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Abstract  

Using a biorefinery approach, biomass polymers such as lignin and carbohydrates can 

be selectively purified from lignocellulosic feedstocks with the aim of generating not only  

lignocellulosic bioethanol but also high value bio-based compounds. Furthermore, the 

efficient use of the entire biomass can increase overall feedstock value and significantly 

contribute to process cost-effectiveness. Therefore, the aim of this work was to 

fractionate the main compounds of the energy crop Miscanthus x giganteus (MxG) using 

‘green’ solvents in order to obtain cellulose-enriched fibres as well as non-toxic streams 

rich in hemicellulose and lignin. Two processing routes were compared: a 1-step 
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modified organosolv method for simultaneous lignin and hemicellulose removal; and a 

3-step sequential process using subcritical water extraction for recovery of first 

extractives then hemicellulose, followed by modified organosolv lignin extraction. Both 

methods successfully generated cellulose-enriched fibres that were very similar in 

composition. However, physicochemical analysis of the fibres using scanning electron 

microscopy, Fourier-transform infrared spectroscopy and principal component analysis 

confirmed structural differences resulting from the two processing routes.       

Keywords: Subcritical water; Principal component analysis; Delignification; Biofuel; 

Biorefinery. 

Abbreviations: MxG - Miscanthus x giganteus; SWE – Subcritical water extraction; 

PCA, Principle component analysis. 

 

1. Introduction 

The shift from a petroleum based economy towards one supported by renewable 

resources is not only environmentally beneficial, but it is also believed to be a way of 

achieving a sustainable economy and energy independence [1]. One potential 

renewable resource of current interest is lignocellulosic biomass, for example biomass 

comprising rapidly-growing plants or waste lignocellulosic biomass generated as a 

byproduct of agriculture and food processing [2-4]. In the former category, Miscanthus x 

giganteus (MxG) has been identified as an attractive source of biomass due to its 

potential for high yields even with few inputs (nutrients, irrigation), high photosynthetic 

efficiency, low cost, and adaptability to low-quality land [5]. 

 

The biorefinery concept describes the utilisation of biomass to generate a range of 

products, for example fuels, platform chemicals and high-value chemicals, in a manner 

similar to the refinery of petrochemicals [2]. Interest in the biorefinery concept as part of 

a bio-based economy is increasing with technological advances in agriculture, 

biotechnology and chemistry, as well as societal drivers [2,6]. Moreover, it is believed 



that the successful implementation of an integrated biorefinery platform with the co-

production of valuable products can make 2nd generation bioethanol cost-effective [7,8]. 

In this process, ethanol is generated from the fermentation of monosaccharides 

extracted and depolymerised from the cellulose and hemicellulose fractions of 

lignocellulosic biomass. However, due to the highly recalcitrant structure of 

lignocellulose, extraction and depolymerisation of monosaccharides is a difficult process, 

often with low yield. Moreover, available technologies for lignocellulosic fractionation are 

expensive, and frequently use toxic solvents to access biomass components, presenting 

an environmental concern [9]. 

 

In addition, it is widely reported that lignocellulose treatments to liberate 

monosaccharides result in the formation of fermentation inhibitors, which inhibit the 

production of ethanol from monosaccharides [10]. Thus, prevention of inhibitor formation 

during lignocellulosic processing to monosaccharides would potentially improve 

fermentative production of bioethanol. 

 

An additional aim of biorefinery is similar in principle to chemical refineries: separation 

and purification of multiple commercially viable streams from a single feedstock. As well 

as hexose and pentose monosaccharides, useful for production of bioethanol via 

fermentation, potential streams from the biorefinery of lignocelluose include 

xylooligosaccharides (an emerging potential prebiotic [11]), and a variety of platform 

chemicals such as furan compounds, organic acids and phenolic compounds [12]. 

