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Abstract: At present, railway infrastructure experiences harsh environments and aggressive loading 12 

conditions from increased traffic and load demands. Ground borne vibration has become one of these 13 

environmental challenges. Overhead line equipment (OHLE) provides electric power to the train and 14 

is, for one or two tracks, normally supported by cantilever masts. A cantilever mast, which is made of 15 

H-section steel, is slender and has a poor dynamic behaviour by nature. It can be seen from the literature 16 

that ground borne vibrations cause annoyance to people in surrounding areas especially in buildings. 17 

Nonetheless, mast structures, which are located nearest and alongside the railway track, have not been 18 

fully studied in terms of their dynamic behaviour.  This paper presents the effects of ground borne 19 

vibrations generated by high speed trains on cantilever masts and contact wire located alongside railway 20 

tracks. Ground borne vibration velocities at various train speeds, from 100 km/h to 300km/h, are 21 

considered based on the consideration of semi-empirical models for predicting low frequency vibration 22 

on ground. A three-dimensional mast structure with varying soil stiffness is made using a finite element 23 

model. The displacement measured is located at the end of cantilever mast which is the position of 24 

contact wire. The construction tolerance of contact stagger is used as an allowable movement of contact 25 

wire in transverse direction. The results show that the effect of vibration velocity from train on the 26 
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transverse direction of mast structure is greater than that on the longitudinal direction. Moreover, the 27 

results obtained indicate that the ground bourn vibrations caused by high speed train are not strong 28 

enough to cause damage to the contact wire. The outcome of this study will help engineers improve the 29 

design standard of cantilever mast considering the effect of ground borne vibration as preliminary 30 

parameter for construction tolerances.  31 

Keywords: Ground borne vibration, overhead line equipment, mast structure, vibration, soil-structure 32 

interaction  33 

1. Introduction 34 

Presently, due to rapid population growth, passenger journeys have increased by nearly 100% and 35 

freight by 60% (Baxter, 2015). The extra capacity provided is needed for economic growth in the future 36 

(RailCorp, 2011).  The electric train has become the efficient railway systems. The electric train is 37 

allowed to run frequently and quickly. Overhead line equipment (also called “OHLE”) is an equipment 38 

to supply power to make electric trains and consist of masts, gantries, and wires found along electrified 39 

railways.  This is now the preferred means of powering trains throughout the world. Although the 40 

concept of OHLE is simple, the problem is the poor dynamic behaviour of OHLE (Beagles et al., 2016).  41 

Due to the extreme environmental events and severe periodic forces, such as earthquakes in surrounding 42 

areas perhaps causing damage to the track and OHLE structure especially the mast structure, this can 43 

lead to the failure of the electrical system (Shing and Wong, 2008; Robinson and Bryan, 2009; Taylor, 44 

2013). This is because when the frequency of ground motion matches the natural frequency of a 45 

structure, it will suffer the damage and large oscillations because of the occurrence of resonance effect 46 

(Ngamkhanong and Pinkaew, 2015). Apart from earthquake, ground borne vibration is a serious 47 

concern. One of the main sources of ground borne vibration on mast structures is trains passing. Railway 48 

vibration is a serious global concern as it can affect property and cause annoyance to people in 49 

surrounding area (Connolly et al., 2016). The vibration level depends on many factors such as train 50 

speed, ground condition, type of structure concerned etc. The effect of ground borne vibration on the 51 

building in surrounding areas has been studied in previous literature (Kouroussis et al., 2013; Zou et 52 
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al., 2015; Zou et al., 2017; Vogiatzis and Mouzakis, 2017). Even though the ground borne vibration 53 

might not cause damage to the structure, this may cause annoyance to the people in the building 54 

(Suhairy, 2000; Lopes et al., 2016). Cantilever mast structures have not been fully studied. In practice, 55 

masts are designed as a fixed support with infinite stiffness. In reality, there is a small displacement 56 

created by the supporting soil. Based on the relevant literature (Prum and Jiravacharadet, 2012; NEHRP, 57 

