
 
 

University of Birmingham

A characterization of testable hypergraph properties
Joos, Felix; Kim, Jaehoon; Kuhn, Daniela; Osthus, Deryk

DOI:
10.1109/FOCS.2017.84

Document Version
Peer reviewed version

Citation for published version (Harvard):
Joos, F, Kim, J, Kuhn, D & Osthus, D 2017, A characterization of testable hypergraph properties. in Proceedings
- 58th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2017. vol. 2017-October,
8104116, IEEE Computer Society Press, pp. 859-867, 58th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, United States, 15/10/17. https://doi.org/10.1109/FOCS.2017.84

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 20/02/2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1109/FOCS.2017.84
https://doi.org/10.1109/FOCS.2017.84
https://birmingham.elsevierpure.com/en/publications/4f187587-23d0-43fe-858f-27a9f34d8aa6


A characterization of testable hypergraph properties [Extended Abstract]
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Abstract—We provide a combinatorial characterization of
all testable properties of k-graphs (i.e. k-uniform hypergraphs).
Here, a k-graph property P is testable if there is a randomized
algorithm which makes a bounded number of edge queries
and distinguishes with probability 2/3 between k-graphs that
satisfy P and those that are far from satisfying P. For the 2-
graph case, such a combinatorial characterization was obtained
by Alon, Fischer, Newman and Shapira. Our results for the
k-graph setting are in contrast to those of Austin and Tao,
who showed that for the somewhat stronger concept of local
repairability, the testability results for graphs do not extend to
the 3-graph setting.

Keywords-property testing, hypergraphs, regularity lemma

I. INTRODUCTION

The universal question in the area of property testing is
the following: By considering a small (random) sample S
of a combinatorial object O, can we distinguish (with high
probability) whether O has a specific property P or whether
it is far from satisfying P? In this paper we answer this
question for k-uniform hypergraphs, where a hypergraph H
is k-uniform if all edges of H have size k ∈ N. For brevity,
we usually refer to k-uniform hypergraph as k-graphs (so
2-graphs are graphs).

We now formalize the notion of testability (throughout, we
consider only properties P which are decidable). For this, we
say that two k-graphs G and H on vertex set V with |V | = n
are α-close if |G4H| ≤ α

(
n
k

)
, and α-far otherwise1. We say

that H is α-close to satisfying a property P if there exists a
k-graph G that satisfies P and is α-close to H , and we say
that H is α-far from satisfying P otherwise.

Definition 1 (Testability). Let k ∈ N \ {1} be fixed and
let qk : (0, 1) → N be a function. A k-graph property P is
testable with query complexity at most qk if for every n ∈ N
and every α ∈ (0, 1) there are an integer q′k = q′k(n, α) ≤
qk(α) and a randomized algorithm T = T(n, α) that can
distinguish with probability at least 2/3 between n-vertex
k-graphs satisfying P and n-vertex k-graphs that are α-far
from satisfying P, while making q′k edge queries:

(i) if H satisfies P, then T accepts H with probability at
least 2/3,

1We identify hypergraphs with their edge set and for two sets A,B we
denote by A4B the symmetric difference of A and B.

(ii) if H is α-far from satisfying P, then T rejects H with
probability at least 2/3.

In this case, we say T is a tester, or (n, α)-tester for P. We
also say that T has query complexity q′k. The property P is
testable if it is testable with query complexity at most qk for
some function qk : (0, 1)→ N.

Property testing was introduced by Rubinfeld and Su-
dan [1]. In the graph setting, the earliest systematic results
were obtained in a seminal paper of Goldreich, Goldwasser
and Ron [2]. These included k-colourability, max-cut and
more general graph partitioning problems. (In fact, these
results are preceded by the famous triangle removal lemma
of Ruzsa and Szemerédi [3], which can be rephrased in terms
of testability of triangle-freeness.) This list of problems was
greatly extended (e.g. via a description in terms of first order
logic by Alon, Fischer, Krivelevich, and Szegedy [4]) and
generalized first to monotone properties (which are closed
under vertex and edge deletion) by Alon and Shapira [5]
and then to hereditary properties (which are closed under
vertex deletion), again by Alon and Shapira [6]. Examples
of non-testable properties include some properties which are
closed under edge deletion [7] and the property of being
isomorphic to a given graph G [8], [9], provided the local
structure of G is sufficiently ‘complex’ (e.g. G is obtained
as a binomial random graph). This sequence of papers
culminated in the result of Alon, Fischer, Newman and
Shapira [8] who obtained a combinatorial characterisation
of all testable graph properties. This solved a problem posed
already by [2], which was regarded as one of the main open
problems in the area.

The characterisation proved in [8] states that a 2-graph
property P is testable if and only if it is ‘regular re-
ducible’. Roughly speaking, the latter means that P can be
characterised by being close to one of a bounded number
of (weighted) Szemerédi-partitions (which arise from an
application of Szemerédi’s regularity lemma). Our main
theorem (Theorem 2) shows that this can be extended to hy-
pergraphs of higher uniformity. Our characterisation is based
on the concept of (strong) hypergraph regularity, which was
introduced in the ground-breaking work of Rödl et al. [10],
[11], [12], [13], Gowers [14], see also Tao [15]. We defer
the precise definition of regular reducibility for k-graphs to
Section II-E, as the concept of (strong) hypergraph regularity



involves additional features compared to the graph setting
(in particular, one needs to consider an entire (suitably
nested) family of regular partitions, one for each j ∈ [k]).
Accordingly, our argument relies on the so-called ‘regular
approximation lemma’ due to Rödl and Schacht [12], which
can be viewed as a powerful variant of the hypergraph
regularity lemma. In turn, we derive a strengthening of this
result which may have further applications.

