated in the last decade as 

a coating material able to approach the mechanical performance -Al2O3 phases [13], 

[14]. These coating can form solid solutions of the type -(Cr,Al)2O3 for certain 

composition ranges at temperatures accessible by PVD techniques of 400-550 ºC [15], 

due to the fact that its precursors, α-Cr2O3 and α-Al2O3, crystallize in the same spatial 

group R-3c. On the other hand it has been reported that solid solutions of cubic fcc-

(CrAl)2O3 lattice structure can also be formed and are mechanically valid for 

applications on cutting tools. Various scientific papers [16]–[21] have reported the 

composition, microstructure, lattice and mechanical/wear properties of Cr-Al-O and Cr-

Al-O-N coating systems. Hirai et al. [22] reported on Cr-Al-O synthesized by pulsed 

laser deposition at a substrate temperature of 400 °C, obtaining fcc cubic structures and 

a metal non-metal ratio of 1 and an oxygen content of 25 at.%. Pedersen et al [15] and 

Diechle et al [23] reported the formation of corundum-like structures in DC and r.f. 

sputtered Cr-Al-O films.  

Khatibi et al [18] studied the system (AlxCr1-x)2+yO3-y for various deposition conditions 

in cathodic arc evaporation. The corundum phase was favoured at high Cr content and 

at high O2 flows, while the cubic phase was observed mostly for high Al content and 
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low O2 flow. Diechle et at [23] found that the sputtered coatings developed corundum 

structures α-(Al1−x,Crx)2O3 in the form solid solutions. Najafi et al [24] found that the 

coatings Cr-Al-O could dynamically evolve from a fcc cubic crystalline structure to a -

(CrAl)2O3 during the deposition process when the coating thickness exceeded 2 

microns. Ramm et al [25] developed different coating microstructures and compositions 

based on the pulsed electron emission P3e arc evaporation of Cr/Al cathodes in oxygen 

atmospheres. They showed that the produced coatings developed corundum-like lattice 

structure forming a solid solution of the type (Al1 − xCrx)2O3. 

The thermal stability and oxidation resistance of Cr-Al-O coatings have also been 

addressed in different studies. Khatibi et al [18] showed that the thermal annealing of 

fcc-(Al0.83Cr0.17)2.3O2.7 leads to the transformation from fcc to a corundum structure 

which initiates at 900 ºC and is totally completed at temperatures above 1000 ºC. In the 

case of films with an original corundum structure in the as deposited state, the thermal 

annealing did not lead to any structural modifications up to 1100 ºC. Similar results 

were found by Edlmayr et al [26] on vacuum annealed arc deposited coatings. 

 

Even if the composition of a coating defines its performance, it only does it partially. Its 

structure or architecture design plays also an important role. Multilayered PVD coatings 

with different compositions provides the possibility to obtain enhanced hardness, 

toughness and thermal stability [27]. In this paper a CrAlO monolayer and a 

CrAlO/CrAlN multilayer PVD coatings have been studied as possible surface 

modification solutions to enable the use of TZM alloy in high temperature, >1000 ºC, 

FAST sintering. Most of the existing literature references reports on single coating 

structures [18], [23], [24] and their properties. Only one recent, to the best of our 

knowledge, reports on the properties of CrAlO/CrAlN nanomultilayers [28]. 
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The “in service” performance of these substrate-coating systems was finally tested by 

the realization of sintering trials, and the corresponding visual inspection of the sintered 

parts and the coating integrity. 

 

2. Experimental 

2.1 Coating deposition 

The coatings have been produced by cathodic arc evaporation in a commercial 

METAPLAS MZR-323 PVD reactor. The reactor is equipped with 2 opposing 

evaporation panels, each of them hosting 3 circular cathodes (63 mm diameter) 

vertically aligned. The effective coating volume is about 400 mm × 400 mm × 500 

mm. For the preparation of the coatings, cathodes of two types were used: cathodes of 

Cr (99.8 % purity) for the bonding layer and of CrAl (50 at.% Cr - 50 at.% Al) for the 

rest of the coating. All the relevant process parameters are depicted in Table 1.  

Table 1: Experimental parameters of the deposition processes. 