2012), different soil support conditions were taken into account. It was noted that soil-structure 58 

interaction affected the overall response of the structure. As for mast structure, it was noticeable that 59 

the rotational stiffness affected the natural frequencies and mode shape of vibration in a lower mode 60 

but rarely affected the higher mode (Ngamkhanong et al., 2017). This was because the dynamic 61 

behaviour was characterized by coincident eigenfrequencies, mode order change, while the 62 

eigenfunctions remain associated with the corresponding eigenvalues (Pierre, 1988; Benedettini et al., 63 

2009; Sari et al., 2017). For most railway vibration problems, the predominant frequencies of the load 64 

spectra are normally in the range of 0.5Hz to 80Hz (Jonsson, 2000) depending on wheel-rail 65 

irregularities and vehicle effects (Kouroussis et al., 2014; Kouroussis et al., 2015). Therefore, this study 66 

considers the frequencies of ground borne vibration between 0Hz and 100Hz to cover all possible 67 

frequencies of ground vibration and the first-eight fundamental mode of mast vibration.   68 

The present paper aims to study the effect of ground borne vibration generated by high speed trains on 69 

mast structures, with consideration of its underlying soil properties. Finite element model is employed 70 

to calculate the structural responses and the ground borne vibration is computed by the classical 71 

formulation based on the semi-empirical model for predicting low frequency vibration on soft ground 72 

condition (Kurzeil, 1979; Madshus et al., 1996). The obtained simulation results reveal that the train 73 

speed and soil condition influence the dynamic responses of mast structure.   74 

2. Methodology  75 

2.1 Modelling  76 

In this study, the 3-dimensional finite element modelling is considered using a general-purpose finite 77 

element package STRAND7 (G+D Computing, 2001). OHLE is normally supported by lineside masts, 78 
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typically made of H-section steel, with a fixed base. The catenary cable and the pull/push-off arms 79 

supporting the contact wire are attached to the ends of the cantilever. The modelling of cantilever mast 80 

structure is shown in figure 1, which consists of the two force members only. The young modulus of 81 

steel is 2x105 MPa with a density of 7850 kg/m3. Poisson’s ratio is 0.25. 82 

  83 

Figure 1 3-Dimensional model of OHLE 84 

In this study, the translational stiffness in three directions is assumed to be fixed in order to restraint the 85 

translation displacement. Based on soil conditions, however, translational stiffness is not taken into 86 

account, and rotational stiffness of support conditions is varied from 1000kNm/rad to infinite (fully 87 

fixed support). 88 

2.2 Ground borne vibration 89 

Based on vibration measurements, it has been concluded that the factors that are of primary importance 90 

for the low frequency railway-induced vibration on the ground, and its effect in surrounding areas are 91 

as follows (Madshus et al., 1996): (1) Ground conditions, (2) Train type, (3) Line quality and 92 

embankment design, (4) Train speed, (5) Distance from track to structure, and (6) Building foundation 93 

and structure. 94 

To conveniently calculate the level of ground borne vibration, the formula proposed by Madshus et al. 95 

(1996) can be used, as shown in Eq.1. 96 
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𝑉 = 𝑉𝑇𝐹𝑠𝐹𝐷𝐹𝑅𝐹𝐵     (1) 97 

Where 98 

𝑉𝑇 is a train type specific vibration level, 𝐹𝑠 is a speed factor, 𝐹𝐷 is a distance factor, 𝐹𝑅 is a track quality 99 

factor and 𝐹𝐵 is a building amplification factor. 100 

𝐹𝑠 can be calculated as shown in Eq.2 where 𝐴 is the train speed exponent, 𝑆 is the train speed and 𝑆0 101 

is the reference speed on a standard track. 102 

𝐹𝑠 = (
𝑆

𝑆0
)
𝐴

              (2) 103 

Distance factor,𝐹𝐷, can be calculated as shown in Eq.3 where 𝐷 is the distance from the centre of the 104 

track to the receiver, 𝐷0 is the reference distance from the centre of the tracks and 𝐵 is the distance 105 

exponent. 106 

𝐹𝐷 = (
𝐷

𝐷0
)
−𝐵

                 (3) 107 

The low frequency vibration peak can be observed dominantly in the softer ground (Madshus et al., 108 