 

A major current issue with biorefineries using plant biomass as a feedstock is the use of 

harmful chemicals [13]. The use of ‘green’ solvents for lignocellulosic biomass 

processing is not only environmentally beneficial but it also holds the potential to 



generate non-toxic streams that could enhance the potential uses of biomass fractions 

for conversion into high-value products particularly for food and pharmaceutical 

applications [14]. Therefore, the use of subcritical water extraction (SWE) for 

hemicellulose extraction as a ‘green’ solvent is a potentially advantageous option that 

does not require additional catalysts, neutralization steps following processing or 

corrosion-resistant reactors [15,16]. SWE has previously been used for extraction of a 

wide range of different compounds in the biotechnology, food and pharmaceutical areas 

(reviewed by [17]). Lignin extraction can also be performed using ‘green’ solvents in a 

modified organosolv method using non-toxic solvents such as ethanol that can be 

recovered and re-used in the process [18], and alternative catalysts to replace the usual 

mineral acids used in delignification. 

 

The aim of this work was to evaluate two different routes to obtain purified cellulose fibres 

from MxG: a single-step modified organosolv approach; and a three step SWE / modified 

organosolv approach designed to sequentially remove biomass extractives, 

hemicellulose and lignin from cellulose fibres (Fig. 1). Thus, this work proposes 

environmentally-friendly processes in a biorefinery approach as an attempt to fractionate 

lignocellulosic biomass and to obtain purified streams of hemicellulose and lignin and 

cellulose-enriched fibres that can be further processed into a variety of products including 

biochemicals and bioethanol.  

 

2. Materials and methods 

2.1. Materials  

Air-dried Miscanthus x giganteus (MxG) was cultivated in Wales (UK), harvested in 2013, 

and kindly provided by Phytatec (Aberystwyth, UK). MxG used in this work contained (as 

percentage of dry weight): 11.5% of extractives, 22.6% of Klason lignin, and 18.3% of 



hemicellulose (all determined using NREL methods). Glucose (99.5%), arabinose (98%), 

xylose (99%), fructose (99%), cellobiose (98%), 5-hydroxymethyl-2-furaldehyde (HMF) 

(99%), erythrose (75%), and Avicel were purchased from Sigma Aldrich. Cellotetraose 

(95%) and cellohexaose (90%) were purchased from Megazyme, and galactose (99%) 

was purchased from Acros Organics). 

 

2.2. Extraction methods 

2.2.1. Extractives SWE  

10 g (wet weight) of MxG was soaked in 200 mL of distilled water at 50 °C for 20 min. 

The suspension was then ground in a domestic blender for 3 min and placed in a 500 

mL high-pressure reactor (Parr, alloy C276). The reactor was purged and pressurized to 

50 bar using N2 and a heating jacket was set to 120 °C. The extraction lasted for 30 min 

(all residence times reported in this work starts when target temperature was achieved, 

i.e., heating time was not taken into consideration). At the end of the extraction, the 

reactor was cooled in an ice bath. Remaining fibres were filtered and dried completely at 

65 °C. The fibres resulting from this procedure were called 120 °C fibres.  

 

2.2.2. Hemicellulose SWE 

10 g of dried 120 °C fibres were placed in the same reactor as above and mixed with 

200 mL of distilled water. The reactor was purged and pressurized to 50 bar with N2 and 

a heating jacket was set to 180 °C for 30 min. After cooling the reactor in an ice bath, 

remaining fibres were filtered, dried completely at 65 °C and named 180 °C fibres. 

 

2.2.3. Modified organosolv lignin extraction 

The lignin extraction step was performed using a modified organosolv method adapted 

from Roque [19] in which mineral acids were replaced by pressurized CO2 as catalyst.  



250 mL of 50 % (v/v) ethanol in distilled water (50 °C) was mixed with 5 g of starting 

material (MxG, for direct delignification; 180 °C fibres for sequential extraction) and then 

allowed to soak for 20 min before being placed in the 500 mL reactor. In the case of 

direct extraction, the suspension was ground in a domestic blender for 3 min before being 

placed in the reactor. The reactor was purged and pressurized to 50 bar using CO2 and 

set to 200 °C. The reaction lasted 60 min, and then the reactor was placed into an ice 

bath. Remaining fibres were filtered, air dried for 48 h and then dried completely at 65 

oC. Cellulose-enriched fibres obtained after lignin extraction were named DEL in the 

direct route and SEQ in the sequential extraction route (Fig. 1). 

 

2.3. Quantitative/qualitative analysis 

2.3.1. Extractives determination 

The extractives content of the starting MxG material was determined using the National 

Renewable Energy Laboratory (NREL) protocol. This is a 2-step extraction procedure in 

a Soxhlet apparatus using first water (HPLC grade) as solvent for two consecutive days 

for 8h per day, and then ethanol as solvent for the same period of time [20]. Fibres were 

weighed before and after the extractions and the extractives compounds were calculated 

as the mass difference. 