 

Coating Material A·h No. of 

bilayers 

Gases Total 

Pressure (Pa) 

Bonding layer Cr 20 - Ar 1.2 

CrN 40 - N2 1.8 

Monolayer CrAlON 100 - N2+O2 (63:37) 1.8 

Multilayer CrAlON 50   

5 

N2+O2 (63:37) 1.8 

CrAlN 50  N2 1.8 

 

For the coating deposition, high purity Ar, N2 and/or O2 gases were introduced in the 

chamber. A continuous DC bias of -50 V was applied on the substrates during the 
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deposition process. During all the processes, the substrates were rotated around the 

central vertical axis of the reactor chamber at a speed of 5 rpm. A Cr+CrN adhesion 

layer was deposited for all the coatings. The deposition temperature of 470 °C for the 

monolayer process and 500 ºC for the multilayer process was achieved by a combined 

plasma and electrical resistance heating process. Process temperatures have been 

monitored using the tempering hardness–temperature curve of 100Cr6 steel, by putting 

hardened samples of this material in the vacuum chamber during all the processes as 

reported by Fernández de Ara et al. [29]. 

 

2.2 Substrate materials 

Four different substrate materials were used for the study: 40 mm diameter discs of H13 

hot work steel (53-54 HRc), with a chemical composition in weight of 0.40 % C, 1.2 % 

Si, 0.30 % Mn, 5.5 % Cr, 1.2 % Mo and 0.86% V; 40 mm diameter discs of Inconel 718 

with a chemical composition in weight of 51.7 % (Ni+Co), 19.7 % Cr, 4.8 % (Nb+Ta), 

3.1 % Mo, 1.0 % Ti, 0.40 % Al; punches of Titanium-Zirconium-Molybdenum (TZM) 

alloy with a chemical composition of 0.50 % Ti, 0.08 % Zr, 0.02 % C and Mo 

(balance); and Boron doped Si wafers with a thickness of 525 ± 15 µm from Si-Mat. 

Discs of H13 steel and of Inconel 718 were mirror polished (Ra < 15 nm) and cleaned in 

ultrasonic bath using de-oiling agents and de-ionised water. All the substrates were 

vacuum-heated and ion-bombarded before the coating process.  

 

2.3 Characterization techniques 
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Glow Discharge Optical Emission Spectroscopy (GDOES) was used to obtain the 

chemical composition depth profiles of the films. The GDOES analyses were done in a 

Jovin-Yvon JY 1000 RF optical spectrometer equipped with 40 detection channels. 

Glancing incidence X-ray diffraction (GI-XRD) diffractograms of the coatings were 

acquired in a D8 Advance Bruker diffractometer using a Cr Kα1 radiation source (λ = 

0.22897 nm) at an incidence angle of 1º. The coating thickness was measured with the 

help of the Calotest (CSM instruments, ball diameter 30 mm). The surface roughness 

was measured before and after coating deposition with a WYCO-RST 500 white light 

profilometer using the vertical scanning interferometry mode (VSI). For the wear 

resistance analysis, CSM HT tribometer under ball-on-disc configuration was used. The 

sliding tests were made using alumina counterballs of 6 mm in diameter at normal loads 

of 5 N when carried out at room temperature and at 2 N when carried out at high 

temperature (200 ºC and 400 ºC). The wear rates were calculated after measuring the 

volume losses of the specimens by white light profilometry. A Field Emission Scanning 

Electron Microscope (FESEM) HITACHI S-4800, coupled with an Energy Dispersive 

X-ray Spectroscopy (EDX) detector for elemental analysis, was used to inspect the 

cross section of the films.  

 

Nanoindentation tests were performed on as-deposited samples using a Hysitron 

Triboindenter
©

 950 fitted with a Berkovich indenter with a tip end radius of around 150 

nm. Forty indentations, separated enough between them not to influence each other, 

were made on the samples at 5 mN of maximum load. The load function consisted on 5 

seconds of loading segment, followed by 2 seconds of holding time to account for 

material creep and 5 seconds of unloading.  
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The Oliver and Pharr method [30] was used to extract the hardness and Young’s 

modulus values from the curves. At 5 mN, the maximum penetration of the indenter in 

the surface was around 120 nm for a 1.8 µm thick for the monolayer coating, and 

around 105 nm for a 2.4 µm thick multilayer coating. Those penetrations are well below 

the 10 % of the total thickness of the coating, value widely accepted for the measuring 

of the mechanical properties of the layer with no interference of the substrate. 