1996; Auersch, 2012) and thus it is assumed that high speed trains run along the track on soft ground. 109 

Therefore, the values used for ground vibration calculation are 0.1, 0.9 and 1.1 for 𝑉𝑇, 𝐴 and 𝐵. In 110 

addition, vibration level on the ground at a reference distance of 𝐷0 = 20m, from the centre of the 111 

tracks, when a train of the specified category passes at reference speed of 𝑆0 = 70 km/h. It should be 112 

noted that the excessive vibration and degradation of surrounding soil can be detected at soft soil areas 113 

during high-speed train passage (Madshus and Kaynia, 2000; Vogiatzis, 2012) 114 

The typical (𝐹𝑅) used is 1.3 for old single track and structure amplification (𝐹𝐵) is 1.3 for single storey 115 

buildings which are the best fit for single mast structure based on the height of structure. According to 116 

previous measurement on building (Mouzakis and Vogiatzis, 2016), it was interesting to note that the 117 

amplification factor indicated the increase in vibration up to 25Hz which covered the fundamental mode 118 

of vibration of mast structure. 119 
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It is assumed that the mast structure is located at a distance of 3.5m perpendicular to the track. The train 120 

speed varies from 100km/h to 300km/h. The ground vibration velocities created by train are inputted in 121 

both directions as seen in Figure 2. When the train moves on the track, the ground vibration has 122 

intensities depending on the distance or angle formed by track and distance from a train to the mast 123 

structure. The vibration is transmitted as Rayleigh surface waves in the propagation region to the 124 

structure. In this study, the different angles that create different distances from mast are considered as 125 

a vibration creation regions.  126 

 127 

Figure 2 Location of the cantilever mast structure and direction of train on railway track. 128 

The relationships between vibration velocity and train speed between 0km/h and 300km/h at the angle 129 

of 10 and 90 degrees are shown in Figure 3. As for 10 degrees, it can be seen that the vibration velocity 130 

in longitudinal direction is greater than that in transverse direction. Meanwhile, only vibrations in 131 

transverse direction can be observed when the train is located perpendicular to the track. The 3mm/s 132 

displacement in transverse direction can be observed at the train speed of 300km/h. It should be noted 133 

that the frequency ranges from 1 to 100Hz are considered in this study to cover the fundamental mode 134 

of vibration of the mast structure.  135 
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a) b) 

Figure 3 Relationship between vibration velocity and train speed at a) 10 degrees b) 90 degrees 136 

The ground-borne vibration velocity calculations in both directions are shown in Figure 4. In transverse 137 

direction, it can be seen that the vibration intensity increases when the train runs close to the mast 138 

structure. It should be noted that when the train is located perpendicular to the mast, the vibration 139 

velocity occurs only in transverse direction. The increase of angle leads to the higher vibration in this 140 

direction. As for the longitudinal direction, the ground vibration increases until the angle of the train 141 

reaches 45degrees and slightly decreases until the train is located perpendicular to the mast. This is 142 

because the vibration intensity is not dependent only on distance but other factors also play a role as 143 

stated in the previous section. In addition, the train speed increases and decreases with the same rate as 144 

ground borne vibration velocity. Therefore, the maximum vibration velocity occurs at the angle of 145 

45degrees. 146 

 147 
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Figure 4 Ground borne vibration velocity at various distances from the track at a speed of 100km/h, 148 

200km/h and 300km/h. 149 

3. Results and Discussion 150 

In this study, the frequency ranges between 1 and 100Hz are considered to cover the fundamental mode 151 

shapes of the mast structure. Based on previous study (Ngamkhanong et al., 2017), the first, second and 152 

third modes are twisting, bending about transverse, and bending about longitudinal, respectively. It was 153 

noted that the reduction of soil-structure stiffness associated with poor support and soft soil condition 154 

led to the decrease in natural frequency and the change of mode shapes in lower modes. 155 

