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Abstract In this paper, we study the linear complementarity problems on extended
second order cones. We convert a linear complementarity problem on an extended
second order cone into a mixed complementarity problem on the non-negative orthant.
We state necessary and sufficient conditions for a point to be a solution of the converted
problem. We also present solution strategies for this problem, such as the Newton
method and Levenberg—Marquardt algorithm. Finally, we present some numerical
examples.

Keywords Complementarity problem - Extended second order cone - Conic
optimization

Mathematics Subject Classification 90C33 - 90C25

1 Introduction

Although research in cone complementarity problems (see the definition in the begin-
ning of the Preliminaries) goes back a few decades only, the underlying concept of
complementarity is much older, being firstly introduced by Karush [1]. It seems that
the concept of complementarity problems was first considered by Dantzig and Cottle
in a technical report [2], for the non-negative orthant. In 1968, Cottle and Dantzig [3]
restated the linear programming problem, the quadratic programming problem and the
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bimatrix game problem as a complementarity problem, which inspired the research in
this field (see [4-8]).

The complementarity problem is a cross-cutting area of research, which has a wide
range of applications in economics, finance and other fields. Earlier works in cone
complementarity problems present the theory for a general cone and the practical
applications merely for the non-negative orthant only (similarly to the books [8,9]).
These are related to equilibrium in economics, engineering, physics, finance and traffic.
Examples in economics are Walrasian price equilibrium models, price oligopoly mod-
els, Nash—Cournot production/distribution models, models of invariant capital stock,
Markov perfect equilibria, models of decentralized economy and perfect competition
equilibrium, models with individual markets of production factors. Engineering and
physics applications are frictional contact problems, elastoplastic structural analysis
and nonlinear obstacle problems. An example in finance is the discretization of the
differential complementarity formulation of the Black-Scholes models for the Amer-
ican options [10]. An application to congested traffic networks is the prediction of
steady-state traffic flows. In the recent years, several applications have emerged where
the complementarity problems are defined by cones essentially different from the non-
negative orthant such as positive semidefinite cones, second order cones and direct
product of these cones (for mixed complementarity problems containing linear sub-
spaces as well). Recent applications of second order cone complementarity problems
are in elastoplasticity [11,12], robust game theory [13,14] and robotics [15]. All these
applications come from the Karush—Kuhn—Tucker conditions of second order conic
optimization problems.

Németh and Zhang extended the concept of second order cone in [ 16] to the extended
second order cone. Their extension seems the most natural extension of second order
cones. Sznajder showed that the extended second order cones in [16] are irreducible
cones (i.e., they cannot be written as a direct product of simpler cones) and calculated
the Lyapunov rank of these cones [17]. The applications of second order cones and
the elegant way of extending them suggest that the extended second order cones will
be important from both theoretical and practical point of view. Although conic opti-
mization problems with respect to extended second order cones can be reformulated
as conic optimization problems with respect to second order cones, we expect that for
several such problems, using the particular inner structure of the second order cones
provides a more efficient way of solving them than solving the transformed conic
optimization problem with respect to second order cones. Indeed, such a particular
problem is the projection onto an extended second order cone, which is much easier to
solve directly than solving the reformulated second order conic optimization problem
[18].

Until now, the extended second order cones of Németh and Zhang were used as a
working tool only for finding the solutions of mixed complementarity problems on
general cones [16] and variational inequalities for cylinders whose base is a general
convex set [19]. The applications above for second order cones show the importance
of these cones and motivate considering conic optimization and complementarity
problems on extended second order cones. As another motivation, we suggest the
application to mean-variance portfolio optimization problems [20,21] described in
Sect. 3.
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The paper is structured as follows: in Sect. 2, we illustrate the main terminology and
definitions used in this paper. In Sect. 3, we present an application of extended second
order cones to portfolio optimization problems. In Sect. 4, we introduce the notion
of mixed implicit complementarity problem as an implicit complementarity problem
on the direct product of a cone and a Euclidean space. In Sect. 5, we reformulate the
linear complementarity problem as a mixed (implicit, mixed implicit) complementarity
problem on the non-negative orthant (MixCP).

