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Abstract 9 

This paper introduces a semi-probabilistic method driven by the Bayes linear theory to assess 10 

uncertainty propagation in parameters of linear model of railway-track-geometry degradation. 11 

The parameters were configured in a belief structure before the method updates the prior belief 12 

linearly in terms of the first- and second-order moments. Through the updating process, two 13 

measures, namely, partial size and bearing adjustment of expectation of prior belief, iteratively 14 

displayed how parametric uncertainty propagated at each sample point in the inspection planning 15 

horizon. Testing results exhibited a transition point in the horizon, splitting the sample points in-16 

to two categories: constant and unstable. The latter category consisted of observable quantities 17 

that require more observed value (i.e., inspection data to strengthen our belief about the model 18 

parameters). Next inspection cycles should keep these quantities in current inspection strategy 19 

but lesser attention could be applied to the constant category. A practical use of an assessment of 20 

uncertainty propagation is presented and discussed in this paper. 21 

 22 

1.  Introduction 23 

Recursive implementation of periodic inspections in railway-track maintenance generates data 24 

samples for different time (sample) points in a preventive maintenance (PM) cycle. The PM cy-25 
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cle can be defined as an operational interval (expressed in time or accumulated tonnage) starting 26 

from the time a track or its components receives restoration until it reaches the next maintenance. 27 

The availability of these samples allows the use of a statistical approach to construct regression 28 

models that could generate valuable input to a decision-making process, particularly at the design 29 

stage of maintenance planning, which aims for a reduction in costs and minutes of train delays 30 

(Patra, 2009). In the context of track-geometry maintenance, a degradation model has been de-31 

veloped empirically under a different degree of polynomial; however, a linear-type model has 32 

been of interest to researchers for years (Chang, Liu, and Wang 2010). A linear degradation 33 

model is apparently simple. It reduces computational complexity dramatically considering the 34 

immense size of a railway network. 35 

In the presence of a non-uniform level of parametric uncertainty in the track degradation lin-36 

ear model, model outputs (i.e., predictions) are not fully employed for the entire planning hori-37 

zon, which leads to a steady dependency on periodic non-destructive in-service inspections. To 38 

date, inspection costs are still a substantial percentage of a railway infrastructure company‟s 39 

budget. Thus, addressing the issue of confidence loss in a degradation model that has been pro-40 

posed initially is necessary to improve (or at least to maintain) the quality of inspection (includ-41 

ing maintenance) decisions. The term quality here may refer to precision results and/or fund 42 

management. Perhaps a solution of this issue is delivered in the sense of introducing a proper 43 

method to estimate sub-intervals on the prediction horizon, in which that the degradation model 44 

is considered useful and reliable. 45 

Gligorijevic et al. (2016) argued that the intervals are detectable by properly estimating un-46 

certainty propagation in the model under study. By performing uncertainty propagation, re-47 

searchers would witness a decreasing trend in the reliability of model prediction caused by the 48 
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effects of noisiness in input data when predicting further in the future. In order to carry out un-49 

certainty propagation, use of probabilistic representation is common to represent both aleatory 50 

and epistemic uncertainty. According to Bedford (2008) and Revie et al. (2010), the fundamental 51 

problem of probabilistic representation lies in the selection of prior probability distribution, 52 

where in most situations, a parameter of interest is quantified with a poor distribution, causing 53 

inaccuracy in the prediction results, forecasting, or inference. This shortcoming can be addressed 54 

using the Bayesian approach, which uses new data to update prior distribution. The Bayesian ap-55 

proach provides a theoretical inference framework for updating prior beliefs about uncertain 56 

quantities once additional information becomes available (if the decision maker can make obser-57 

vations) from the tests and analyses conducted during the development program. An early work 58 

on uncertainty assessment using the Bayesian approach has been reported since early 1970 59 

(Randell et al., 2010). Until now, a wide range of extensions has been developed (see review in 60 

Lu and Madanat 1994, Zhang and Mahadevan 2003), and most of the works were developed un-61 

der a probabilistic Bayesian framework. 62 

When a full detailed probabilistic analysis is too costly to perform, and the belief in parame-63 

ters of interest is partially elicited, the benefits of conventional Bayesian method is shadowed by 64 

the high volume of computational and elicitation effort. In this situation, approximations to the 65 

traditional Bayesian analyses, known as Bayes linear analyses, have been proposed as a logical 66 

and justifiable framework to express and review on the beliefs about the recognised uncertain 67 

quantities. Unlike the conventional Bayesian method--which heavily depends on fully-specified 68 

probability distributions--the Bayes linear method linearly adjusted the prior beliefs about these 69 

uncertain quantities based upon the theory of Bayes linear statistics (Goldstein and Wooff, 70 