Figure 5 shows maximum displacement at the end of the cantilever mast, which is the location of 156 

overhead wire, in both directions at various soil stiffness. It can be seen that, for higher stiffness from 157 

about 100000kNm/rad to infinity, the displacements are very small compared with the lower stiffness. 158 

As expected, when the mast is located on the very poor support condition corresponding to the stiffness 159 

of 1000kNm/rad, the displacement is more than 5 times higher than that of the well support. In Figures 160 

5a, 5c, 5e, it is clearly seen that when the train runs along the track, it can make ground vibrations and 161 

leads to the movement of mast especially in the perpendicular direction to the track. At the stiffness of 162 

1000kNm/rad, about 40mm displacement can be observed when the train speed of 300km/h passes the 163 

mast at an angle of 90 degrees. 164 
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c) d) 

e) f) 

Figure 5 Maximum displacement at the position of overhead wire on cantilever mast at various angles 165 

and soil stiffness a) 100km/h in X (transverse) direction b) 100km/h in Z (longitudinal) direction c) 166 

200km/h in X (transverse) direction d) 200km/h in Z (longitudinal) direction e) 300km/h in X 167 

(transverse) direction f) 300km/h in Z (longitudinal) direction. 168 

At fully fixed support condition or rigid soil, it is clearly seen that the train speed plays a little role on 169 

transverse direction when angles of the train to the mast are in low range (less than 30 degrees) but 170 

plays a significant role at higher angles, as shown in Figure 6. For 70-90 degrees, it should be noted 171 
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of 100km/h to 200km/h and 300km/h, respectively. Whereas, for 40-60 degrees, there are nearly two 173 

fold increases in maximum displacement from 100km/h to 300km/h. In Figure 6b, with longitudinal 174 

direction, the angles which create the highest displacement are between 40 and 50 degrees. This is 175 

because the highest vibration velocities occur when the train runs past these angles as seen in Figure 4. 176 

The maximum displacements are nearly two and three fold increases from 100km/h to 300km/h for the 177 

angles of 30-60 degrees.   178 

a) b) 

Figure 6 Maximum displacement of mast at various train speeds and angles with fully fixed support 179 

condition in a) X (transverse) direction b) Z (longitudinal) direction  180 

Figure 7 shows the trends of maximum displacement in both direction and root mean square 181 

displacement corresponding to different angles. As for root mean square (RMS) displacement, the 182 

results indicate that the RMS displacement trend has a rapid increase when the train runs to and angle 183 

of 80 degree and then stays constant until the train passes the mast with the soil stiffness of 184 

1000kNm/rad. In case of higher stiffness, it is clear that the RMS displacements remain steady after the 185 

train forms the angle of 40 degree due to the twisting mode. However, the displacement concerned in 186 

the loss of contact wire is in transverse direction. It should be noted that the 50mm construction 187 

tolerances of contact stagger is considered as allowable movement in transverse direction (Railcorp, 188 
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2011). It is noted that about 40mm is observed as the maximum displacement in transverse direction 189 

when the trains run past the mast at the stiffness of 1000kNm/rad with the speed of 300km/h. It can be 190 

concluded that the high speed train cannot cause the damage of contact wire which lead to the failure 191 

of electric system. 192 

 193 

a)  
 

b) 

 

c) 

 

d) 

Figure 7 Maximum displacement of mast at velocity of  194 

100km/h in a) X (transverse) and Z (longitudinal) directions b) Root mean square  195 

300km/h in c) X (transverse) and Z (longitudinal) directions d) Root mean square 196 
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Figure 8 shows the frequency response of the maximum displacement in both directions. It can be seen 197 

that the fundamental frequencies change due to the change of soil stiffness beneath the mast structure. 198 

When the soil stiffness decreases, the dominant frequencies are reduced with a higher magnitude of 199 

displacement responses. The resonance phenomenon occurs when the frequencies of ground borne 200 

vibration related to the frequencies of the structure are generated. This can be observed due to the 201 

occurrence of large displacement. It is clearly seen that the dynamic behaviour of the mast structure, as 202 

mentioned (Ngamkhanong et al., 2017), is relevant to the dominant frequencies, as shown in Figure 8. 203 