Our main result is Theorem 5.1, which discusses the connections between an ESO-
CLCP and mixed (implicit, mixed implicit) complementarity problems. In particular,
under some mild conditions, given the definition of Fischer—Burmeister (FB) regular-
ity and of the stationarity of a point, we prove in Theorem 5.2 that a point can be the
solution of a mixed complementarity problem if it satisfies specific conditions related
to FB regularity and stationarity (Theorem 5.2). This theorem can be used to deter-
mine whether a point is a solution of a mixed complementarity problem converted from
ESOCLCP. In Sect. 6, we use Newton’s method and Levenberg—Marquardt algorithm
to find the solution for the aforementioned MixCP. In Sect. 7, we provide an example
of a linear complementarity problem on an extended second order cone. Based on the
above, we convert this linear complementarity problem into a mixed complementarity
problem on the non-negative orthant and use the aforementioned algorithms to solve
it. A solution of this mixed complementarity problem will provide a solution of the
corresponding ESOCLCP.

As a first step, in this paper, we study the linear complementarity problems
on extended second order cones (ESOCLCP). We find that an ESOCLCP can be
transformed to a mixed (implicit, mixed implicit) complementarity problem on the
non-negative orthant. We will give the conditions for which a point is a solution of
the reformulated MixCP problem, and in this way, we provide conditions for a point
to be a solution of ESOCLCP.

2 Preliminaries

Let m be a positive integer and F:R” — R™ be a mapping and y = F(x). The
definition of the classical complementary problem [22]

x>0, y>0, and (x,y)=0,

where > denotes the componentwise order induced by the non-negative orthant and
(-, ) is the canonical scalar product in R™, was later extended to more general cones
K, as follows:

xeK, yeK* and (x,y)=0,

where K* is the dual of K [23].

Letk, ¢, £ be non-negative integers such that m = k + ¢£.

Recall the definitions of the mutually dual extended second order cone L (k, £) and
M(k, £) in R" = R¥ x R¢:
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Lk, €) = {(x,u)ekaR‘:xz ||u||e}, (1

M(k,@):{(x,u)ekaRZ:esz||u||,x20}, )

wheree = (1, ..., l)T € R¥. If there is no ambiguity about the dimensions, then we
simply denote L(k, ¢) and M (k, £) by L and M, respectively.

Denote by (-, -) the canonical scalar product in R” and by || - || the corresponding

Euclidean norm. The notation x L y means that (x, y) = 0, where x, y € R™.
Let K C R™ be a nonempty closed convex cone and K* its dual.

Definition 2.1 The set
C(K)={(x,y) e K xK*:x Ly}

is called the complementarity set of K.

Definition 2.2 Let F: R™ — R™. Then, the complementarity problem CP(F, K) is
defined by:
CP(F,K): (x, F(x)) € C(K). 3)

The solution set of CP(F, K) is denoted by SOL-CP(F, K):

SOL-CP(F, K) = {x eR™: (x,F(x)) € C(K)}.
If T is a matrix, r € R™ and F is defined by F(x) = Tx + r, then CP(F, K) is
denoted by LCP(T, r, K) and is called linear complementarity problem. The solution

set of LCP(T, r, K) is denoted by SOL-LCP(T, r, K).

Definition 2.3 Let G, F:R™ — R™. Then, the implicit complementarity problem
ICP(F, G, K) is defined by

ICP(F, G, K): (G(x), F(x)) € C(K). 4)
The solution set of ICP(F, G, K) is denoted by SOL-ICP(F, G, K):
SOL-ICP(F, G, K) = {x e R" : (G(x), F(x)) € C(K)}.
Let m, k, £ be non-negative integers such that m = k 4+ ¢, A € R¥ be a nonempty
closed convex cone and K = A x Rf. Denote by A* the dual of A in R and by K*

the dual of K in RF x R, It is easy to check that K* = A* x {0}.

Definition 2.4 Consider the mappings F; : R¥ x R — R¥ and F> : R¥ x RY — RE.
The mixed complementarity problem MixCP(F1, F», A) is defined by

{Fz(x,u) =0
MixCP(Fy, F», A) : (5)
(x, F1(x,u)) € C(A).
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The solution set of MixCP(Fy, F>, A) is denoted by SOL-MixCP(Fy, F2, A):
SOL-MixCP(Fy, F», A) = {x eR": F(x,u) =0, (x, Fi(x,u)) € C(A)} .

Definition 2.5 [8, Definition 3.7.29] A matrix IT € R™*" is said to be an Sy matrix
if the system of linear inequalities

x>0, 0#£x>0

has a solution.

The proof of our next result follows immediately from K* = A* x {0} and the
definitions of CP(F, K) and MixCP(F}, F;, A).