 

High temperature annealing tests in ambient air were carried out in a Nabertherm LT 

24/11/B180 muffle oven from 800 ºC up to 1100 ºC in steps of 100 ºC. A heating rate of 

20 ºC·min
-1

, a holding time of 2 hours was used for each step sample and natural oven 

cooling. Nanoindentation tests and SEM-EDX analyses were carried out after the high 

temperature annealing tests. 

 

2.4 Sintering trials 

A Gleeble-3800 thermal simulation machine was used for the Micro-FAST sintering 

tests of Al2O3 (99.9% purity) and Ti90Sn10 (99.9%) powders with averaged particle 

size of 0.18 µm and 10-45 µm respectively were used for the sintering experiments. The 

powders were synthesized by high energy ball milling at MBN nanomaterialia S.r.l. The 

tooling rig consists of a TZM punch / graphite die couple, as shown in Figure 5. Two 

TZM punches, coated with a commercial PVD CrAlSiN and PVD AlCrO/AlCrN 

multilayer respectively were prepared for the sintering of a cylindrical sample of Φ4.0 

mm × 4.0mm aiming to examine the feasibility of the PVD coating on TZM punch. The 

deposition conditions and properties of the CrAlSiN PVD coating are described by R. Ji 

[31] and dimensions of the die and punches by Hijji et al. [2]. The pre-determined 
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amount of powders were poured into the graphite die and then closed by the pre-coated 

TZM punch. A heating rate of 50 °C/s and a holding time of 240 s were used to sinter 

the powders under a pressure of 75 MPa in vacuum (45 Pa). Two sintering temperatures 

of 900 °C and 1100 °C were used for Ti90Sn10 powders and of 1200 °C and 1300 °C 

for Al2O3 powders. 

 

3. Results and discussion 

3.1 Chemical composition and microstructure  

Figure 1 shows the chemical in-depth profiles of both coatings obtained by GD-OES.  
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Figure 1: GD-OES analyses of the a) monolayer CrAlO coating, and b) multilayer 

CrAlO/CrAlN coating. 

 

Both coatings present a Cr/Al atomic ratio close to 1/1, in agreement with the nominal 

composition of the cathodes. In the case of the monolayer, the overall chemical 

composition responds to the stoichiometric formula (Cr,Al)2O3. In the case of the 

multilayer the alternation of the oxide and the nitride coatings hinders a totally reliable 

quantification of the composition for the individual sub-layers. In any case, it can be 

seen that the nitrogen composition of the nitride sublayers is smaller than the sum of the 

Cr plus Al. On the other hand, the oxide sublayers seem to retain the chemical 

composition of the corresponding monolayer, as the deposition conditions are similar in 

both cases. The total thicknesses of the monolayer and the multilayer coatings on H13 
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were 1.8 microns and 2.4 microns respectively. The difference in thickness is due to a 

higher coating growth speed of the nitride sublayers than that of the oxides, as reported 

by Khatibi et al [32]. The bilayer period of the multilayer (λ) is of 250 nm on silicon 

substrate and the thickness ratio of the CrAlO/CrAlN is approximately 2:1. 

Figure 2 show the cross-section images of the coatings as deposited on Si substrates (the 

silicon substrate appears darker than the coating). The Cr+CrN bonding layer, of around 

200 nm, can be clearly distinguished.  

 

a)  

b)  

Figure 2: SEM images of the cross-section of as-deposited coatings on Si waflers, a) 

monolayer CrAlO, b) multilayer CrAlO/CrAlN. 

 

Si 

Si 
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The monolayer presents a compact structure in which some columnar growth can be 

distinguished. On the other hand the multilayer exhibits a dense columnar structure in 

the nitride layer (bright), which is barely replicated in the oxide sublayers (dark). The 

monolayer coatings in general exhibit a higher number of internal droplets than the 

multilayer. This excess of droplets is caused by the poisoning of the Cr/Al in the 

presence of oxygen.  

Figure 3 shows the diffractograms of the deposited coatings on Inconel substrates.  

 

50 60 70 80 90 100 110 120

(116)(024)

(113)(110) Multilayer

*

*
 

 

a
.u

.