Instead of testing whether H satisfies P or is α-far
from P, it is natural to consider the more general task of
estimating the distance between H and P: given α > β > 0,
is H (α − β)-close to satisfying P or is H α-far from
satisfying P? In this case we refer to P as being estimable.
The formal definition is similar to that in Definition 1. We
show that testability and estimability are in fact equivalent.
For graphs this goes back to Fischer and Newman [16].

Theorem 2. Suppose k ∈ N \ {1} and suppose P is a
k-graph property. Then the following three statements are
equivalent:
(a) P is testable.
(b) P is estimable.
(c) P is regular reducible.

In Section V, we illustrate how Theorem 2 can be used
to prove testability of a given property: firstly to test the
injective homomorphism density of a given subgraph (which
includes the classical example of H-freeness) and secondly
to test the size of a maximum `-way cut (which includes
testing `-colourability).

Previously, the most general result on hypergraph property
testing was the testability of hereditary properties, which
was proved by Rödl and Schacht [17], [18], based on deep
results on hypergraph regularity. In fact, they showed that
hereditary k-graph properties can be even tested with one-
sided error (which means that the ‘2/3’ is replaced by ‘1’
in Definition 1(i)). This generalized earlier results in [19],
[20].

The result of Alon and Shapira on the testability of
hereditary graph properties was strengthened by Austin and
Tao [21] in another direction: they showed that hereditary
properties of graphs are not only testable with one-sided
error, but they are also locally repairable2 (one may think
of this as a strengthening of testability). On the other hand,
they showed that hereditary properties of 3-graphs are not
necessarily locally repairable. Note that this is in contrast to
Theorem 2.

An intimate connection between property testing and
graph limits was established by Borgs, Chayes, Lovász,

2Suppose P is a hereditary graph property and ε > 0. We say that a
graph G is locally δ-close to P if a random sample S satisfies P with
probability at least 1 − δ. A result of Alon and Shapira [6] shows that
whenever G is locally δ-close to P for some δ(ε) > 0, then G is ε-close
to P. The concept of being locally repairable strengthens this by requiring
a rule that generates G′ ∈ P only based on S such that |G4G′| < εn2

with probability at least 1− δ.

Sós, Szegedy and Vesztergombi [22]. In particular, they
showed that a graph property P is testable if and only if
for all sequences (Gn) of graphs with |V (Gn)| → ∞ and
δ�(Gn,P) → 0, we have d1(Gn,P) → 0. Here δ�(G,P)
denotes the cut-distance of G and the closest graph satisfying
P and d1(G,P) is the normalized edit-distance between G
and P (see also [23] for more background and discussion
on this). Another characterisation (in terms of localized
samples) using the graph limit framework was given by
Lovász and Szegedy [24]. Similarly, the result of Rödl and
Schacht [17] on testing hereditary hypergraph properties was
reproven via hypergraph limits by Elek and Szegedy [25] as
well as Austin and Tao [21]. The latter further extended this
to directed pre-coloured hypergraphs (none of these results
however yield effective bounds on the query complexity).

Lovász and Vesztergombi [26] recently introduced the
notion of ‘non-deterministic’ property testing, where the
tester also has access to a ‘certificate’ for the property P. By
considering the graph limit setting, they proved the striking
result that any non-deterministically testable graph property
is also deterministically testable (one could think of their
result as the graph property testing analogue of proving that
P = NP). Karpinski and Markó [27] generalized the Lovász-
Vesztergombi result to hypergraphs, also via the notion of
(hyper-)graph limits. However, these proofs do not give an
explicit bounds on the query complexity – this was achieved
by Gishboliner and Shapira [28] for graphs and Karpinski
and Markó [29] for hypergraphs.

Another direction of research concerns easily testable
properties, where we require that the size of the sample is
bounded from above by a polynomial in 1/α. (The bounds
coming from Theorem 2 can be made explicit but are
quite large, as the approach via the (hyper-)graph regularity
lemma incurs at least a tower-type dependence on 1/α,
see [30].) For k-graphs, Alon and Shapira [31] as well as
Alon and Fox [32] obtained positive and negative results for
the property of containing a given k-graph as an (induced)
subgraph. For an approach via a ‘polynomial’ version of the
regularity lemma see [33].

Recent progress on property testing includes many ques-
tions beyond the hypergraph setting. Instances include prop-
erty testing of matrices [34], Boolean functions [35], [36],
geometric objects [37], and algebraic structures [38], [33],
[39]. Moreover, property testing in the sparse (graph) setting
gives rise to many interesting results and questions (see
e.g. [40], [41]). Little is known for hypergraphs in this case.

The paper is organized as follows. In Section II, we
explain the relevant concepts of hypergraph regularity, in
particular we introduce the regular approximation lemma of
Rödl and Schacht (Theorem 5). In Section III, we describe
a version of the induced counting lemma. In Section IV, we
sketch the proof of Theorem 2 and in Section V we discuss
applications of our main result and illustrate in detail how



to apply Theorem 2.

II. HYPERGRAPH REGULARITY

The constants in the hierarchies used to state our results
have to be chosen from right to left. More precisely, if we
claim that a result holds whenever 1/n� a� b ≤ 1 (where
n ∈ N is typically the number of vertices of a hypergraph),
then this means that there are non-decreasing functions f :
(0, 1] → (0, 1] and g : (0, 1] → (0, 1] such that the result
holds for all 0 < a, b ≤ 1 and all n ∈ N with a ≤ f(b) and
1/n ≤ g(a). We say a set E is an i-set if |E| = i.