Proposition 2.1 Consider the mappings
Fi:RF xR - RY, B RF X RO — R
Define the mapping

F:RF x Rt — RF x Rf

F(x,u) = (F1(x,u), Fo(x, u)).
Then,
(x,u) € SOL-CP(F, K) <= (x,u) € SOL-MixCP(F}, F», A).

Definition 2.6 [24, Schur complement] The notation of the Schur complement for a

matrix [T = (2 g), with P nonsingular, is

(IT/P)=S—RP™ Q.

Definition 2.7 [25, Definition 4.6.2]

(i) Let I be an open subset with / C R™ and f : I — R"”. We say that f is Lipschitz
function, if there is a constant A > O such that

[ £ =7 @) =2fx =] vex'er. ©)

(i) We say that f is locally Lipschitz if for every x € I, there exists & > 0 such that
f is Lipschitz on I N By (x), where B:(x) = {y e R" : ||y — x|| < ¢}.
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3 An Application of Extended Second Order Cones to Portfolio
Optimization Problems

Consider the following portfolio optimization problem:
min {wTZ‘w crTw > R, elw= 1} ,
w

where X € R™ " is the covariance matrix, e = (1,..., DT € R", w € R” is the
weight of asset allocation for the portfolio and R is the required return of the portfolio.

In order to guarantee the diversified allocation of the fund into different assets in
the market, a new constraint can be reasonably introduced: ||w| < &, where & is the
limitation of the concentration of the fund allocation. If short selling is allowed, then
w can be less than zero. The introduction of this constraint can guarantee that the fund
will be allocated into few assets only.

Since the covariance matrix X can be decomposed into ¥ = U " U, the problem
can be rewritten as

min [v:rTwz R Ul <y, w6 eTw=1].
w’ ’y

The constraint [[Uw| < y is a relaxation of the constraint ||U||||w| < y, where
U]l = max <1 [IUx]|. The strengthened problem will become:

.
min {y: rTw> R, [wlle < (g, L) eTw=1!.
w.£.y ol

The minimal value of the objective of the original problem is at most as large as the
minimal value of the objective for this latter problem. The second constraint of the
latter portfolio optimization problem means that the point (£, y/||U ||, w) " belongs to
the extended second order cone L(2, n). Hence, the strengthened problem is a conic
optimization problem with respect to an extended second order cone.

4 Mixed Implicit Complementarity Problems

Letm, k, £, 7 be non-negative integers such thatm = k 4+ ¢, A € Rfbea nonempty,
closed, convex cone and K = A x R¢. Denote by A* the dual of A in R* and by K*
the dual of K in RF x Rf.

Definition 4.1 Consider the mappings
Fi,Gi:Rf xR > RY, F,:RF x R¢ — R
The mixed implicit complementarity problem MixICP(Fy, F>, G, A) is defined by
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Fr(x,u)=0
MixICP(Fy, F», G, A) : @)
(G1(x,u), Fi(x,u)) € C(A).

The solution set of the mixed complementarity problem MixICP(Fy, F>, G1, A) is
denoted by SOL-MixICP(F1, F>, G1, A):

SOL-MixICP(Fy, F», Gy, A)
= {x eR": F(x,u) =0, (Gi(x,u), Fi(x,u)) € C(A)} .

The proof of our next result follows immediately from K* = A* x {0} and the
definitions of ICP(F, G, K) and MixICP(F}, F>, G1, A).

Proposition 4.1 Consider the mappings Fi,G; : Rf x Rt — Rt F, G,
R¥ x Rt — RE. Define the mappings F, G : RF x Rt — R¥ x RY by F(x,u) =
(Fi(x,u), Fo(x,u)), G(x,u) = (G (x, u), Gy(x, u)), respectively. Then,

(x,u) € SOL-ICP(F, G, K) < (x,u) € SOL-MixICP(Fy, F2, G, A).

5 Main Results

The linear complementarity problem is the dual problem of a quadratic optimization
problem, which has a wide range of applications in various areas. One of the most
famous application is the portfolio optimization problem first introduced by Markowitz
[20]; see the application of the extended second order cone to this problem presented
in the Introduction.

Proposition 5.1 Let x, y € RX and u, v € RA\{0}.