It is interesting to note that there are two peaks of displacement observed when the mast has a poor 204 

support with a stiffness of 1000kNm/rad. Because of the sensitivity of dynamic behaviour, the structure 205 

vibrates with a combination of twisting and bending about the X-axis and pure bending about the X-206 

axis so that the two peaks are seen. There is only peak observed in the other cases of stiffness. 207 

 208 
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c) d) 

Figure 8 Frequency response of the maximum displacement with the train speed of 300km/h at the 209 

angle of a) 10 degrees in X (transverse) direction b) 10 degrees in Z (longitudinal) direction  210 

c) 45 degrees in X (transverse) direction d) 45 degrees in Z (longitudinal) direction 211 

Figures 9a-9b show the rotation of cantilever mast around the mast column with varying angles and soil 212 

stiffness at the frequencies of 1.07Hz and 0.87Hz. It should be noted that the fundamental mode of 213 

twisting for mast structure with rotational stiffness higher than 10000kNm/rad and 1000kNm/rad are 214 

1.07Hz and 0.87Hz, respectively. It is clearly seen that stiffness plays a significant role the mode of 215 

vibration. Even though the resonance effect occurs on the mast with a stiffness of higher than 216 

100000kNm/rad, when the ground vibrates at a frequency of around 1.07Hz, the rotations of the 217 

cantilever observed are very small because of the well or rigid support conditions. The maximum 218 

rotation can be observed when the train runs past the angle of 45 degrees and leads to the rotation of 219 

mast at 10000kNm/rad soil stiffness. On the other hand, when the train induces ground vibration with 220 

a frequency of 0.87Hz, the maximum response occurs with the mast structure with the poor support 221 

condition. It is interesting to note that there is a more than tenfold higher rotation of the cantilever of 222 

the mast because of the occurrence of the resonance effect. It should be noted that the resonance 223 

vibration on the mast structure with the lower soil stiffness is higher than that with higher soil stiffness. 224 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

Figure 9 Cantilever rotation at train speed of 300km/h around Y axis at the frequency of a) 1.07Hz b) 225 

0.87Hz and frequency response of the rotation of cantilever mast with soil stiffness of c) 226 

1000kNm/rad d) 10000kNm/rad e) 100000kNm/rad f) fully fixed support 227 
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Figures 9c-9f show the frequency responses in the rotation of cantilever mast around the mast column 228 

with different soil stiffness. The two peaks of rotation are observed at a stiffness of 1000kNm/rad and 229 

10000kNm/rad due to the poor dynamic behaviour. The second highest peak of these cases takes place 230 

in the second mode of vibration which is bending about the X-axis. Since the mast structure becomes 231 

weak due to the reduction of soil stiffness below, the first mode of bending about the X-axis is combined 232 

with twisting.  It can be concluded that the soil stiffness plays a vital role in the vibration responses of 233 

the structure due to ground-borne vibrations. 234 

4. Conclusions 235 

The rapid growth in railway infrastructure demand has meant an increase in the capacity of trains is 236 

necessary. Ground borne vibration intensity has increased due to the increase in train speed, and other 237 

factors related to vibration source, vibration path and receiver. The mast structure located alongside the 238 

railway track is a support for overhead line equipment (OHLE) to supply the electric power to the train. 239 

In practical work, the structures are designed with the assumption of having fixed support. In reality, 240 

there is a small displacement created by the supporting soil. Hence, a three-dimensional mast structure 241 

is created using a finite element package, STRAND7, with the consideration of soil-structure 242 

interaction. The obtained results show that the resonance effect occurs and will amplify the effects of a 243 

ground motion, causing a structure to suffer more oscillation. It is also noticed that the vibration 244 

responses are dominant at the train location near the mast structure, whereas the response decreases 245 

rapidly with the increasing distance. The largest displacement occurs when the train moves past the 246 

mast structure at the track perpendicular to the structure. It is also observed that the first twisting mode 247 

can occur when the train is run past the 45 degrees from cantilever mast. The soil stiffness beneath the 248 

structure also plays a role in the reduction of resonance phenomenon. Nonetheless, there are some 249 

limitations in this study. The ground borne vibrations are formulated by the prediction model with only 250 

one frequency, whereas the ground vibration velocity has more than one dominant frequency in reality. 251 