 

2.3.2. Lignin quantification  

Lignin quantification was performed using the National Renewable Energy Laboratory 

(NREL) protocol [21] for Klason Lignin quantification using the Klason Lignin method. 

 

2.3.3. HPAEC 



Sugar analysis in liquid samples were performed by High Performance Anion Exchange 

Chromatography coupled with Pulse-Amperometric Detection (HPAEC-PAD) from 

Dionex/Thermo (ICS-5000) using a guard CarboPacTM PA1 column (4x50mm) and an 

analytical CarboPacTM PA1 column (4x250mm). Oven and detector compartments were 

kept at 30 °C and 25 °C, respectively. Flow rate was 1 mL/min and sample volume 

injected was 10 µL, Milli-Q® water was used as solvent A and in the preparation of the 

other solvents. 200 mM NaOH and 1 M NaOAc were used as solvent B and C 

respectively. 

The method started with an isocratic step using 21 mM of B during 20 min. At 20 min, B 

was increased to 80 mM. Then, from 20 to 60 min, solvent C was introduced from 0-20 

mM and B was kept at 80 mM. A washing step was performed from 60 min in which B 

and C were increased to 120 mM and 40 mM, respectively, and kept constant for 10 min. 

At 70 min, C was set to 0 and B was set to 21 mM for 20 min for column reconditioning. 

Total run time was 90 min per sample. Prior to HPAEC analysis, samples were acid-

hydrolysed in 2 steps in order to break down polymers/oligomers into monomers to 

facilitate quantification. In the first step, 3 mL of 72 % sulphuric acid (Fluka) was added 

to 0.3 g of sample and placed in a 30 °C water bath for 60 min. In the second step, 

distilled water was added to the sample in order to decrease acid concentration to 4 % 

and sample was placed into an oven at 121 °C for 60 min. Fibre compositional analysis 

was performed by two-stage acid hydrolysis as per Klason lignin determination [21] 

followed by HPAEC. 

 

2.3.4. SEM imaging 

Scanning electron microscopy (SEM) images were obtained using a Philips XL30 FEG 

Environmental scanning electron microscopy operating at 10 kV at several amplification 

magnitudes. Prior the analysis, samples were coated with platinum for 120 s using an 

Emscope Sc500 sputter coater.  



 

2.3.5. Fourier Transform Infra-Red Spectroscopy (FTIR) 

FTIR was performed in a Jasco FTIR 6300 spectrometer. Samples were analysed with 

no prior preparation. Scans were obtained with resolution of 4 cm-1 and 32 scans 

between 4000-600 cm-1, resulting in 1764 wavenumber variables for each spectrum.  

 

2.3.6. Principal Component Analysis (PCA)  

Principal Component Analysis (PCA) was performed on the FTIR data using the 

Unscrambler® X 10.3 software (CAMO). Prior to PCA, FTIR data was treated using 

smoothing followed by normalisation and 2nd-derivative, respectively, in order to 

decrease noise and increase spectral resolution [22-24]. This combination of data 

treatments was found to give the best clustering on scores plots.  

 

3. Results and discussion 

Two different processing routes were evaluated in order to obtain cellulose-enriched 

fibres from MxG biomass: direct and sequential routes (Fig. 1). In the direct processing 

route, a modified organosolv treatment was used to solubilise and remove biomass 

extractives, hemicelluloses and lignin from cellulose fibres (remaining in the solid 

fraction) in a single step (Fig. 1A). In the sequential processing route, each biomass 

fraction (extractives, hemicellulose and lignin) was sequentially and selectively 

solubilised and separated from the solid fraction in a 3-step process comprising two 

subcritical water extractions (SWEs) of increasing severity and a final modified 

organosolv step identical to the direct route extraction (Fig. 1B). Removal of extractives 

and hemicellulose via the sequential route will first be considered, followed by lignin 

extraction from MxG (via the direct route) or from the fibres generated by the sequential 

route.  