(i) (x,0,y,v) € C(L) ifand only ife"y > ||v| and (x, y) € C (Rli)
(ii) (x,u,y,0) € C(L) ifand only if x > |lu|l and (x,y) € C (R%).
(iii) (x, u, y,v) := ((x,u), (y,v)) € C(L) if and only if there exists a .. > 0 such
thatv = —Xu, ey = ||v|| and (x — ||lulle, y) € C (Rﬁ)

Proof Ttems (i) and (ii) are easy consequence of the definitions of L, M and the
complementarity set of a nonempty closed convex cone.

Item (iii) follows from Proposition 1 of [18]. For the sake of completeness, we will
reproduce its proof here. First, assume that there exists A > 0 such that v = —Au,
ey = |lv]| and (x — ||ulle, y) € C(R_’;). Thus, (x,u) € L and (y,v) € M. On the
other hand,

(G, u), o)) =x Ty +u'v=lule"y — rull®> = [lulllv] — Allul* = 0.

Thus, (x,u, y,v) € C(L).
Conversely, if (x, u, y,v) € C(L), then (x,u) € L, (y,v) € M and

0= ((x,u), y,v)) =x"y+u"v>lulle’y +u"v>ulv] +u"v=>0.
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This implies the existence of a A > 0 such that v = —Au, e'y = |lv| and (x —
lulle) Ty = 0. It follows that (x — [lulle, y) € C(RY). |

Theorem 5.1 Denote z = (x,u), z = (x — |lull,u), 2= (x —t,u,t)andr = (p, q)
with x, p € Rk, u,q € Rlandt e R Let T = (ég) with A € Rk>k B ¢ RkxC
C € R gnd D € RY. The square matrices T, A and D are assumed to be
nonsingular.

(i) Suppose u = 0. We have

z € SOL-LCP(T,r, L)
&= x € SOL-LCP(A, p,RY) and e'(Ax + p) > |ICx +q].

(ii) Suppose Cx + Du + q = 0. Then,
z € SOL-LCP(T,r, L) <= z € SOL-MixCP (Fl, F, Ri) and x > |ul|,

where F1(x,u) = Ax + Bu + p and Fa(x,u) = 0.
(iii) Suppose u # 0 and Cx 4+ Du + q # 0. We have

2 € SOL-LCP(T, r, L) <= z € SOL-MixICP (Fl, £, G, R’;) ,
where
Far,uw) = (IullC + ue A) x + ueT (Bu+ p) + ull (Du + ),

Gi(x,u) =x — ||u|le and Fi(x,u) = Ax + Bu + p.
(iv) Suppose u # 0 and Cx 4+ Du + q # 0. We have

2 € SOL-LCP(T, 7, L) 4= £ € SOL-MixCP (F1, o, RY ),
where
Fa(x, u) = (||u||C + ueTA) G+ llulle) + ue (Bu+ p) + ull(Du + q)
and Fi(x,u) = A(x + ||ulle) + Bu + p.

(v) Supposeu # 0, Cx + Du + q # 0 and ||u||C + u ' eA is a nonsingular matrix.
We have

2 € SOL-LCP(T. r, L) <= % e SOL-ICP (Fl, P, R’;) ,
where

—1
Fi(u) = A ((nuuc +ueTA) " (ue (Bu+ p)+ ull(Du + q>)) 4 Bu+p
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and
~1
Fy(u) = (||u||C + ueTA> (ueT(Bu +p) + lull(Du + q)) .

(vi) Suppose u # 0, Cx + Du + q # 0. We have

7€ SOL-LCP(T,r,L) <— 3t >0

such that
2 e Mixcp (Fy, B, B ),
where
Fi(x,u,t) = A(x +te) + Bu+p
and
By 1) = ( (tC+ue'A) (x + teiz—i-_uﬁ;"(zBu +p) +t(Du + q)) L ®

Proof (i) We have that z € SOL-LCP(T, r, L) is equivalent to (x, 0, Ax + p, Cx +
q) € C(L) or, by item (i) of Proposition 5.1, to (x, Ax + p) € C(RY) and
e (Ax +p) = |Cx +4l.
(i) We have that z € SOL-LCP(T, r, L) is equivalent to (x, u, Ax + Bu + p,0) €
C(L) or, by item (ii) of Proposition 5.1, to (x, Ax + Bu + p) € C (le_) and
x > ||u]|, or to

2 € SOL-MixCP (Fl, P, R’;) and x > [lul,

where Fi(x,u) = Ax + Bu + p and Fa(x, u) = 0.