Therefore, there should be more than one resonance frequency. It is also recommended that there should 252 

be further field measurement. However, the results obtained can be used as tolerances for the 253 

consideration of further design standard before the effect of extreme events will be considered. The 254 
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outcome of this study will help provide a better understanding of the critical responses and behaviour 255 

of mast structure under normal operation of high speed train. It is the first investigate to demonstrate 256 

the effect of ground borne vibration generated by high speed train on the cantilever mast structure and 257 

contact wire system.  258 

Acknowledgements  259 

The first author gratefully appreciates the School of Engineering and Birmingham Centre for Railway 260 

Research and Education for his PhD scholarship. The authors are sincerely grateful to the European 261 

Commission for the financial sponsorship of the H2020-RISE Project No. 691135 “RISEN: Rail 262 

Infrastructure Systems Engineering Network”, which enables a global research network that tackles the 263 

grand challenge of railway infrastructure resilience and advanced sensing in extreme environments 264 

(www.risen2rail.eu). 265 

References 266 

 Auersch, L., 2012 Train induced ground vibrations: Different amplitude-speed relations for two 267 

layered soils. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail 268 

and Rapid Transit. 226(5), 469-488. 269 

 Baxter, A., 2015. A Guide to Overhead Electrification Equipment. Network Rail, London, United 270 

Kingdom. 271 

 Beagles, A., Fletcher, D., Peffers, M., Mak, P., Lowe, C., 2016. Validation of a new model for 272 

railway overhead line dynamics. Proceeding of the Institution of Civil Engineers. 169, 339-273 

349. 274 

 Benedettini, F., Zulli, D., Alaggio, R., 2009. Frequency-veering and mode hybridization in arch 275 

bridges. Proceedings of the IMAC-XXVII. 276 

 Connolly, D.P., Marecki, G.P., Kouroussis, G., Thalassinakis, I., Woodward, P.K., 2016 The 277 

growth of railway ground vibration problems — A review. Science of The Total Environment. 278 

568, 1276-1282. 279 

 G+D Computing, 2001. Using Strand7: Introduction to the Strand7 finite element analysis 280 

http://www.risen2rail.eu/


17 
 

system, Sydney, Australia. 281 

 Jonsson, J.O., 2000. On Ground and Structural Vibrations Related to Railway Traffic. Chalmers 282 

University of Technology, Göteborg, Sweden. 283 

 Kurzeil, L.G., 1979. Ground borne noise and vibration from underground rail systems. Journal 284 

of Sound and Vibration. 66, 363-371. 285 

 Kouroussis, G., Van Parys, L., Conti, C., Verlinden, O., 2013. Prediction of ground vibrations 286 

induced by urban railway traffic: an analysis of the coupling assumptions between vehicle, 287 

track, soil, and buildings. International Journal of Acoustics and Vibration. 18(4), 163–172. 288 

 Kouroussis, G., Connolly, D.P., Verlinden, O., 2014. Railway-induced ground vibrations – a 289 

review of vehicle effects. International Journal of Rail Transportation. 2(2), 69-110. 290 

 Kouroussis, G., Connolly, D.P., Alexandrou, G., Vogiatzis, K., 2015. Railway ground vibrations 291 

induced by wheel and rail singular defects. Vehicle System Dynamics. 53(10), 1500-1519 292 

 Lopes, P., Ruiz, J.F. Costa, P.A, L. Rodríguez, M., Cardoso, A.S., 2016 Vibrations inside 293 

buildings due to subway railway traffic. Experimental validation of a comprehensive 294 

prediction model. Science of The Total Environment. 568, 1333-1343. 295 

 NEHRP Consultants Joint Venture, 2012. Soil-Structure Interaction for Building Structures 296 