A. Basic hypergraph notation

In the following we introduce several concepts about a
hypergraph H . We typically refer to V = V (H) as the
vertex set of H and usually let n := |V |. Given a hypergraph
H and a set Q ⊆ V (H), we denote by H[Q] the hypergraph
induced on H by Q.

For a partition {V1, . . . , V`} of V and k ∈ [`], we denote
by K

(k)
` (V1, . . . , V`) the complete `-partite k-graph with

vertex classes V1, . . . , V`. If |Vi| = |Vj |± 1 for all i, j ∈ [`],
then an (`, k)-graph H on {V1, . . . , V`} is a spanning
subgraph of K(k)

` (V1, . . . , V`). For notational convenience,
we consider the vertex partition {V1, . . . , V`} as an (`, 1)-
graph.

If 2 ≤ k ≤ i ≤ ` and H is an (`, k)-graph, we
denote by Ki(H) the family of all i-element subsets I of
V (H) for which H[I] ∼= K

(k)
i , where K

(k)
i denotes the

complete k-graph on i vertices. If H(1) is an (`, 1)-graph
on {V1, . . . , V`} and i ∈ [`], we denote by Ki(H(1)) the
family of all i-element subsets I of V (H(1)) which ‘cross’
the partition {V1, . . . , V`}; that is, I ∈ Ki(H(1)) if and only
if |I ∩ Vs| ≤ 1 for all s ∈ [`].

We will consider hypergraphs of different uniformity on
the same vertex set. Given an (`, k−1)-graph H(k−1) and an
(`, k)-graph H(k) on {V1, . . . , V`}, we say H(k−1) underlies
H(k) if H(k) ⊆ Kk(H(k−1)); that is, for every edge e ∈
H(k) and every (k−1)-subset f of e, we have f ∈ H(k−1).
If we have an entire cascade of underlying hypergraphs we
refer to this as a complex. More precisely, let ` ≥ k ≥
1 be integers. An (`, k)-complex H on {V1, . . . , V`} is a
collection of (`, j)-graphs {H(j)}kj=1 on {V1, . . . , V`} such
that H(j−1) underlies H(j) for every j ∈ [k] \ {1}.

B. Hypergraph regularity

In this subsection we introduce ε-regularity for hyper-
graphs. Suppose ` ≥ k ≥ 2. Let H(k) be an (`, k)-graph
on {V1, . . . , V`}, let {i1, . . . , ik} ∈

(
[`]
k

)
, and let H(k−1)

be a (k, k− 1)-graph on {Vi1 , . . . , Vik}. Suppose ε > 0 and
d ≥ 0. We say H(k) is (ε, d)-regular with respect to H(k−1)

if for all Q(k−1) ⊆ H(k−1) with

|Kk(Q(k−1))| ≥ ε|Kk(H(k−1))|, we have

|H(k) ∩ Kk(Q(k−1))| = (d± ε)|Kk(Q(k−1))|.

We say H(k) is ε-regular with respect to H(k−1) if it is
(ε, d)-regular with respect to H(k−1) for some d ≥ 0. We
say an (`, k)-graph H(k) on {V1, . . . , V`} is (ε, d)-regular
with respect to an (`, k− 1)-graph H(k−1) on {V1, . . . , V`}
if for every Λ ∈

(
[`]
k

)
, the k-graph H(k) is (ε, d)-regular with

respect to the restriction H(k−1)[
⋃
λ∈Λ Vλ].

Let d = (d2, . . . , dk) ∈ Rk−1
≥0 . We say an (`, k)-complex

H = {H(j)}kj=1 is (ε,d)-regular if H(j) is (ε, dj)-regular
with respect to H(j−1) for every j ∈ [k] \ {1}.

C. Partitions of hypergraphs and the regular approximation
lemma

The regular approximation lemma of Rödl and Schacht
implies that for all k-graphs H , there exists a k-graph G
which is very close to H and so that G has a very ‘high
quality’ partition into ε-regular subgraphs. To state this
formally we need to introduce further concepts involving
partitions of hypergraphs.

We start with the concept of a polyad. Roughly speaking,
given a vertex partition P(1), an i-polyad is an i-graph
which arises from a partition P(i) of the complete partite
i-graph Ki(P(1)). The (i+ 1)-cliques spanned by all the i-
polyads give rise to a partition P(i+1) of Ki+1(P(1)) (see
Definition 3). Such a ‘family of partitions’ then provides a
suitable framework for describing a regularity partition (see
Definition 4).

Suppose we have a vertex partition P(1) = {V1, . . . , V`}
and ` ≥ k. Recall that Kj(P(1)) is the family of all crossing
j-sets with respect to P(1). Suppose that for all i ∈ [k]\{1},
we have partitions P(i) of Ki(P(1)) such that each part of
P(i) is an (i, i)-graph with respect to P(1). By definition,
for each i-set I ∈ Ki(P(1)), there exists exactly one i-graph
P (i) = P (i)(I) ∈ P(i) so that I ∈ P (i). Consider j ∈ [`]
and any J ∈ Kj(P(1)). For each 1 ≤ i ≤ max{j, k − 1},
the i-polyad P̂ (i)(J) of J is defined by

P̂ (i)(J) :=
⋃{

P (i)(I) : I ∈
(
J

i

)}
.

Thus P̂ (i)(J) is an (j, i)-graph with respect to P(1). For
j ∈ [k − 1], let

P̂(j) :=
{
P̂ (j)(J) : J ∈ Kj+1(P(1))

}
.

We note that P̂(1) is the set consisting of all (2, 1)-
graphs with vertex classes Vs, Vt (for distinct s, t ∈ [`]).
Moreover, note that if P̂ (j) ∈ P̂(j), it follows that there
is a set J ∈ Kj+1(P(1)) such that P̂ (j) = P̂ (j)(J). Since
J ∈ Kj+1(P̂ (j)(J)), we obtain that Kj+1(P̂ (j)) 6= ∅ for any
P̂ (j) ∈ P̂(j).