(iii) Suppose that z € SOL-LCP(T,r, L). Then, (x, u, y,v) € C(L), where y =
Ax + Bu+ p and v = Cx + Du + q. Then, by item (iii) of Proposition 5.1, we
have that 3A > 0 such that

Cx+ Du+q=v=—xu, )
e"(Ax+Bu+p)=e'y=|vl=Cx+ Du+gqll = rlull, (10)

(G1(x,u), Fi(x,u)) = (x — |lulle, Ax + Bu + p)
= (x — |lulle. y) € C (R’jr) . (11)
From Eq. (9), we obtain ||u||(Cx + Du + q) = —Allu|lu, which by Eq. (10)
implies ||u||(Cx + Du 4 q) = —ue ' (Ax + Bu + p), which after some algebra

gives
F(x,u) = 0. 12)
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From Egs. (11) and (12), we obtain that z € SOL-MixICP(Fy, F», G1).
Conversely, suppose that z € SOL-MixICP(F1, F>, G1). Then,

lullv+ue'y = |ul|(Cx+Du+q)+ue' (Ax+Bu+p) = Fr(x,u) =0 (13)
and
(x = llulle. y) = (x = lulle Ax+ Bu+p) = (G1(x, ). Fi(x,w) € C (RY).

(14
where v = Cx + Du+q and y = Ax 4+ Bu + p. Equations (14) and (13) imply

V= —AlU, (15)
where
a=(eTy) /lull > 0. (16)
Equations (15) and (16) imply
ey =|vl. (17)

By item (iii) of Proposition 5.1, Egs. (15), (17) and (14) imply
(x,y,u,v) € C(L)

and therefore z € SOL-LCP(T, r, L).
(iv) Itis a simple reformulation of item (iii) by using the change of variables

(x, u) = (x — [lulle, u).

(v) Again it is a simple reformulation of item (iv) by using that ||u[|C + ueA is a
nonsingular matrix.

(vi) Suppose that z € SOL-LCP(T, r, L). Then, (x,u,y,v) € C(L), where y =
Ax + Bu+ pand v = Cx 4+ Du + ¢q. Let t = |lul|, Then, by item (iii) of
Proposition 5.1, we have that 31 > 0 such that

Cx+ Du+qg=v=—Aiu, (18)
¢"(Ax + Bu+p) =e'y=|lv| = ||Cx + Du +q| = At, (19)
(Z, Fi (x, u, t)) =(x—te,Ax+Bu+p)=(x—te,y)eC (Rﬁ) , (20)
where 7 = (x —1, u, t). From Eq. (18), we get t (Cx + Du + q) = —t u, which,
by Eq. (19), implies t (Cx 4+ Du+q) = —ue' (Ax + Bu + p), which after some

algebra gives ~
F(x,u,t) =0. (21)

From Egs. (20) and (21), we obtain that z € SOL-MixCP (Fy, F>, RY). O
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Note that the item(vi) makes F 1(x,u,t) and fz (x, u, t) become smooth functions
by adding the variable ¢. The smooth functions therefore make the smooth Newton’s
method applicable to the mixed complementarity problem.

The conversion of LCP on extended second order cones to a MixCP problem defined
on the non-negative orthant is useful, because it can be studied by using the Fischer—
Burmeister function. In order to ensure the existence of the solution of MixCP, we
introduce the scalar Fischer—Burmeister C-function (see [26,27]).

Vrp(a,b) = Va? + b2 — (a+b) Va,b) € R

Obviously, %27 g(a, b) is a continuously differentiable function on R?. The equiva-
lent FB-based equation formulation for the MixCP problem is:

v (xl, 1?11 (x, u, l))

0 =TFYXCP(x u, 1) = L , (22)
¥ (xp, Ff (xou, 1))

F(x,u,t)
with the associated merit function:

. . .
MixCP MixCP T =MixCP
Opp " (x,u,t) = EFF};X (v u, ) Fpp— (x,u,t).