 

3.1. Extraction of extractives and hemicellulose via the sequential route 

The sequential route was designed to first remove extractives such as non-structural 

polysaccharides (e.g. starch and pectin), as well as proteins and waxes, which are easily 

soluble in water and/or ethanol. The step to remove these extractives prior to 

hemicellulose extraction was intended to increase the purity of xylooligosaccharides 

(XOS) in the liquid phase in the second extraction step [25]. If the extractives are not 

removed prior to hemicellulose extraction, their removal from the hemicellulose fraction 

is very challenging.  

 

MxG fibres were subjected to the first SWE step (H2O, 50 bar N2, 120 °C, 30 min). 15 ± 

2% of the MxG dry mass was removed as extractives in this step, leaving an extractives-

free solid fraction (named here as “120 °C fibres”; Table 1). HPAEC analysis of the liquid 

extractives fraction revealed the presence of glucose, presumably derived from 

hydrolysis of starch, and very low concentrations (at the detection limit of the HPAEC 

used) of arabinose and xylose, indicating very limited hydrolysis of hemicellulose in this 

step (data not shown). The mass reduction by the first SWE extraction step was slightly 

higher than the extractives content of the MxG fibres as determined by the NREL method 

(11.5%, Table 2); this reflects differences in the methods used, the SWE extraction 

method likely extracting additional components of the MxG not solubilised by the NREL 

method.  

 

The 120 °C fibres generated by the first SWE step were subjected to a second, more 

harsh, SWE step, hemicellulose extraction (H2O, 50 bar N2, 180 °C, 30 minutes); analysis 

of the resultant fibres (named “180 °C fibres”) revealed substantial extraction of 

hemicellulose (from 20.6 % dry weight to 8.8 % dry weight; Table 2). Glucose could not 



be detected in the extracted liquid hemicellulose fraction, revealing that cellulose was 

not degraded in this step. For each 1 g dry mass of 120 °C fibres subjected to 

hemicellulose extraction, 0.78 g dry mass of 180 °C fibres were generated.   

  

3.2. Comparison of delignification using direct and sequential routes 

Direct delignification of MxG fibres using the modified organosolv process (50% EtOH, 

50 bar CO2, 200 °C, 60 min) generates a liquid fraction rich in solubilised lignin, but which 

also contains: hemicellulose and its depolymerisation products (xylooligosaccharides 

and xylose); the decomposition products of hemicellulose such as acetic acid and 

furfural; and biomass extractives. Although lignin can be recovered from this liquid 

fraction [26], separation of hemicellulose from the other components is challenging and 

its use in other processes can therefore be compromised. Comparison of the 

delignification step of the sequential extraction with the direct extraction route reveals 

that direct extraction was able to remove 73 % of the lignin from MxG fibres, whereas 

the organosolv delignification step of the sequential treatment removed 62 % of the lignin 

from the 180 °C fibres. It should also be noted that the hemicellulose extraction step 

(H2O, 50 bar N2, 180 °C, 30 minutes) removed some lignin (equivalent to 12% of the 

lignin present) from 120 °C fibres. The resultant DEL fibres have a lower lignin content 

than SEQ fibres (Table 2).   

 

Sequential extraction resulted in a lower percentage of lignin removal compared to direct 

delignification, most likely due to the severity of the organosolv process. As 180 °C fibres 

had already been exposed to two SWE treatments, it is likely that their lignin was more 

accessible than in the raw MxG. However, the severity of the organosolv process, 

especially under acidic conditions, has previously been associated with a decrease in 

lignin removal due to non-desirable reactions including condensation reactions, 



formation of pseudo-lignin, and/or re-precipitation of lignin into the remaining fibres [14, 

27-29].  

 

3.3. Analysis of final fibre composition 

Comparison of fibre composition (Table 2) revealed that SEQ fibres generated by 

sequential extraction and DEL fibres generated by the one-step modified organosolv 

process had broadly similar compositions; SEQ fibres contained more lignin and less 

hemicellulose than DEL fibres. Assuming that the residual component (ie not lignin or 

hemicellulose) of the fibres was cellulose, then SEQ and DEL fibres were comparable 

in cellulose content.  