The above definitions apply to arbitrary partitions P(i) of
Ki(P(1)). However, it will be useful to consider partitions
with more structure. Suppose A ⊇ B are finite sets, A is a
partition of A, and B is a partition of B. We say A refines



B and write A ≺ B if for every A ∈ A there either exists
B ∈ B such that A ⊆ B or A ⊆ A \B.

Definition 3 (Family of partitions). Suppose k ∈ N\{1} and
a = (a1, . . . , ak−1) ∈ Nk−1. We say P = P(k − 1,a) =
{P(1), . . . ,P(k−1)} is a family of partitions on V if it
satisfies the following:

(i) P(1) is a partition of V into a1 ≥ k nonempty classes,
(ii) for each j ∈ [k − 1] \ {1}, the set P(j) is a partition

of Kj(P(1)) into nonempty j-graphs such that
• P(j) ≺ {Kj(P̂ (j−1)) : P̂ (j−1) ∈ P̂(j−1)} and
• |{P (j) ∈ P(j) : P (j) ⊆ Kj(P̂ (j−1))}| = aj for

every P̂ (j−1) ∈ P̂(j−1).

We now extend the concept of ε-regularity to families of
partitions.

Definition 4 (Equitable family of partitions). Let k ∈ N \
{1}. Suppose η > 0 and a = (a1, . . . , ak−1) ∈ Nk−1. Let
V be a vertex set of size n. We say a family of partitions
P = P(k − 1,a) on V is (η, ε,a)-equitable if it satisfies
the following:

(i) 1/a1 ≤ η,
(ii) P(1) = {Vi : i ∈ [a1]} satisfies |Vi| = |Vj | ± 1 for

all i, j ∈ [a1], and
(iii) if k ≥ 3, then for every k-set K ∈ Kk(P(1)) the

collection {P̂ (j)(K)}k−1
j=1 is an (ε,d)-regular (k, k−

1)-complex, where d = (1/a2, . . . , 1/ak−1).

Having introduced the necessary notation, we are now
ready to state the regular approximation lemma due to Rödl
and Schacht. It states that for every k-graph H , there is a k-
graph G that is close to H and that has very good regularity
properties.

Theorem 5 (Regular approximation lemma [12]). Let k ∈
N \ {1}. For all η, ν > 0 and every function ε : Nk−1 →
(0, 1], there are integers t0 := t5(η, ν, ε) and n0 :=
n5(η, ν, ε) so that the following holds:

For every k-graph H on at least n ≥ n0 vertices, there
exists a k-graph G on V (H) and a family of partitions
P = P(k − 1,aP) on V (H) so that

(i) P is (η, ε(aP),aP)-equitable and aP ∈ [t0]k−1,
(ii) G is ε(aP)-regular with respect to P̂ (k−1) for every

P̂ (k−1) ∈ P̂(k−1), and
(iii) |G4H| ≤ ν

(
n
k

)
.

The crucial point here is that in applications we may apply
Theorem 5 with a function ε such that ε(aP)� ‖aP‖−1

∞ .
This is in contrast to other versions (see e.g. [14], [13])
where (roughly speaking) in (iii) we have G = H but in (ii)
one has to pay for this by incurring an error parameter ε′

which may be large compared to ‖aP‖−1
∞ .

D. The address space

Later on, we will need to explicitly refer to the densities
arising in Theorem 5(ii). For this (and other reasons) it

is convenient to consider the ‘address space’. Roughly
speaking the address space consists of a collection of vectors
where each vector identifies a polyad.

To define the address space, let us write
(

[a1]
`

)
<

:=

{(α1, . . . , α`) ∈ [a1]` : α1 < · · · < α`}. Suppose
k, `, p ∈ N, ` ≥ k, and p ≥ max{k − 1, 1}, and
a = (a1, . . . , ap) ∈ Np. We define

Â(`, k − 1,a) :=

(
[a1]

`

)
<

×
k−1∏
j=2

[aj ]
(`
j)

to be the (`, k)-address space. Observe that Â(1, 0,a) = [a1]
and Â(2, 1,a) =

(
[a1]
2

)
<

. Note that if k > 1, then each
x̂ ∈ Â(`, k−1,a) can be written as x̂ = (x(1), . . . ,x(k−1)),
where x(1) ∈

(
[a1]
`

)
<

and x(j) ∈ [aj ]
(`
j) for each j ∈ [k−1]\

{1}. Thus each entry of the vector x(j) corresponds to (i.e. is
indexed by) a subset of

(
[`]
j

)
. For a vector x = (α1, . . . , α`),

we let x∗ := {α1, . . . , α`}. We order the elements of both(
[`]
j

)
and

(
x(1)
∗
j

)
lexicographically and consider the bijection

g :
(
x(1)
∗
j

)
→
(

[`]
j

)
which preserves this ordering. For each

Λ ∈
(
x(1)
∗
j

)
and j ∈ [k − 1], we denote by x

(j)
Λ the entry of

x(j) which corresponds to the set g(Λ).
1) Basic properties of the address space: Let k ∈ N\{1}

and let V be a vertex set of size n. Let P(k − 1,a) be a
family of partitions on V . For each crossing k-set K ∈
Kk(P(1)), the address space allows us to identify (and thus
refer to) the set of polyads ‘supporting’ K. We will achieve
this by defining a suitable operator x̂(K) which maps K to
the address space.