2007). Instead of using probability as a basis (proxy), Bayes linear method uses the first- and se-71 
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cond-order moments to model beliefs for the quantities of interest. This means that decision 72 

maker‟s degree of uncertainty regarding a correct value of the quantity under study is represented 73 

by variance. Apart from expectation and variance, the Bayes linear method uses covariance to 74 

model relationships between quantities which significantly reduces complexity in the need for 75 

joint probability distributions in „traditional‟ Bayesian approaches. 76 

In this study, we propose the Bayes linear method to estimate uncertainty propagation in pa-77 

rameters of a linear model for railway-track-geometry degradation. The measure produced from 78 

the Bayes linear analysis was interpreted in a way to project the trajectory of the defined uncer-79 

tainty propagates over a planning horizon. The measures that represent the proportionate contri-80 

bution of each time point in a planning horizon that are involved in the regression analysis (we 81 

refer it as a quantity hereafter) were adjusted in prior beliefs about linear model parameters. 82 

Graphical representation of these measures exhibits a transition point in the level of parametric 83 

uncertainty. Simulation results display the effectiveness of the proposed uncertainty propagation 84 

method and offer an attractive way to address the relative importance of each inspection decision 85 

made in terms of updating knowledge about an unexplained variance. 86 

2.  Background of study 87 

2.1 Bayes linear method 88 

Bayes linear methodology provides a simple structure of belief specifications which allows users 89 

to easily add new elements to the model. In fact, users get flexibility to combine lines of evi-90 

dence of varying quality from many disparate sources of information when assessing uncertainty 91 

about elements of quantity of interest, for example, a rate of change of track linear degradation 92 

model. Interestingly, adjustments on model specifications are tractable under BL framework 93 
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where in some cases it can be performed instantaneously; in particular, when multidimensional 94 

space needs to be adjusted. Longer computational time is probably taken when using traditional 95 

Bayesian approach. 96 

The term „linear‟ in Bayes linear method defines a linear relationship between vector B and 97 

D in RBD  where R represents the unexplained uncertainty between B and D. Vectors B 98 

and D denote a belief structure representing uncertain quantities of interest, iB , and is some vec-99 

tor of quantities that might improve decision maker‟s prior assessment of B. The first- and se-100 

cond-order moment of B, denoted by  BE and  Bvar will be adjusted using elicitation and ob-101 

served values of D. Prior to the adjustments, decision maker must construct  DE and  Dvar , 102 

and specifies covariance matrix  DB,cov  which address the degrees of relationship between B 103 

and D. Note that the matrix must satisfy characteristics of non-negative definite matrix. Follow-104 

ing the formula in Goldstein and Wooff (2007), the collection B, respectively, has adjusted ex-105 

pectation and adjusted variance matrix 106 

where  D
var  is the Moore-Penrose generalized inverse. In case of  Dvar is non-singular 107 

then  D
var  is simply the usual matrix inverse i.e.    DD

1varvar   . 108 

2.2 Track geometry degradation model 109 

Ride quality has been identified as one of the three important attributes in train passenger ser-110 

vices (Wardman and Whelan, 2001). From railway infrastructure manager‟s desk, a great effort 111 

has been put through track geometry maintenance tasks to maintain the quality standards in 112 

standard. Besides ride quality, an increase in vehicle safety (i.e. derailment risk reduction), im-113 

      DEDDDBBBD  var),cov()(EE  (1) 

     BDDDBBBD ,covvar),cov()(  varvar  (2) 
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provement in rail line productivity, better customer satisfaction, and a rise in profit margin are 114 

among other benefits of railway maintenance (Hossein et al., 2015). In order to program a cost 115 

effective and time efficient maintenance plan, the railway network benefits from the series of 116 

inspections assigned systematically across the network at different frequencies, subjected to the 117 

accumulated traffic tonnage and speed category (Coenraad Esveld, 2001). An interesting aspect 118 

of track geometry inspection is that the track possession is allocated last when the identified 119 

tracks are unattended by both passengers and freight trains (Santos et al., 2015). Interrupting 120 

scheduled train and freight timetables due to inefficient use of inspection resources should be the 121 

last resort of action (Santos et al., 2015). Causing train delays upsets train operators who are ma-122 