We continue by calculating the Jacobian matrix for the associated merit function. If
i € (1,...,k) is such that (z;, FI’) # (0, 0), then the differential with respect to
7= (x,u,t) e Rl g

) ()

i Xi

9 N 2 e
< \/xi2+(F1i(x,u,t))
N Fi(x,u,1) - aﬁf(;c,u,t)7
\/xiz—l—(Fl’(x,u,t)) <

where e’ denotes the i-th canonical unit vector. The differential with respect to z ;j with
jAiis

a(Fll\V/I}BXCP)i _ ili(x,u,f) . aff(x,u,t)
0z ~ 2 9z ’
G\ (Fen) ?
Obviously, the differential with respect to z; with j > k, is equal to zero. Note that

~. 4 (T*MixCP
if (z;, F{) = (0,0), then ‘WF%—’E)" will be a generalized gradient of a composite

function, i.e., a cl~osed unit ball B(0, 1). However, this case will not occur in our paper.
As for the term F>(x, u,t) withi € (k+ 1, ..., m + 1), the Jacobian matrix is much
more simple, since
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8 (IFII\:‘/IEKCP)[ _ aﬁzl(x’ u, t)
0z B iz

Therefore, the Jacobian matrix for the associated merit function is:

Ao (Da + Dy Fi(x,u,t)  DpJunFi(x, u, t)>

JeFy(x, u, 1) Sy F2(x, u, 1)
where
. X; 1 . Ff(x,u,t) _
=d1ag<\/m ), Dbzdlag(—m 1 )
i=1,...,k.

Define the following index sets:

C=li:x;>0, f{ >0, x; I?ll (x,u,t) =0} complementarity index
R = { ,kI\C residual index
P= {l € R x; >0, F (x,u,t) > O} positive index
N =R\P negative index

Definition 5.1 A point (x, u, 1) € R™*1 is called FB regular for the merit function

GM‘XCP (or for the MGCP(F |, P, Rﬁ)) if its partial Jacobian matrix of IFM‘XCP (x,u,t)

w1th respect to X, Jx Fi(x,u,t)is nonsingular and if for Vw € R, w 0 with
we=0, wp>0, wy <0,

there exists a nonzero vector v € R¥ such that

ve=0, vp>0, vy <0, (23)

and ~
(T, u, )/ I Fi(x,u, ) v > 0, (24)

where

JeF1Gus 1) Jan Fr(x,u, 1) (m+1)x (m+1)
I = ~ i R
G, 1) (Jsz(X,M,t) Ju.nFr(x,u,t) < ’

and I7(x, u, t)/fol (x, u, t) is the Schur complement of J fl (x,u,t)inI1(x, u,t).

In our case, for the MixCP (F 1 Fz, Rﬁ_), the Jacobian matrices are:
Jf](x, u,t) = (Z E)
and

sz(x, u,t) = (5 5)
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where
- - - T
A=A, B=(B4e cz(tCJr(;‘e A),
5 (J (A(x +te) + Bu+ p) I +diag(e" Bu) +tD  Cx +2tCe + ue' Ae + Du)
- —2u’ 2t ‘

In our case, if the Jacobian matrlx block J, F 1(x,u,t) = Aisnonsingular, then the
Schur complement I7(x, u, t)/J, Fi(x, u,t)is

~ ~

(IT(x,u,0)/JFi(x,u,1)) = D— CA'B. (25)

Proposition 5.2 [If the matrices A and D are nonsingular for any z € R"*1 then the
Jacobian matrix A for the associated merit function is nonsingular.

Proof 1t is easy to check that

4= (Pa +DyA DyB
Cc D )
A is a nonsingular matrix if and only if the sub-matrix D, + Dy A and its Schur
complement are nonsingular, and they are nonsingular if and only if the matrices A
and D are nonsingular. O

The following theorem is [8, Theorem 9.4.4]. For the sake of completeness, we
provide a proof here.

Theorem 5.2 A point (x,u,t) € R+ s a solution of the MixCP(Fl, Fz, Rk) if and

only if (x, u, t) is an FB regular point ofe}\,/%"cp and (x, u, t) is a stationary point of

MixCP
Frg—.

Proof Suppose that z* = (x*,u*,t*) € SOL-MixCP (fl, b, Rk). Then, it fol-
lows that z* is a global minimum and hence a stationary point of Gyéxcp. Thus,
(x*, Fi (z*) e C (R]f‘_), and we have P = N = (. Therefore, the FB regularity
of x* holds since x* = x¢, because there is no nonzero vector x satisfying conditions

(23). Conversely, suppose that x* is FB regular and z* = (x*, u*, 1*) is a stationary
point of 9%},"@. It follows that V@%}XCP =0,ie.