To do this, write P(1) = {Vi : i ∈ [a1]}. Recall from
Definition 3(ii) that for each j ∈ [k − 1] \ {1}, we partition
Kj(P̂ (j−1)) of every (j − 1)-polyad P̂ (j−1) ∈ P̂(j−1) into
aj nonempty parts in such a way that P(j) is the collection
of all these parts. Thus, there is a labeling φ(j) : P(j) →
[aj ] such that for every polyad P̂ (j−1) ∈ P̂(j−1), the
restriction of φ(j) to {P (j) ∈ P(j) : P (j) ⊆ Kj(P̂ (j−1))}
is injective. The set Φ := {φ(2), . . . , φ(k−1)} is called an
a-labeling of P(k− 1,a). For a given set K ∈ Kk(P(1)),
we denote cl(K) := {i : Vi ∩K 6= ∅}.

For every k-set K ∈ Kk(P(1)), we define a vector
x̂(K) = (x(1)(K), . . . ,x(k−1)(K)) by
• x(1)(K) := (α1, . . . , αk), where α1 < . . . < αk and
K ∩ Vαi

= {vαi
},

• and for i ∈ [k − 1] \ {1} we set

x(i)(K) :=(
φ(i)(P (i)) : {vλ : λ ∈ Λ} ∈ P (i), P (i) ∈P(i)

)
Λ∈(cl(K)

i )
.

Here, we order
(

cl(K)
i

)
lexicographically. In particular,

x(i)(K) is a vector of length
(
k
i

)
and x̂(K) ∈ Â(k, k−1,a)

for every K ∈ Kk(P(1)).



Recall that Kk(P̂ (k−1)) 6= ∅ for any P̂ (k−1) ∈ P̂(k−1),
and note that x̂(K) = x̂(K ′) for all K,K ′ ∈ Kk(P̂ (k−1))
and all P̂ (k−1) ∈ P̂(k−1). Hence, for each P̂ (k−1) ∈
P̂(k−1) we can define

x̂(P̂ (k−1)) := x̂(K) for some K ∈ Kk(P̂ (k−1)). (1)

Let

Â(k, k − 1,a)6=∅ := {x̂ ∈ Â(k, k − 1,a) : ∃P̂ (k−1) ∈ P̂(k−1)

such that x̂(P̂ (k−1)) = x̂}
= {x̂ ∈ Â(k, k − 1,a) : ∃K ∈ Kk(P(1))

such that x̂ = x̂(K)}.

Clearly (1) gives rise to a bijection from P̂(k−1) to Â(k, k−
1,a) 6=∅. Thus for each x̂ ∈ Â(k, k− 1,a) 6=∅, we can define
the polyad of x̂ by

P̂ (k−1)(x̂) := P̂ (k−1) such that

P̂ (k−1) ∈ P̂(k−1) with x̂ = x̂(P̂ (k−1)).

Note that for any K ∈ Kk(P(1)), we have P̂ (k−1)(x̂(K)) =
P̂ (k−1)(K). One can show that if P is an (η, ε,a)-equitable
family of partitions and ε is small enough, then Â(k, k −
1,a) 6=∅ = Â(k, k − 1,a) and thus (1) gives actually rise to
a bijection between P̂(k−1) and Â(k, k − 1,a).

2) Density functions of address spaces: We say a function
da,k : Â(k, k − 1,a) → [0, 1] is a density function of
Â(k, k − 1,a). Suppose we are given a density function
da,k, a real ε > 0, and a k-graph H . We say a family of
partitions P = P(k − 1,a) on V (H) is an (ε,a, da,k)-
equitable partition of H if P is (1/a1, ε,a)-equitable (as
specified in Definition 4) and if for every x̂ ∈ Â(k, k−1,a)
the hypergraph H is (ε, da,k(x̂))-regular with respect to
P̂ (k−1)(x̂). Thus if P and G are as obtained by Theorem 5
and P̂ (k−1)(·) : Â(k, k − 1,aP) → P̂(k−1) is a bijection,
then there exists a density function daP ,k such that P is an
(ε(aP),aP , daP ,k)-equitable partition of G.

E. Regularity instances

A regularity instance R encodes an address space, an asso-
ciated density function and a regularity parameter. Roughly
speaking, a regularity instance can be thought of as encoding
a weighted ‘reduced multihypergraph’ obtained from an
application of the regularity lemma for hypergraphs. To
formalize this, let ε6(·, ·) : N × N → (0, 1] be a function
which satisfies the following.
• ε6(·, k) is a decreasing function for any fixed k ∈ N

with limx→∞ ε6(x, k) = 0,
• ε6(x, ·) is a decreasing function for any fixed x ∈ N,
• ε6(t, k)� 1/t, 1/k.

The choice of ε6 is made more explicit in the full version
of the paper. The main constraint is that it is small enough
to apply an appropriate version of the hypergraph counting
lemma.

Definition 6 (Regularity instance). Let k ∈ N \ {1}. A
regularity instance R = (ε,a, da,k) is a triple, where
a = (a1, . . . , ak−1) ∈ Nk−1, 0 < ε ≤ ε6(‖a‖∞, k), and
da,k is a density function of Â(k, k − 1,a). A k-graph H
satisfies the regularity instance R if there exists a family of
partitions P = P(k− 1,a) such that P is an (ε,a, da,k)-
equitable partition of H . The complexity of R is 1/ε.

Since ε6 depends only on ‖a‖∞ and k, it follows that
for given r and fixed k, the number of vectors a which
could belong to a regularity instance R with complexity r
is bounded by a function of r.

Definition 7 (Regular reducible). A k-graph property P is
regular reducible if for any β > 0, there exists an r =
r7(β,P) such that for any integer n ≥ k, there is a family
R = R(n, β,P) of at most r regularity instances, each of
complexity at most r, such that the following hold for every
α > β and every n-vertex k-graph H:
• If H satisfies P, then there exists R ∈ R such that H

is β-close to satisfying R.
• If H is α-far from satisfying P, then for any R ∈ R

the hypergraph H is (α− β)-far from satisfying R.