jor customers to railway infrastructure owners. Thus, it is essential to construct inspection sched-123 

ules effectively and present the risk estimation of unplanned maintenance due to unexpected 124 

failures. One of the key elements for the risk estimation is track degradation models (Dindar et 125 

al., 2016). 126 

Receiving axle loading progressively makes an initial state condition of railway tracks dete-127 

riorate to lower states, which further end at a state of failure (assuming no rectification during an 128 

operational period). In order to estimate properly in which state the track is in degradation, au-129 

thorities create a model of the state of condition with respect to a track geometric index (TGI) 130 

associated with a specific type of geometric defect. Depending on the local railway authority, 131 

they may apply different strategies (e.g. roughness, fractal and defectiveness) for TGI formula-132 

tion based on the mean and standard deviation calculations (Sadeghi, 2010). The selected TGI, 133 

when compared with a set of three or four maintenance tolerances (limits), defines a suitable 134 

maintenance strategy to restore the quality of the inspected track.  In hierarchical order, the alert 135 

limit (AL) is the lowest level that is viewable as a separation point between the normal and de-136 
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fective region of track geometry conditions. Upon TQI exceeding the value, the usual completion 137 

of a further investigation by means of visual inspection verifies the status before planning a pre-138 

ventive maintenance operation. Avoiding or delaying a tamping preventive maintenance allows 139 

the TQI to deteriorate further, which incurs excessive maintenance cost when the TQI passes the 140 

boundary value between AL and the intervention limit (Vale et al., 2012). 141 

The trade-off between complexity and readable features is a fundamental issue when present-142 

ing a degradation model for decision-making use. Degradation models that capture non-linear 143 

characteristics when determining changes in track irregularity often provide a better estimation 144 

as compared to a linear model (He et al., 2013). However, a simple description about the rela-145 

tionship between explanatory or predictor and response variable always appear in the latter mod-146 

el type. In fact, updating the state of track quality for a high number of railway tracks consumes a 147 

reasonable amount of computational cost. This advantage is transferable when uncertainty asso-148 

ciated with model parameters receives an update. Assuming the probabilistic Bayes method 149 

drives the updating process as shown in Zhang and Mahadevan (2000), and the complexity of the 150 

procedure will rise depending on what assigned probability distributions existed at the prior elici-151 

tation. Heavy use of non-normal distribution appeared in Andrade and Teixeira (2012), which 152 

probably motivated the authors to introduce track section groups (e.g. switches, bridges, stations, 153 

and plain track) before performing uncertainty assessments and propagation in linear model pa-154 

rameters. Realising that localized factors (e.g. overall track structure, groundwater movement 155 

and weather patterns) are not included in a linear model, performing uncertainty propagation 156 

should occur on each rail track individually. Previous train accident reports have highlighted the 157 

importance of having an individual condition assessment. Thus, this paper proposes Bayes‟ line-158 
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ar method as an approximation of the full-scaled probabilistic Bayes method in the context of 159 

parametric uncertainty propagation used in the track geometry degradation linear model. 160 

3.  Bayes linear method for uncertainty propagation 161 

3.1 Proposed method 162 

The method proposed in this paper was based on the concept that a time position in a planning 163 

horizon, when the inspection data was sampled (refer to a quantity hereafter), has a different de-164 

gree of importance in terms of propagating uncertainty in the linear model parameters. For ex-165 

ample, a quantity near to the beginning of the planning horizon where a restoration is taking 166 

place usually has little fluctuation in its observed value compared with quantities far ahead where 167 

accumulated tonnage is high. If it is possible to rank quantities in order of their importance to a 168 

particular linear degradation model, then exploitation of this information could determine a tran-169 

sition point in uncertainty propagation. In addition, this information was applicable to exclude 170 

unnecessary quantities from the sequences upon the arrival of disruptions. Bin Osman et al. 171 

(2016) and Osman et al. (2016) explain on potential sources of disruption in the context of track 172 

inspection schedules. 173 

This study adopts Bayes‟ linear theory to measure the relative importance of all observable 174 

quantities in terms of their contribution to reducing uncertainty in parameters of linear degrada-175 

tion models. Simply, a quantity that has contributed more to uncertainty reduction should receive 176 

a higher assigned value of recognized measures and should remain for the next PM cycle. Hav-177 

ing the measures, we could rank the quantities and point out a time position where the parametric 178 

uncertainty starts to propagate actively. We splitted quantities into two groups: a group for be-179 

fore the transition and a group for after the transition point. 180 
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Given a linear model equation written in iioi   XY 1 , where i is an unobserved er-181 

ror term, a priori was expected to have a mean of zero. Our interest was the collec-182 

tion  1,oB  . Given observations on a collection of observable quanti-183 

ties  mD DDD ,,, 21  , prior belief was a vector B updates via the adjusted expectation, 184 