ATFMiIXCP _ (Da + DbJLE @) Jx ng(z*) ) FMixCP _

DpJunFi (2% JunFr(z¥)) B
where
x; Fi(z)
— —_—t 1 — di e —1
Da - d]ag ( /(xi*)z-’_Fll (Z*)Z ) ’ Db dlag ( /(xi*)2+F11 (Z*)Z ) ’
i=1,...,k
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Hence, for any w € R™+1 we have

D+DJF“(z*)JF(z*)) i
T a bJx '] x1'2 MixCP
w X 2, F =0. 26
( DpJunki %) Junkr(z*)) B (26)

Assume that z* is not a solution of MixCP. Then, we have that the index set R is not
empty. Define v = D;,IFI}/IE‘CP . We have

ve =0, vp > 0, vy < 0.

Take w with
we =0, wp > 0, wp < 0.

From the definition of D, and Dj, we know that DaFl;dg‘CP and D;,FI}AE‘CP have the
same sign. Therefore,

T (DY) = ul (DLEHGT), + wh (DY) + wl (DFYET),, = 0

(27
By the regularity of J Fi (z)", we have
wl JF ()7 (Dawgcp) —wJF @ w=o0. (28)

The inequalities (27) and (28) togethelr~ corgradict condition (26). Hence, R = @. It
means that z* is a solution of MixCP (Fl, F, Rk). O

6 Algorithms

For solving a complementarity problem, there are many different algorithms available.
The common algorithms include numerical methods for systems of nonlinear equations
(such as Newton’s method [28]), the interior point method (Karmarkar’s algorithm
[29]), the projection iterative method [30] and the multi-splitting method [31]. In
the previous sections, we have already provided sufficient conditions for using FB
regularity and stationarity to identify a solution of the MixCP problem. In this section,
we are trying to find a solution of LCP by finding the solution of MixCP which is
converted from LCP. One convenient way to do this is using the Newton’s method as
follows:

Algorithm (Newton’s method)

Given initial data z0 € R"*! and r = 1077.
Step 1: Set k = 0.

Step 2: If FI}/IE‘CP (zk) < r, then stop.

Step 3: Find a direction d¥ € R”*! such that

YT (&) + A7 () d* =o.
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Step 4: Set Z*! .= zF + g and k := k + 1, go to Step 2.

If the Jacobian matrix AT is nonsingular, then the direction d* e R™t! for each
step can be found. The following theorem, which is based on an idea similar to the
one used in [32], proves that such a Newton’s method can efficiently solve the LCP
on extended second order cone (i.e., solve the problem within polynomial time), by
finding the solution of the MixCP:

Theorem 6.1 Suppose that the Jacobian matrix A is nonsingular. Then, Newton’s
method for MixCP (F 1, F2, Rﬁ) converges at least quadratically to

2" € SOL-MixCP (7, o, R )

if it starts with initial data z° sufficiently close to z*.

Proof Suppose that the starting point z° is close to the solution z*, and suppose that
A is a Lipschitz function. There are p > 0, 8; > 0, 82 > 0, such that for all z with
lz = z*|| < p, there holds A~ (2)|l < B1, and | A () — A (")l < Ball* — z*]I.
By the definition of the Newton’s method, we have

15 — 2 = 1K = 2 — A~ (Zk) Fl}{[gcCP (Zk>”

- ) (¢ ) - (8 () - )]

because ]Fl}’IB‘CP (z*) = 0 when z* € SOL-MixCP. By Taylor’s theorem, we have

FHIXCP (zk> — FPYXCP (24) = fol A (zk + s (z* - zk)) (xk — z%yds,
)¢ ) -t

= AE) A s (=) os ()

< [ JAE) =A@ s =) as [ -

2 rl 1 2
< sz —z* / Bosds = =P sz -z
0 2
Also, we have ||z — z¥|| < p, that is,
1
k+1 k 2
Iz = 2% < 5/31/32”2 - Z*|% o
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Another widely used algorithm is presented by Levenberg and Marquardt [33].
Levenberg—Marquardt algorithm can approach second order convergence speed with-
out requiring the Jacobian matrix to be nonsingular. We can approximate the Hessian
matrix by:

H(z) = AT (2)A®),

and the gradient by: '
G(2) = AT@FFFT @).

Hence, the upgrade step will be
-1 .
=k~ [AT (zk> A <zk) + MH] AT (zk) FMIXCP (zk) .