Thus a property is regular reducible if it can be (ap-
proximately) encoded by a bounded number of regularity
instances of bounded complexity. Note that if we apply the
regular approximation lemma (Theorem 5) to H to obtain
G and P , then aP and the densities of G with respect to
the polyads in P̂(k−1) naturally give rise to a regularity
instance R where G satisfies R and H is close to satisfying
R.

Note that different choices of ε6 lead to a different defini-
tion of regularity instances and thus might lead to a different
definition of being regular reducible. However, our main
result implies that for any appropriate choice of ε6, being
regular reducible and testability are equivalent. In particular,
if a property is regular reducible for an appropriate choice
of ε6, then it is regular reducible for all appropriate choices
of ε6, and so ‘regular reducibility’ is well defined.

III. A COUNTING LEMMA

Suppose H is a (large) k-graph satisfying a regularity
instance (ε,a, da,k) and F is a (small) k-graph. In this
section we show how to express the number of copies of
F in H in terms of the parameters ε, a, and da,k.

Suppose k, ` ∈ N \ {1} such that ` ≥ k and suppose
a ∈ Nk−1. Suppose that da,k : Â(k, k − 1,a) → [0, 1] is
a density function. Suppose F is a k-graph on ` vertices
and let A(F ) be the size of the automorphism group of F .
Suppose x̂ ∈ Â(`, k−1,a) and suppose in the following that
σ : V (F ) → x

(1)
∗ is a bijection. Given ŷ ∈ Â(k, k − 1,a),

we write ŷ ≤k,k−1 x̂ if

• y
(1)
∗ ⊆ x

(1)
∗ and

• x
(j)
Λ = y

(j)
Λ for any Λ ∈

(
y(1)
∗
j

)
and j ∈ [k − 1] \ {1}.



Let

IC(F, da,k) :=

1(
a1
`

)
A(F )

∑
x̂∈Â(`,k−1,a)

∑
σ

∏
ŷ≤k,k−1x̂,

y(1)
∗ ∈σ(F )

da,k(ŷ)×

∏
ŷ≤k,k−1x̂,

y(1)
∗ /∈σ(F )

(1− da,k(ŷ))

k−1∏
j=2

a
−(`

j)
j .

Given an n-vertex k-graph H , we define Pr(F,H) such
that Pr(F,H)

(
n
`

)
equals the number of induced copies of

F in H . Lemma 8 implies that if H satisfies a regularity
instance (ε,a, da,k), then IC(F, da,k) is a very accurate
estimate for Pr(F,H). The same is true if F is replaced
by a finite family F of k-graphs, where we define

Pr(F , H) :=
∑
F∈F

Pr(F,H) and

IC(F , da,k) :=
∑
F∈F

IC(F, da,k).

Lemma 8. Suppose 0 < 1/n � ε � 1/t, 1/a1 �
γ, 1/k, 1/` with 2 ≤ k ≤ `. Let F be a collection of k-
graphs on ` vertices. Suppose H is an n-vertex k-graph
satisfying a regularity instance R = (ε,a, da,k), where
a ∈ [t]k−1. Then Pr(F , H) = IC(F , da,k)± γ.

We derive Lemma 8 from a counting lemma for cliques
in ε-regular k-graphs due to Kohayakawa, Rödl and Skokan
(Theorem 6.5 in [42]).

IV. PROOF SKETCH

In the following, we describe the main steps leading to
the proof of Theorem 2. While the general strategy emulates
that of [8], the hypergraph setting leads to many additional
challenges.

A. Testable properties are regular reducible

We first show (a)⇒(c) in Theorem 2. Goldreich and
Trevisan [7] proved that every testable graph property is also
testable in some canonical way (and their results translate
to the hypergraph setting in a straightforward way). Thus
we may restrict ourselves to such canonical testers. More
precisely, an (n, α)-tester T = T(n, α) is canonical if, given
an n-vertex k-graph H , it chooses a set Q of q′k = q′k(n, α)
vertices of H uniformly at random, queries all k-sets in Q,
and then accepts or rejects H (deterministically) according
to (the isomorphism class of) H[Q]. In particular, T has
query complexity

(
q′k
k

)
. Moreover, every canonical tester is

non-adaptive.
Let P be a testable k-graph property. Thus there exists a

function qk : (0, 1)→ N such that for every n ∈ N and α ∈
(0, 1), there exists a canonical (n, α)-tester T = T(n, α)
for P with query complexity at most qk(α). So T samples

a set Q of q ≤ qk(α) vertices, considers H[Q], and then
deterministically accepts or rejects H based on H[Q]. Let
Q be the set of all the k-graphs on q vertices such that T
accepts H if and only if there is Q′ ∈ Q that is isomorphic
to H[Q].

As T is an (n, α)-tester, Pr(Q, H) ≥ 2/3 if H satisfies P
and Pr(Q, H) ≤ 1/3 if H is α-far from P. The strategy is
now to use Lemma 8. To this end, for a suitable small ε > 0
and all a ∈ Nk−1 in a specified range (in terms of α, qk(α)
and k), we define a ‘discretized’ set I of regularity instances
(ε,a, da,k) such that da,k(x̂) only attains a bounded number
of possible values for all x̂ ∈ Â(k, k − 1,a). Now setting
R(n, α) := {R ∈ I : IC(Q, da,k) ≥ 1/2} leads to
the desired result, as Lemma 8 implies IC(Q, da,k) ∼
Pr(Q, H) if H satisfies (ε,a, da,k). (In the actual argument,
we consider some k-graph G obtained from the regular
approximation lemma (Theorem 5) rather than H itself.)