 BDE . By calculating the size of adjustment over B given by the observed values of D using an 185 

equation (3), we were able to quantify how deviation of the adjusted expectation was from the 186 

prior expectation. Application of a similar principle then occurred to calculate an adjustment 187 

over B given by a portion of D. For an individual assessment, the size of partial adjustment may 188 

have referred to and derived from the Equation (4). 189 

We used this measure as a proxy to measure relative importance to each quantity in D. Ideally, a 190 

quantity with large value of   BF/DSize  has a larger chance to remain in the next inspection cy-191 

cle. Another aspect that we considered in a weight assignment was a partial bearing for the par-192 

tial adjustment, denoted by   BF/DZ . This measure expressed both the direction and the magni-193 

tude of the changes over B when we additionally adjusted B by F given a preceding adjustment 194 

by D, through the relation 195 

3.2 An example 196 

The researcher applied the proposed methodology to a generic example of a single track geomet-197 

ric parameter, which was responsible for a specific isolated track geometric defect. A list of the 198 

      )()(var)()( BBBBBB EEEESize D

T

DD    (3) 

       )()(var)()( BBBBBB DDF

T

DDFF/D EEEESize  



  (4) 

   BBZ DF   iiDiFDiD BBEBEBcov );()(, /  (5) 
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defects commonly appeared in railway networks reside in (Coenraad Esveld 2001). Eight data 199 

samples, each corresponding to a short time series for an individual plain track, extracted from 200 

(Andrade and Teixeira, 2011) were used in the testing. A time series has a length of 14 inde-201 

pendent observations (data points) representing a standard deviation of the chosen parameter for 202 

a 200-meter track segment. With this description, we have 14 quantities for a set of D. An open-203 

access application called WebPlotDigitalizer (Rohatgi, 2010) helped to execute data extraction 204 

and the total of 112 observations appeared in a plotted chart in Figure 1. Errors between the real 205 

and plotted values are expected to result from the extraction process and settled somewhere 206 

around 5% as reported in (Moeyaert et al., 2016). From the figure, it is clear that there is a miss-207 

ing record between 1iD  and 1iD  for all samples. To update the prior belief about 208 

 rateintercept,  Bayes linear method also requires prior moments regarding every quantity, 209 

14,...,1; iDi . Due to small samples gathered from iD , a careful examination requires comple-210 

tion to avoid the findings from becoming irrelevant. As suggested in Ghasemi and Zahediasl 211 

(2012), a parametric test on each iD  occurred using the Shapiro-Wilks test. In brief, the Shapiro-212 

Wilks test has a high power to reject oH  at nominal alpha. oH  entails the definition that follows: 213 

oH : The quantity  im,i2,i1, dddD ,,, i is a random sample from a specified distribution if the 

p-value associated with the Shapiro-Wilks statistics is not less than the chosen alpha value. 

Mean and variance from the fitted distribution applied as in the prior belief of iD . In case oH  is 214 

rejected at nominal α=0.01, 0.05, 0.10 for all suggested distribution, their p-values are compared 215 

and used as a basis to choose an appropriate distribution for iD . At this point, the moments are 216 

presented in a range of values instead of a single value. The core process of updating beliefs re-217 

peats for many values. Table 1 shows the initial belief about B as recommended in Goldstein and 218 
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Wooff (2007). This implies that the users have little idea on where the true B lies over a given 219 

planning horizon T. Prior to updating the belief, moments of each quantity in D revealed the re-220 

sults of hypothesis testing as described in the previous paragraph. The values gathered in Table 2 221 

were obtained through Monte-Carlo simulations as default settings in Matlab. 222 

Using prior belief about the moments in B and D, as viewed in Table 1 and 2, 150 runs tests 223 

of BLM employed a random observation Dd  to capture an overall changing in Equation (3-224 