/2

*

Monolayer

(104)

 

Figure 3: GI-XRD diffractograms of both untreated coatings. 
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The diffractogram of the monolayer coating shows peaks centered at 51.8º, 55.8º, 65.9º, 

79.3º and 88.4º, which are all located in between the theoretical positions of the planes 

(104), (110), (113), (024) and (116) respectively, of the phases α-Cr2O3 eskolaite and α-

Al2O3 corundum, (lower and upper limits in 2θ indicated as green dotted lines). This 

group of peaks exhibits large widths, indicating the presence of small size crystalline 

domains. No double peaks are observed in this set of diffractions, which may indicate 

the formation of a lattice structure of the ‘solid solution’ type. At the 2 range where the 

plane (113) of eskolaite-corundum diffracts, there are also other possible contributions 

giving rise to reflections such as AlCr intermetallics. Therefore, the peak at 65.9º cannot 

be invariably assigned to the plane -(113).  

The peak at 69.1º, marked with an asterisk, can be attributed to a diffraction of a lattice 

plane (002) of a cubic fcc phase, likely of (Cr,Al)2O3 stoichiometry, as shown by 

GDOES. This is compatible with Khatibi et al [18] and more recently by different 

authors [24], who observed the presence of cubic fcc lattice structures in arc deposited 

coatings of stoichiometry close to (Cr,Al)2O3. This phase has been described as a cubic 

fcc lattice with a 33% cation vacancies. The corresponding lattice parameter obtained 

using the Bragg equation and the miller indexes (200) is 0.402 nm, close to that found 

by Khatibi et al. [33] for the cubic fcc lattice phases (0.404 nm) of stoichiometry 

(CrxAl1-x)2O3 with 0.6  < x < 0.7. On the other hand, the peak at 107.3º is compatible 

with the reflections of the planes (022) of the same cubic structure. In fact, the estimated 

lattice parameter using the miller indexes (022) is also of 0.402 nm.  

The diffraction pattern of the CrAlO/CrAlN multilayer exhibits mainly the reflections of 

the planes (111), (200) and (022) of the fcc CrAlN at 57.8º, 67.7º and 104.8º, which 

appear in Figure 3 marked with a black circle. This is in agreement with the larger 

volume fraction of nitride sub-layers with respect to the total film volume, as observed 
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by SEM cross sections. On the other hand the diffraction pattern of the multilayer 

sample also exhibits diffraction peaks at 65.9º, from the (113) planes of the α-

(Cr,Al)2O3 phase and at 107.3º attributed to the (022) planes of the cubic fcc-

(Cr,Al)2O3, in the form of shoulders of the (200) and (022) fcc-CrAlN peaks 

respectively. These peaks stem from the oxide sublayers of the multilayer. None of the 

other peaks present in the monolayer coating could be observed in the multilayer 

formulation.  

 

3.2 Roughness, hardness and wear tests 

Table 2 shows the roughness (Ra: arithmetic average height in the profile and Rq: 

geometric average height in the profile) and thickness of the coatings. The roughness 

values of the monolayer are higher than these typically obtained for transition metal 

nitrides deposited by CAE-PVD as in the cases of Antonov et al [34] and Bayón et al 

[35] where they obtained Ra roughness values in the range of the 30 to 100 nm.  

 

Table 2: Roughness (Ra and Rq) and thickness of the monolayer and multilayer 

coatings. 

Coating Ra (nm) Rq (nm) Coating thickness (µm) 

Monolayer 135.2 ± 15.9 231.8 ± 33.1 1.8 ± 0.1 

Multilayer 58.2 ± 2.6 120.8 ± 9.2 2.4 ± 0.2 
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This is due to the presence of oxygen in the chamber during the deposition. This fact 

was also reported by Khatibi et al. [32] and Sjölén et al. [36], who found that the 

introduction of O2 in the chamber as a reactive gas results in the extension of arcs over 

the target surface compared to the locally dense arcs formed in a pure nitrogen 

atmosphere. On the contrary, the roughness values of the multilayer coating are 

significantly smaller than these of the monolayer (cf. Table 2), due to the absence of 

oxygen gas during the nitride deposition cycles. During these cycles, the oxide layer of 

the target is removed, leading to a lesser ejection of microdroplets. 