B. Satisfying a regularity instance is testable

In this subsection we sketch how we prove that the
property of satisfying a particular regularity instance is
testable. This forms the main part of the proof of Theorem 2.
Suppose H is a k-graph and Q is a subset of the vertices
chosen uniformly at random. First we show that if H satisfies
a regularity instance R, then with high probability H[Q] is
close to satisfying R. Also the converse is true: if H is far
from satisfying R, then with high probability H[Q] is also
far from satisfying R.

The main tool for this is Lemma 9. It implies that a family
of partitions not only transfers from a hypergraph to its
random samples with high probability, but also vice versa.
Crucially, in both directions these transfer results allow only
a small additive increase in the regularity parameters.

Lemma 9. Suppose 0 < 1/n < 1/q � c � δ � ε0 ≤
1 and k ∈ N \ {1}. Suppose R = (2ε0/3,a, da,k) is a
regularity instance. Suppose H is a k-graph on vertex set V
with |V | = n. Let Q ∈

(
V
q

)
be chosen uniformly at random.

Then with probability at least 1− e−cq the following hold.
• If there exists an (ε0,a, da,k)-equitable partition O1

of H , then there exists an (ε0 + δ,a, da,k)-equitable
partition O2 of H[Q].

• If there exists an (ε0,a, da,k)-equitable partition O2 of
H[Q], then there exists an (ε0 + δ,a, da,k)-equitable
partition O1 of H .

The key ingredient in the proof of Lemma 9 is Lemma 10,
which, roughly speaking, states the following. Suppose there
are two k-graphs H1, H2 with vertex set V1, V2, respectively,
and there are two ε-equitable families of partitions of these
k-graphs which have the same parameters. Suppose further
that there is another ε0-equitable family of partitions O1 for
H1. Then there is an equitable family of partitions O2 of
H2 which has (almost) the same parameters as O1 provided
ε � ε0. Even more loosely, the result says that if two



hypergraphs share a single regularity partition, then they
share any regularity partition.

For the proof of Lemma 10 we strengthen the regular
approximation lemma (Theorem 5), but we omit the corre-
sponding statement here.

Lemma 10. Suppose 0 < 1/n, 1/m � ε � 1/T, 1/aQ
1 �

δ � ε0 ≤ 1 and k ∈ N \ {1}. Suppose aQ ∈ [T ]k−1.
Suppose that R = (ε0/2,a

O , daO,k) is a regularity instance.
Suppose V1, V2 are sets of size n,m, and H1, H2 are k-
graphs on V1, V2, respectively. Suppose
• Q1 = Q1(k − 1,aQ) is an (ε,aQ, daQ,k)-equitable

partition of H1,
• Q2 = Q2(k − 1,aQ) is an (ε,aQ, daQ,k)-equitable

partition of H2, and
• O1 = O1(k − 1,aO) is an (ε0,a

O , daO,k)-equitable
partition of H1.

Then there exists an (ε0 + δ,aO , daO,k)-equitable partition
O2 of H2.

It is not difficult to deduce the following result from
Lemma 9.

Theorem 11. For all k ∈ N\{1} and all regularity instances
R = (ε,a, da,k), the property of satisfying R is testable.

C. The final step

We now aim to use Theorem 11 to show that (c)⇒(a) in
Theorem 2, i.e. to prove that a regular reducible property P
is also testable. As P is regular reducible, we can decide
whether H satisfies P if we can test whether H is close to
some regularity instance in a certain set R. We strengthen
Theorem 11 to show that the property of satisfying a given
regularity instance R is actually estimable (the equivalence
(a)⇔(b) is a by-product of this argument). Having proved
this, it is straightforward to construct a tester for P by
appropriately combining |R| estimators which estimate the
distance of H and a given R ∈ R.

V. APPLICATIONS

In this section we illustrate how Theorem 2 can be
applied. We first show how to test the (injective) homo-
morphism density, where a homomorphism of a k-graph F
into a k-graph H is a function f : V (F ) → V (H) that
maps edges onto edges. Let inj(F,H) be the number of
(vertex-)injective homomorphisms from F into H and let
tinj(F,H) := inj(F,H)/(n)|V (F )|.

Corollary 12. Suppose p, δ ∈ (0, 1), k ∈ N \ {1}, and F is
a k-graph. Let P be the property that a k-graph H satisfies
tinj(F,H) = p± δ. Then P is testable.

Before we continue with the proof of Corollary 12, we
state two simple propositions. We leave the proofs to the
reader.

Proposition 13. Suppose 0 < 1/n � ν, 1/k, 1/` and ν �
α, 1−α. Let F be an `-vertex k-graph and H be an n-vertex
k-graph. If tinj(F,H) = α ± ν for some α ∈ (0, 1), then
there exists an n-vertex k-graph G with tinj(F,G) = α±1/n
and |G4H| ≤ ( 2ν

min{α,1−α} )
1/`
(
n
k

)
.

Proposition 14. Suppose n, k, ` ∈ N with k ≤ ` ≤ n and
G and H are n-vertex k-graphs on vertex set V and F is
a collection of `-vertex k-graphs. If |G4H| ≤ ν

(
n
k

)
, then

Pr(F , G) = Pr(F , H)± `kν.

Proof of Corollary 12: Let ` := |V (F )|. We may
assume that |F | > 0 as otherwise tinj(F,H) = 1 for every
n-vertex graph H with n ≥ `. By Theorem 2, it suffices to
verify that P is regular reducible.