5). The size of d  follows a number of quantities involved when calculating these measures. The 225 

term d  needs at least one quantity and its size can rise up to a maximum size of D , i.e. when 226 

full quantities were involved in a test. For example,  321 ddd ,,3,2,1 d  indicates that a test will 227 

be performed using the first three quantities in D, in which their value is randomly assigned from 228 

their respective prior information in Table 2. The median of boxplot statistics that summarised 229 

test results appear orderly plotted in Figure 2, where values in brackets are 25-th and 75-th per-230 

centile values. 231 

The belief about B overall updated to an expectation of  oD E
 and  1DE  with variances 232 

of  oD var
 and  1Dvar , respectively. In Figure 2(a), comparing to the maximum value of the 233 

size of adjustment, i.e. using the first 11 quantities, a decision of using a full D has extremely 234 

decreased the highest  BDSize  about 95%. However, the  BDSize  associated with full D has a 235 

percentage increment about 360% as compared to a decision using only the first quantity. We see 236 

that there is no significant change in the  BDSize despite extending the initial test to include 237 

more quantities (up to six quantities). An average individual adjustment on (intercept, rate), as 238 

shown in Figure 2(b), shows that all of the first eight iD  fairly have similar information gains. 239 

However, there is a clear fluctuation in the size of adjustments when 14,...,9j;8,,1  jd   was 240 
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tested. Among all j quantities, the tests showed that 
11D  has adjusted the prior belief the most 241 

and followed by 
12D  as the next best informative quantity to use for belief updating. Adding 13D  242 

into 12,...,1d  dramatically reduces the  BDSize  but the value is likely unchanged with a participa-243 

tion of 
14D  in tests. Moving to Figure 2(c), testing results show that prior belief updated in a dif-244 

ferent direction from what it experienced with 
DFd . In fact, a direction of change can be seen in 245 

the negative region of Bearings itself, for example, 
1011 DDd ,

1112 DDd  and 
1213 DDd . 246 

4.  Conclusions 247 

Understanding on how parametric uncertainty in a linear degradation model propagates over time 248 

is necessary to effectively plan track geometry inspections. Bayesian approach has been used to 249 

address this issue but heavy use of probabilistic computations creates another dimension of com-250 

plexity in track inspection planning. In this study, we argue that there is a much simpler method 251 

to construct prior beliefs and performing an adjustment on them upon arrival of new information. 252 

Bayes linear method uses the first- and second-order moments as a proxy when reliably adjusted 253 

prior belief about quantities of interest. The research also presented on how the method is able to 254 

assign relative importance measures to a set of quantities in terms of uncertainty propagation in 255 

parameters of linear degradation model. By plotting adjusted expectation measures in a sequen-256 

tial order, we can view how parametric uncertainty evolves along the planning horizon. We also 257 

obtained a quick way of estimating a new level of uncertainty. For further exploration using the 258 

same data, we would extend variance learning from a static linear combination of observations to 259 

multiple linear combinations. This might create a longer process due to evaluations of variance 260 

and covariance between those linear combinations. Apart from that, measures used in this study 261 
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should be weighted with respect to class type and location of rail tracks. By having weighting 262 

function, relative importance of each quantity could be represented more adequately while taking 263 

complexity of decisions in reality into practical consideration. Lastly, a performance comparison 264 

between two types of Bayesian approach in terms of assessing uncertainty propagation should be 265 

presented to demonstrate practicality when dealing with a large size of components. 266 
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 339 

Figure 1. Eight examples of rail track quality index degradation over a fixed planning horizon T. 340 

A collection of data points at position i-th in T associates with a quantity Di 341 

 342 

Figure 2. Evolution in uncertainty propagation in the belief structure over a defined planning 343 

horizon represented in three modes; a) Size of adjustment, b) partial size of adjustment, and c) 344 

partial bearing of adjustment 345 
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Table 1. Prior Specifications About B Structure 346 

Variable Expectation Variance 

0  0 2 

1  0 1 

 347 

Table 2. Prior Specifications About D Structure 348 

Variable Prior distri-

bution 

Expectation Variance Variable Prior distri-

bution 

Expectation Variance 

1iD  Exponential 0.4060 0.1648 8D  Normal 0.6934 0.1956 

2D  Exponential 0.4448 0.1979 9D  Normal 0.7241 0.2197 

3D  Exponential 0.4615 0.2130 10D  Normal 0.7817 0.2524 

4D  Exponential 0.4817 0.2320 11D  Exponential 0.8293 0.6878 

5D  Exponential 0.5288 0.2796 12D  Normal 0.8248 0.2839 

6D  Normal 0.6090 0.1596 13D  Normal 0.8495 0.2941 

7D  Exponential 0.6344 0.4025 14D  Normal 0.9051 0.3358 

 349 