 

The fibres and compositions obtained in this work are in agreement with other published 

studies using SBW and organosolv method catalysed by mineral acids extractions in 

MxG. Timilsena et al. [30] reported comparable results for MxG after a similar sequential 

extraction using SWE followed by acid-catalysed organosolv. In their study, the solid 

fibres after the sequential treatment presented mainly glucans (76.6%), lignin (17.3%) 

and residual xylan (5.8%) [30]. El Hage et al. [31] generated fibres containing 14.1% 

lignin after acid-catalysed organosolv treatment of MxG; the use of CO2 as a catalyst in 

this work proved to be a potential replacement for mineral acids presenting comparable 

results for lignin extraction. 

 

3.4. Effect of direct and sequential extraction on the physical and chemical properties of 

delignified cellulose fibres 

The direct and sequential extractions aimed not only to recover and fractionate 

lignocellulosic components (extractives, hemicellulose, lignin), but also to obtain 

cellulose-enriched fibres and modify the structure of the cellulose in order to make it 



more accessible to hydrolysis so to act as a feedstock for second-generation bioethanol 

production by fermentation. Lignin extraction methods are thought to create pores in the 

lignocellulosic matrix, which might facilitate cellulose disruption [32]. 

 

Composition analysis of SEQ and DEL fibres did not show significant compositional 

differences between these fibres (Table 2). However, it remains unclear whether or not 

the SEQ and DEL fibres were physically different, which might impact on subsequent 

cellulose hydrolysis. Scanning electron microscopy (SEM) and Fourier Transfer Infra-

Red (FTIR) spectroscopy analysis were used to compare the physical and chemical 

properties of SEQ and DEL fibres. 

 

Visualising the fibres by SEM (Fig. 2), it is possible to see that the density of lignin 

droplets on the cellulose fibre surface is significantly higher for SEQ than for DEL fibres. 

This increase in density of droplets has been observed before and was attributed to 

increases in the severity of the pretreatment process [33]. Differences in lignin droplet 

size and shape, as shown in Fig. 2E&F, have also been previously observed [34] and 

smaller size and higher density of droplets present on SEQ fibres could indicate that the 

lignin has been more extensively fragmented when compared to the DEL fibres. Hence, 

in theory, cellulose from SEQ fibres is potentially more exposed than in DEL fibres. 

 

FTIR is a rapid analysis method and can potentially indicate differences in chemical 

composition of lignocellulose fibres by differential analysis of generated spectra. 

However, the difficulty of using FTIR in analysis of lignocellulosic biomass is the 

overlapping of peaks due to the presence of large numbers of different chemical bonds 

found in lignocellulose [35]. Indeed, FTIR spectra of MxG, DEL and SEQ fibres were 

extremely complex (Fig. 3A). Therefore, in order to establish a better understanding of 



the chemical characteristics of MxG and the potential for change in chemical properties 

during delignification, the FTIR data were analysed by principal component analysis 

(PCA). FTIR data was manipulated prior to PCA using smoothing, normalisation and 2nd-

derivative functions.   

 

Fig. 3B shows the PCA scores plots for MxG, 120 °C, 180 °C, SEQ and DEL fibres. FTIR 

spectra data for commercial pure cellulose (Avicel PH101) was also used for comparison 

purposes. The scores plots of PCA present the samples grouped by their variability. The 

differences among the samples presented in the scores plot are thought to be chemical 

(composition) and/or structural [36]; therefore, samples in the same cluster present 

similar features. 

 

Samples were successfully separated into defined clusters; such clustering is impossible 

when visually analysing FTIR spectra (Fig. 3A). MxG and DEL fibres both present 

relatively broad clusters compared to the other fibres, possibly indicating their innate 

variability. According to Fig. 3B, it is also possible to suggest a trend in terms of changes 

in principle component 1 (PC1) and PC2 as fibres are processed. From the raw material 

(MxG), every treatment increased the PC1 value of the fibre, visualised in a move from 

left to right on the plot. It is known that each of the treatments performed resulted into an 

increase in cellulose percentage in the fibres, therefore PC1 could correlate to the 

cellulose contents and/or cellulose purity of the fibres. Moreover, the position of Avicel, 

comprising pure cellulose, in the positive region of PC1 supports this suggestion. 

However, SEQ and DEL have very similar cellulose contents (79.9 and 78.9%, 

respectively) and do not have the same PC1 value. Therefore, it is clear that cellulose 

content is not the only feature of the fibres that PC1 describes. 

 



In addition, the sequential and direct processing routes generated fibres that had 

opposite values along PC2 (SEQ fibres being positive and DEL fibres being negative). 