As we can see, Levenberg—Marquardt algorithm is a quasi-Newton’s method for an
unconstrained problem. When pu equals to zero, the step upgrade is just the Newton’s
method using approximated Hessian matrix. The number of iterations of Levenberg—
Marquardt algorithm to find a solution is higher than that of Newton’s method, but
it works for singular Jacobian as well. The greater the parameter i, the slower the
calculation speed becomes. Levenberg—Marquardt algorithm is provided as follows:

Algorithm (Levenberg—Marquardt)

Given initial data z° € R”*!, ;1 = 0.005 and r = 10~".
Step 1: Set k = 0.

Step 2: If FYXCP (z5) < 7, stop.

Step 3: Find a direction d¥ € R”*! such that

T
A 885 (40 (@) e -0
Step 4: Set z5*! := ¥ + d¥ and k := k + 1, go to Step 2.
Theorem 6.2 [34] Without the nonsingularity assumption on the Jacobian matrix A,

Levenberg—Marquardt algorithm for MixCP (F |, B, Rﬁ_) converges at least quadrat-
ically to

2" € SOL-MixCP (F, o, R ),
if it starts with initial data z° sufficiently close to z*.

The proof is omitted.

7 A Numerical Example
In this section, we will provide a numerical example for LCP on extended second

order cones. Let L(3, 2) be an extended second order cone defined by (1). Following
the notation in Theorem 5.1, let z = (x, u), 2 = (x — ||u||,u), Z = (x — ¢, u, t) and
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r=(p.q) = ((-55,-26,50)", (=19, -26)") with x, p € R* , u,q € R? and
t € R. Consider

26 15 3 51 —42
7 -39 —16 —17 18

T=(A8)=| 32 23 40 —38 46/,
6 —22 —28 —17 27
38 —25 24 47 —16

with A € B33, B e R3*2 C ¢ R?*3 and D € R?*2 It is easy to show that square
matrices T, A and D are nonsingular. By item (vi) of Theorem 5.1, we can reformulate
this LCP problem as a smooth MixCP problem. We will use the Levenberg—Marquardt
algorithm to find the solution of the FB-based equation formulation (22) of MixCP
problem. The convergence point is:

z* = (x _t’uvt)
(0839 )" (341 724\ 1271
“\\7660" ") "\1460° 2683 ) 73582 )°

We need to check the FB regularity of Z*. It is easy to show that the partial Jacobian
matrix of Fi (z%)

N (26 15 3
LE(EF)=A=|-7 =39 16
3223 40

is nonsingular. Moreover, we have that

439 \' ~
X —1= (O,@,O) 20, F] (Z*)

3626 12,148\ "
= 2 Y Zov
145 185

and therefore ~
(x =1, F (%)) =0.

That is, (x, F (") € C(Ri), so the index sets P = N = @. The matrix A is
invertible. In addition, we can calculate that the Schur complement of I7 (z*) with
respect to Jy F (2%):

38 95 268

- =y S5 _ | 15910 5185 5941
(H(Z)/JxFl (Z ))—D_CA B = 93 163 248
U741 121

740 T 1373 T
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The FB regularity of x* holds as there is no nonzero vector x satisfying conditions
(23). Then, we compute the gradient of the merit function, which is

T ok T %
AT FMixCP _ Do+ DpJeF1 (Z7) JxF2(27) FMixCP

FB = -~ . ~ . FB
DpJunF1 @*)  JunFr (Z¥)

4844 345

598
—ss 0 349 1238 0
3 _ 3946 _ 4031 0
s 9 0 491 441 0 0
413 26 1754
. 0 16 —355 -7 111 0 0 —0
I ] 7 0 12,462 78,767 341 ol —
12,610 139 701 740 0
32 13,790 9451 741
—aros 0 0 T s 1373 | \O
3341 3233 1271
0 16 0 -5 —TJo0 101

Hence, z* is a stationary point of F g/gxcp. By Theorem 5.2, we conclude that z* is the
solution of the MixCP problem. By the item (vi) of Theorem 5.1, we have that

z=(x,u)

(1271 1072 1271 T /341 724\ "
—\\35827 1051 3582 ) *\ 1480 2683

is the solution of LCP(7, r, L) problem.

8 Conclusions

In this paper, we studied the method of solving a linear complementarity problem on
an extended second order cone. By checking the stationarity and FB regularity of a
point, we can verify whether it is a solution of the mixed complementarity problem.
Such conversion of a linear complementarity problem to a mixed complementarity
problem reduces the complexity of the original problem. The connection between
a linear complementarity problem on an extended second order cone and a mixed
complementarity problem on a non-negative orthant will be useful for our further
research about applications to practical problems, such us portfolio selection and
signal processing problems.
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