(National Institute of Standards and Technology). 297 

 Madshus C., Bessason, B., Harvik, L., 1996. Prediction Model for Low Frequency Vibration 298 

from High Speed Railways on Soft Ground. Journal of Sound and Vibration 193(1), 195-203. 299 

 Madshus, C., Kaynia, A.M., 2000. High-speed railway lines on soft ground: dynamic behaviour 300 

at critical train speed. Journal of Sound and Vibration. 231(3), 689-701. 301 

 Mouzakis, H., Vogiatzis, K., 2016 Ground-borne noise and vibration transmitted from subway 302 

networks to a typical Athenian multi-storey reinforced concrete building ICSV 2016 - 23rd 303 

Intern. Conf. 304 

 Ngamkhanong, C., Pinkaew, T., 2015. Effectiveness of tuned mass damper in damage reduction 305 

of building under far-field ground motions. 5th ECCOMAS Thematic Conference on 306 

Computational Methods in Structural Dynamics and Earthquake Engineering. 972-983.  307 

 Ngamkhanong, C., Kaewunruen, S., Baniotopoulos, C., Papaelias, M., 2017. Crossing 308 

http://publications.lib.chalmers.se/rweb/?personID=660
http://www.tandfonline.com/doi/full/10.1080/00423114.2015.1062116
http://www.tandfonline.com/doi/full/10.1080/00423114.2015.1062116


18 
 

Phenomena in Overhead Line Equipment (OHLE) Structure in 3D Space Considering Soil-309 

Structure Interaction, IOP Conf. Series: Materials Science and Engineering 245. 310 

 Pierre, C., 1988. Mode localization and eigenvalue loci veering phenomena in disodered 311 

structures. Journal of Sound and Vibrarion. 126(3), 485-502. 312 

 Prum, S., Jiravacharadet, M., 2012. Effects of Soil Structure Interaction on Seismic Response of 313 

Buildings. International Conference on Advances in Civil Engineering for Sustainable 314 

Development. 315 

 RailCorp, 2011. Design of Overhead Wiring Structures & Signal Gantries. Engineering Manual 316 

–Civil. 317 

 Robinson, P., Bryan, C., 2009. Network Rail Electrical Power Reliability Study. Network Rail, 318 

Milton Keynes, UK.  319 

 Sari, M., Shaat, M., Abdelkef, A., 2017. Frequency and mode veering phenomena of axially 320 

functionally graded non-uniform beams with nonlocal residuals. Composite Structures. 163, 321 

280–292. 322 

 Shing, A.W.C., Wong, P.P.L., 2008. Wear of pantograph collector strips. Proceeding of the 323 

ImechE, Journal of Rail and Rapid Transit. 222(2), 169-176. 324 

 Suhairy, S.A., 2000. PREDICTION OF GROUND VIBRATION FROM RAILWAYS, SP 325 

Report. Boras, Sweden. 326 

 Taylor, G., 2013. A bad wire day. The Rail Engineer. 327 

 Vogiatzis, K.E., 2012. Athens metro extension project to piraeus ground borne noise and 328 

vibration assessment and control. International Journal of Mechanics. 6(2), 130-139. 329 

 Vogiatzis, K., Mouzakis, H., 2017. Ground-borne noise and vibration transmitted from subway 330 

networks to multi-storey reinforced concrete buildings. Transport. 331 

https://doi.org/10.3846/16484142.2017.1347895 332 

 Zou, C., Wang, Y., Wang, P., Guo, J., 2015 Measurement of ground and nearby building 333 

vibration and noise induced by trains in a metro depot. Science of The Total Environment. 334 

536, 761-773. 335 

 Zou, C., Wang, Y., Moore, J.A., Sanayei, M., 2017 Train-induced field vibration measurements 336 



19 
 

of ground and over-track buildings. Science of The Total Environment. 575, 1339-1351.  337 