However, the feature described by PC2 is not easily determined. PC2 might be related 

to hemicellulose contents, as the fibre that has the highest PC2 value (120 °C) is also 

the one that has the highest percentage of hemicellulose among all samples. Moreover, 

after losing a significant amount of hemicellulose, the PC2 value of 180 °C fibres was 

significantly lower than that of 120 °C fibres. Nevertheless, it is clear that hemicellulose 

is not the only feature described by PC2 as DEL fibres have higher hemicellulose 

contents than SEQ, but present lower PC2 values. These results indicate that PC2 

describe not one single characteristic, but a group of chemical and/or physical features 

of the fibres. 

In conclusion, although DEL and SEQ fibres presented a similar composition in terms of 

cellulose, hemicellulose and lignin, physico-chemical analysis showed that they are 

rather different and, therefore, it is expected that they will behave differently during 

cellulose hydrolysis.  

 

4. Conclusion 

Using the biorefinery approach, cellulose-enriched fibres were successfully obtained 

from MxG using ‘green’ processes in two routes: 1) direct delignification; and 2) 

sequential extraction followed by delignification. Contrary to expectation, after the 

modified organosolv method step, DEL fibres had a lower percentage of lignin than SEQ 

fibres, most likely due to non-target reactions resulting from the accumulated severity of 

the SWE steps in the sequential route. Nevertheless, sequential extraction is still 

preferred because of the potential of using the liquid streams for high-value product 

generation, which has the potential of economically support production of 2nd-generation 

bioethanol. Although similar in composition, both SEM and FTIR-PCA analysis showed 

significant physicochemical and structural differences between SEQ and DEL fibres.  
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FIGURE CAPTIONS 

 

Figure 1. Scheme of direct delignification and sequential extraction followed by 

delignification. 

 

Figure 2. SEM images for cellulose-enriched fibres.  Fibres visualised are DEL 

(A,C,E); and SEQ (B,D,F). Images magnification: A & B, 500x; C, 1 200x; D, 2 000x; E, 

8 000x; and F, 12 000x. 

 

Figure 3. FTIR analysis and PCA of fibres. A. FTIR spectra of Avicel (pure cellulose), 

DEL and SEQ fibres. B. PCA scores plots for FTIR data after smoothing+2nd-

derivative+normalisation. 
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Table 1. Mass balance for direct and sequential extraction routes. 15 

Sequential 

route 

MxG 

(unprocessed) 

120 °C fibres 180 °C fibres SEQ fibres 

Dry mass 1 ± 0.10 g 0.85 ± 0.02 g 0.66 ± 0.03 g 0.44 ± 0.03 g 

Direct route MxG 

(unprocessed) 

DEL fibres   

Dry mass 1 ± 0.10 g 0.48 ± 0.03 g   

 16 

Masses are quoted in terms of dry mass; mean values ± standard deviations are given 17 

from multiple extraction experiments. 18 

 19 

  20 



Table 2. Fibre compositions as percentage dry weight. 21 

 MxG 

(unprocessed) 

120 °C 

fibres 

180 °C 

fibres 

SEQ 

fibres 

DEL 

fibres 

Extractives† 11.5 ± 0.05 ND ND ND ND 

Hemicelluose: 18.3 20.6 8.8 4.8 7.2 

Xylan 17.1 ± 1.1 19.2 ± 1.9 8.4 ± 0.8 4.8 ± 0.3 7.2± 0.6 

Arabinan 1.0 ± 0.01 1.1 ± 0.01 
0.3 ± 

0.001 
- - 

Galactan 0.2 ± 0.00 0.3  ± 0.00 
0.1 ± 

0.000 
- - 

Klason lignin 22.6 ± 0.6 25.4 ± 0.2 28.9 ± 0.7 16.4 ± 0.5 
12.9 ± 

0.5 

Cellulose* 47.6 54.0 62.3 78.8 79.9 

 22 

Percentages are quoted as mean values ± standard deviations from multiple extraction 23 

experiments. Fibre composition was determined for a random sample of each type of 24 

fibres. † Quantity of extractives in MxG were determined using the NREL method. * 25 

Cellulose concentrations were not measured, but were assumed to constitute the 26 

balance of the mass of each fibre.  27 

 28 
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