 

Table 3 shows the indentation hardness and modulus of the coatings, as deposited and 

after a thermal annealing in air at 1000 ºC for the monolayer; and 1000 ºC and 1100 ºC 

in the case of the multilayer. The multilayer coating exhibits an indentation hardness of 

29.8 GPa and a modulus of 219 GPa; whereas these for the monolayer are 25.2 GPa and 

193 GPa respectively. Different values of indentation hardness are reported in the 

literature for Cr-Al-N, Cr-Al-O and a multilayer CrAlO/CrAlN [28]. Arc evaporated 

CrAlN and CrAlSiN hardness as high as 35-40 GPa has been reported by Endrino et al 

[37] and Polcar et al [38]. Khatibi et al [18] reported values from 24 to 30 GPa for arc 

deposited CrAlO films depending on the Cr/Al ration, and Najafi et al [21] in the range 

33 to 25 GPa. Cr-Al-O sputtered coatings, on the other hand, exhibited hardness 

between 24–27 GPa [15]. Raab et. al [28] found that the indentation hardness of 

CrAlO/CrAlN multilayers as the bilayer period increases. The hardness/modulus ratio 

H
3
/E’

2
 has also been calculated for the two coatings, as an indicator of the resistance to 

plastic deformation [38]. In this case, the H
3
/E’

2
 of the multilayer coating is higher than 

that of the monolayer.  
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Table 3: Hardness, Young Modulus and H
3
/E’

2
 values of the CrAlO monolayer coating 

and of the CrAlO/CrAlN multialyer coating in the untreated state and after the high 

temperature resistance tests at 1000 ºC and 1100 ºC. 

Coating Monolayer Multilayer 

State 
As 

deposited 

After annealing 

1000 ºC 

As 

deposited 

After annealing 

1000 ºC 

After annealing 

1100 ºC 

H (GPa) 25.2 ± 2.7 25.8 ± 3.4 29.8 ± 2.6 27.9 ± 3.8 21.3 ± 3.6 

E’ (GPa) 193 ± 13 191 ± 13 219 ± 8 207 ± 20 194 ± 9 

H
3
/E’

2
 0.430 0.471 0.552 0.507 0.257 

 

Table 4: Wear rate (in units of m
3
/Nm) at room temperature, 200 ºC and 400 ºC. 

Sample Room temperature 200 ºC 400 ºC 

Monolayer (1.85 ± 0.52) × 10
-16

 (7.39 ± 1.10) × 10
-15

 Catastrophic wear 

Multilayer (3.45 ± 1.30) × 10
-17

 No measurable wear 

or build-up 

No measurable wear 

or build-up 

 

Table 4 shows the wear rates of the coatings measured at RT, 200 ºC and 400 ºC. At RT 

the monolayer coating shows a wear rate of 1.85  10
-16

 m
3
/Nm, and the multilayer of 

3.45 × 10
-17 

m
3
/Nm, which is one order of magnitude smaller than that of the 

monolayer. At 200 ºC, the wear resistance of the monolayer coating decreases down to 

7.39 × 10
-15

 m
3
/Nm (cf. Table 4), and is strongly worsened at 400 ºC. The multilayer 

coating shows better wear resistance at 200 ºC and 400 ºC than at room temperature. 

Instead of revealing a wear track during the wear tests, a slight material growth could be 
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observed in the tracks. Polcar et al [38] showed values of wear rate for arc deposited 

AlCrN, and AlCrSiN films of around 510
-16

 m
3
/Nm, well stable between RT and 

400ºC, using similar testing conditions of 5N load with an Al2O3, 6 mm diameter 

counterball.  

 

3.3 High temperature annealing tests 

The morphology of the films after the annealing is shown in Figure 4 in plain view. 

Temperature (ºC) Monolayer Multilayer 

As deposited 

  

800  

  

1000  
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1100 

  

1100  

higher 

magnification 

  

Figure 4: SEM images of the samples’ surface untreated and after high temperature 

annealing tests. 

 

In the range of 800 ºC to 1000 ºC, the samples showed features similar to those in the 

untreated state, and no major degradation signs could be observed in this temperature 

range. Annealing at 1100 ºC produced a transformation on the surface morphology of 

both coatings. The surface of the monolayer shows a large number of patches indicating 

a partial degradation of its integrity. In the case of the multilayered coating, the signs of 

thermal degradation are much less visible.  