Suppose β > 0. We may assume that β � p−δ, 1/` if p−
δ > 0 and β � 1−(p+δ), 1/` if p+δ < 1. We write β′ :=

β`+1 and β′′ := 2−(`
k)β′. We fix some function ε : Nk−1 →

(0, 1) such that ε(a)� ‖a‖−k∞ for all (a1, . . . , ak−1) = a ∈
Nk−1. We choose constants ε, η, and n0, T ∈ N such that
1/n0 � ε � 1/T � η � β, 1/k, 1/`. In particular, we
have n0 ≥ n5(η, β′′`−k/2, ε), T ≥ t5(η, β′′`−k/2, ε) and
ε � ε(a) for all a ∈ [T ]k−1. For simplicity, we consider
only n-vertex k-graphs H with n ≥ n0.

Let I be the collection of regularity instances R =
(ε′′,a, da,k) such that
• ε′′ ∈ {ε, 2ε, . . . , d(ε(a))1/2ε−1eε},
• ‖a‖∞ ≤ T and a1 > η−1, and
• da,k(x̂) ∈ {0, ε2, 2ε2, . . . , 1} for every x̂ ∈ Â(k, k −

1,a).
Observe that by construction |I| is bounded by a function
of β, k and `. We define

R :=

{
(ε′′,a, da,k) ∈ I :∑

J : |V (J)|=`

inj(F, J) · IC(J, da,k)/`! = p± (δ + β′)

}
.

First, suppose that an n-vertex k-graph H satisfies P. Then

1

`!

∑
J : |V (J)|=`

inj(F, J) ·Pr(J,H) = tinj(F,H) = p± δ. (2)

By applying the regular approximation lemma (Theorem 5)
with H, η, β′′`−k/2, ε playing the roles of H, η, ν, ε, we
obtain a k-graph G and a family of partitions P = P(k−
1,aP) such that

(I) P is (η, ε(aP),aP)-equitable for some aP ∈
[T ]k−1,

(II) G is ε(aP)-regular with respect to P̂ (k−1) for every
P̂ (k−1) ∈ P̂(k−1), and

(III) |G4H| ≤ β′′`−k
(
n
k

)
/2.

Let ε′ := ε(aP). By the choice of ε and η, we conclude
that 0 < ε′ � 1/‖aP‖∞ ≤ 1/aP

1 � β, 1/k, 1/` and



by the choice of ε, we obtain ε � ε′. Note that if a k-
graph J is (ε′, d)-regular with respect to a (k − 1)-graph
J ′, then J is (ε′′, d′)-regular with respect to J ′ for some
d′ ∈ {0, ε2, 2ε2, . . . , 1} and ε′′ ∈ {ε, 2ε, . . . , dε′1/2ε−1eε}∩
[2ε′, 3ε′]. Thus there exists

RG = (ε′′,aP , dGaP ,k) ∈ I (3)

such that G satisfies RG.
For every `-vertex k-graph J , Proposition 14 with (III)

and Lemma 8 imply that

IC(J, dGaP ,k) = Pr(J,G)± β′′/2 = Pr(J,H)± β′′. (4)

Hence ∑
J : |V (J)|=`

inj(F, J)IC(J, dGaP ,k)/`!

(4)
=

∑
J : |V (J)|=`

inj(F, J)(Pr(J,H)± β′′)/`!

(2)
= p± (δ + β′). (5)

By the definition of R and (3), this implies that RG ∈ R
and so H is indeed β-close to a graph G satisfying RG, one
of the regularity instances of R.

Now we show that if α > β and H is α-far from P,
then H is (α − β)-far from all R ∈ R. We prove this by
verifying the following statement: if H is (α − β)-close to
some R ∈ R, then it is α-close to P.

Suppose H is (α− β)-close to some R = (ε′′,a, da,k) ∈
R. Then there exists a k-graph GR such that GR satisfies
R and |H4GR| ≤ (α − β)

(
n
k

)
. By the definition of R,

we have
∑
J : |V (J)|=` inj(F, J) · IC(J, da,k)/`! = p± (δ+

β′). Similarly to the calculations leading to (5), we obtain
tinj(F,GR) = p± (δ + 2β′).

By Proposition 13, there exists a k-graph G such that
tinj(F,G) = p ± δ and |G4GR| ≤ (β/2) ·

(
n
k

)
. Therefore,

G satisfies P and |H4G| ≤ |H4GR| + |GR4G| < α
(
n
k

)
which implies that H is α-close to satisfying P. Thus, P is
indeed regular reducible.

We proceed with another corollary of Theorem 2. For a
given n-vertex k-graph H , we define the following param-
eter measuring the size of a largest `-partite subgraph:

maxcut`(H) :=

(
n

k

)−1

max
{V1,...,V`} is a
partition of V (H)

{|Kk(V1, . . . , V`) ∩H|} .

We let

c`,k(n) :=

(
n

k

)−1 ∑
Λ∈([`]

k )

∏
λ∈Λ

⌊
n+ λ− 1

`

⌋
.

Thus c`,k(n)
(
n
k

)
is the number of edges of the complete `-

partite k-graph on n vertices whose vertex class sizes are
as equal as possible. In particular, any n-vertex k-graph H
satisfies maxcut`(H) ≤ c`,k(n).

Corollary 15. Suppose `, k ∈ N \ {1} and c = c(n) is such
that 0 ≤ c ≤ c`,k(n). Let P be the property that an n-vertex
k-graph H satisfies maxcut`(H) ≥ c. Then P is testable.

Note that since the property of having a given edge density
is trivially testable, it follows from Corollary 15 that the
property of being strongly `-colourable is also testable (in a
strong colouring, we require all vertices of an edge to have
distinct colours). A proof of Corollary 15 can be found in the
full version of the paper. Finally, a natural question arising
from Corollary 15 is whether P is in fact easily testable.
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