EDX semi-quantitative analyses have been done in different zones, and shown in Table 

5, to confirm the coating detachment from the observed patches of Fig. 4 after 

annealing. In the insert of Table 5, the SEM plain view pictures of the patches for the 

monolayer and the multilayer is shown. Zones 1, correspond to the areas where the 

coating integrity is preserved, and Zones 2 where the bare substrate is visible. The Ni, 

Fe and other element signals, from the substrate, increases in Zones 2 with respect to 



22 
 

these measured on Zones 1, whereas the signal of the coating constituents, such as Cr, 

and Al decrease, though do not totally vanished.  

Table 5: Semi-quantitative elemental analysis on the surface of the monolayer and the 

multilayer coated Inconel after annealing of 1100 ºC in air. Data in at%. 

Monolayer 

 

 

 Zone 1 Zone 2 

N - - 

O 63.83 57.75 

Al 4.26 1.50 

Ti 2.25 1.80 

Cr 28.74 11.78 

Mn 0.31 0.08 

Fe 0.31 3.84 

Ni 0.00 9.83 

Nb 0.30 13.41 

Multilayer 

 

 

 Zone 1 Zone 2 

N - - 

O 52.59 69.32 

Al 5.03 4.21 

Ti 1.47 0.43 

Cr 37.32 15.51 

Mn - - 

Fe 1.10 0.94 

Ni 2.49 6.62 

Nb 0.00 2.96 
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With regards to the mechanical properties after annealing, the hardness of the annealed 

monolayer coating (cf. Table 3) remains at the same value at 1000 ºC as this measured 

at RT, whereas the hardness of the multilayer slightly decreases to 27.9 GPa. After the 

annealing at 1100 ºC the monolayer coating is not stable anymore and the 

nanoindentation curves do not provide reliable hardness values. Interestingly the 

multilayer coating shows a high stable hardness value of 21.3 GPa even after an 

annealing at 1100 ºC. The mechanical stability of Cr-Al-O coatings has also been 

reported by only few authors. For example, Khatibi et al. [18] reported that the 

indentation hardness of arc evaporated Cr-Al-O coatings dropped 3 - 5 GPa after 

annealing at 1100 °C compared with the untreated in the fcc cubic state. Tien et al [39], 

reported on the decrease of CrAlSiN arc deposited coatings from 30.2GPa to 28.3 GPa 

after 1 h thermal annealing at 900ºC. At 1100ºC, the degradation of the coating hindered 

reliable measurements of indentation hardness. 

 

3.4 Sintering trials 

For the FAST sintering trials, the multilayer coating performance has been qualitatively 

compared with a benchmark CrAlSiN coating deposited by arc evaporation. It is 

noteworthy to highlight that, with the bare TZM punch uncoated, the sintering trials 

were unsuccessful because the powders stuck on the tool, making the part ejection not 

possible.  

Figure 5 shows the graphite die and the TZM punch after sintering of a) Ti90Sn10 

powders at 1100 ºC and b) Al2O3 powders at 1300 ºC. After sintering Ti90Sn10 

powders at temperature of 900 °C and 1100 °C, the TZM punch coated with the 
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CrAlSiN benchmark coating can be easily withdrawn from the graphite die without 

sticking. The TZM punch coated with CrAlO/CrAlN coating can be also slipped out of 

the die and the sintered Ti90Sn10 part, with a relative density of 95 %, could be easily 

separated from the punch (Figure 5a).  

 

a) b) 

Figure 5: PVD coated TZM punches and graphite die assembly after sintering a) 

Ti90Sn10 powders at 1100 ºC and b) Al2O3 powders at 1300 ºC. The punch on the left 

of both photos is CrAlO/CrAlN coated and the one in the right CrAlSiN coated. 

 

The PVD coated TZM punches / graphite die assemblies were further tested by sintering 

Al2O3 powders at 1200 °C and 1300 °C (Figure 5b). After the sintering, the TZM punch 

with the CrAlO/CrAlN coating can be easily pulled out of the graphite die without 

sticking. The sintered Al2O3 sample has a relative density over 90 % and it could be 

ejected out of the graphite die by standard procedures. After four Al2O3 powder 

sintering tests, the punches were sectioned to inspect the integrity of the coatings. The 

TZM punch coated with CrAlSiN coating can be taken off the die but the punch surface 

became rougher indicating that the CrAlSiN coating was degraded at such high 

temperatures. As observed in Figure 6a, some Al2O3 and graphite debris remained stuck 

on the surface of the CrAlSiN coated TZM punch, which could be confirmed by the 

EDX analysis, and the coating was partially damaged after sintering Al2O3 powders at 

1300 °C.  
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a)  b)  

Figure 6: Cutaway views of the TZM punches after 4 sinterings a) CrAlSiN coated and 

b) CrAlO/CrAlN coated. 

 

On the other hand, the amount of adhered Al2O3 sintered powders on the punch coated 

with the multilayer is much smaller, as shown in Figure 6b; in addition the integrity of 

the CrAlO/CrAlN multilayer coating on the TZM punch is mostly preserved after 4 

sintering cycles. 

All the observed results indicate that the multilayering structure of the CrAlO/CrAlN 

coating system produces a superior mechanical and tribological performance over the 

CrAlO at room and at high temperatures. In fact the benefit of multilayering has been 

well reported in the literature [40-43]. The presence of various dissimilar material 

interfaces in a coating system can block the propagation of cracks at the interface of the 

tougher part [40]. The alternation of two different layer also forces the re-nucleation 

during the film growth allowing to obtain more dense and compact growth [42]. The 

multilayering is an effective strategy for the blockage of pinholes formation through to 

the substrate [43], thus hindering the oxidation kinetics and the consequent degradation 

of the coatings and substrate system [42].  

substrate substrate 

coating 

coating 
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4. Conclusions 

Monolayer CrAlO and multilayer CrAlO/CrAlN coatings have been deposited by 

industrial-scale cathodic arc evaporation system in N2/O2 atmosphere. The CrAlO 

exhibited an undetermined volume fraction mixture of cubic and corundum phases of 

stoichiometry close to (Cr,Al)2O3. The multilayer showed the prevalence of the cubic 

structure of the CrAlN and some volume fractions of the cubic and corundum oxide 

phases from the oxide sublayers. The structural, mechanical and tribological results 

evidence a strong dependence on the film structure. The multilayer CrAlO/CrAlN 

coating exhibited higher mechanical stability after thermal annealing at 1000ºC and 

1100ºC than these of the monolayer. The multilayer retained the high hardness up to 

1100ºC of annealing, whereas it did not show hints of structural degradation until 

1100ºC. In addition, the multilayer has been also shown to enhance wear resistance 

performance of the monolayer CrAlO at RT and at 400ºC.  

In the sintering trials, both CrAlSiN monolayer and CrAlO/CrAlN multilayer coating 

have been proved to be adequate to coat punches used for the sintering of Ti90Sn10 

allowed powders. On the other hand, the CrAlO/CrAlN multilayer coating qualitatively 

showed protection properties to the TZM punch tool during the sintering of Al2O3, with 

respect to that show by the CrAlSiN coating. 
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Figure captions 

Figure 1: GD-OES analyses of the a) monolayer CrAlO coating, and b) multilayer 

CrAlO/CrAlN coating.  

Figure 2: SEM images of the cross-section of as-deposited coatings on Si waflers, a) 

monolayer CrAlO, b) multilayer CrAlO/CrAlN. 

Figure 3: GI-XRD diffractograms of both untreated coatings. 

Figure 4: SEM images of the samples’ surface untreated and after high temperature 

annealing tests. 

Figure 5: PVD coated TZM punches and graphite die assembly after sintering a) 

Ti90Sn10 powders at 1100 ºC and b) Al2O3 powders at 1300 ºC. The punch on the left 

of both photos is the CrAlO/CrAlN coated and the one in the right the CrAlSiN coated. 

Figure 6: Cutaway views of the TZM punches after 4 sinterings a) CrAlSiN coated and 

b) CrAlO/CrAlN coated. 
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Table captions 

Table 1: Experimental parameters of the deposition processes. 

Table 2: Roughness (Ra and Rq) and thickness of the monolayer and multilayer 

coatings.  

Table 3: Hardness, Young Modulus and H
3
/E’

2
 values of the CrAlO monolayer coating 

and of the CrAlO/CrAlN multilayer coating in the untreated state and after the high 

temperature resistance tests at 1000 and 1100 ºC. 

Table 4: Wear rate (in m
3
/Nm) at room temperature, 200 ºC and 400 ºC. 

Table 5: EDX results on the surface of Inconel samples coated with the monolayer and 

the multilayer coatings affter the high temperature resistance tests at 1100 ºC. 

 

 

 


