
 
 

University of Birmingham

A combination of NMR and liquid chromatography
to characterize the protective effects of Rhus
tripartita extracts on ethanol-induced toxicity and
inflammation on intestinal cells
Ben Barka, Zaineb; Grintzalis, Konstantinos; Polet, Madeleine; Heude, Clement; Sommer,
Ulf; Ben Miled, Hanène; Ben Rhouma, Khémais; Mohsen, Sakly; Tebourbi, Olfa; Schneider,
Yves-jacques
DOI:
10.1016/j.jpba.2017.12.032

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Ben Barka, Z, Grintzalis, K, Polet, M, Heude, C, Sommer, U, Ben Miled, H, Ben Rhouma, K, Mohsen, S,
Tebourbi, O & Schneider, Y 2018, 'A combination of NMR and liquid chromatography to characterize the
protective effects of Rhus tripartita extracts on ethanol-induced toxicity and inflammation on intestinal cells',
Journal of Pharmaceutical and Biomedical Analysis, vol. 150, pp. 347-354.
https://doi.org/10.1016/j.jpba.2017.12.032

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
DOI: 10.1016/j.jpba.2017.12.032

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.
Download date: 05. Apr. 2024

https://doi.org/10.1016/j.jpba.2017.12.032
https://doi.org/10.1016/j.jpba.2017.12.032
https://birmingham.elsevierpure.com/en/publications/48b2c458-347e-4bb0-a5dc-8d51c9644041


Accepted Manuscript

Title: A combination of NMR and liquid chromatography to
characterize the protective effects of Rhus tripartita extracts on
ethanol-induced toxicity and inflammation on intestinal cells

Authors: Zaineb Ben Barka, Konstantinos Grintzalis,
Madeleine Polet, Clement Heude, Ulf Sommer, Hanène Ben
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Highlights  

 R. tripartita extracts were assessed for their antioxidant and phytochemical properties 

 Ethanol cytotoxicity was partially reversed by co-administration of the plant extracts  

 Plant extracts exhibit anti-inflammatory potential  

 

 

ABSTRACT  

Consumption of ethanol may have severe effects on human organs and tissues and lead to 

acute and chronic inflammation of internal organs. The present study aims at investigating the 

potential protective effects of three different extracts prepared from the leaves, root, and stem 

of the sumac, Rhus tripartita, against ethanol-induced toxicity and inflammation using 

intestinal cells as a cell culture system, in vitro model of the intestinal mucosa. The results 

showed an induction of cytotoxicity by ethanol, which was partially reversed by co-

administration of the plant extracts. As part of investigating the cellular response and the 

mechanism of toxicity, the role of reduced thiols and glutathione-S-transferases were 

assessed. In addition, intestinal cells were artificially imposed to an inflammation state and 

the anti-inflammatory effect of the extracts was estimated by determination of interleukin-8. 

Finally, a detailed characterization of the contents of the three plant extracts by high 

resolution Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry 

revealed significant differences in their chemical compositions.  

 

ABBREVIATIONS  

ACP – acid phosphatase 

ALP – alkaline phosphatases  

DMSO – dimethylsulfoxide  

EGCG – epigallocatechin-3-gallate  
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GIT – gastrointestinal tract  

GST – glutathione-S-transferase  

IL-8 – interleukin 8  

MTT – 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide  

NR – neutral red 

PBS – phosphate buffered saline 

ROS – reactive oxygen species  

 

Keywords: Rhus tripartita extracts, NMR, LC-MS, ethanol toxicity, antioxidant, anti-

inflammatory  

 

1. Introduction  

Although alcohol, some 50 years ago, was not considered as toxic, Charles S. Lieber doubted 

this notion and pointed out alcohol toxicity to human organs [1]. Consumption of ethanol 

(EtOH) is a common habit in many humans and may result in severe adverse effects on 

organs and tissues e.g. the liver and the gastrointestinal tract (GIT). Due to its small size and 

the presence of a hydroxyl group, EtOH is soluble in both aqueous and lipid environments, 

thus allowing it to pass freely from body fluids into cells. EtOH mainly passes from the 

stomach and intestine mucosa to the blood and then to the liver, where most of it is 

metabolized. EtOH oxidation is initiated by alcohol dehydrogenases (ADH) in hepatocytes, 

which convert it into acetaldehyde, a potent metabolite, which upon entering into the 

mitochondria is oxidized to acetate by aldehyde dehydrogenases (ALDH). Other pathways of 

EtOH metabolism are performed by cytochrome P450 enzymes, which have been found to be 

induced in people who chronically consume alcohol, the fatty acid ethyl ester synthase and 

also in the peroxisomes via the activity of catalase. Other important enzymes related to EtOH 

metabolism are the glutathione-S-transferases (GSTs), which are antioxidant enzymes that 
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couple reduced glutathione (GSH) to xenobiotics, drugs or metabolites (e.g. acetaldehyde) to 

detoxify them.  

The toxicity of EtOH has been attributed to the induction of oxidative stress. Oxidative 

stress is the detrimental side effect of oxidative metabolism, resulting from the formation of 

reactive oxygen species (ROS) in amounts that exceed the antioxidant (enzymatic and non-

enzymatic) capacity of the cells. These antioxidant protective mechanisms include the 

cellular thiol redox state, thus the thiol reducing buffer comprising of molecules with redox-

active sulfhydryl moieties (e.g. GSH, cysteine and thioredoxin) as well as enzymatic systems 

(e.g. catalase, glutathione reductase and peroxidase etc.) that modulate ROS levels [2, 3]. 

Alternatively, a variety of bioactive food components display antioxidant properties and/or 

anti-inflammatory effects, i.e. polyunsaturated fatty acids, phenolic compounds, vitamins that 

may be found e.g. in fruits, vegetables, grains, wine, and chocolate.  

Intestinal inflammation is a vital protective process, which is crucial to maintain gut 

integrity and functioning, and requires a continuous crosstalk between different cell types 

present in the gut. Soluble mediators such as cyto/chemokines, eicosanoids, nitric oxide and 

growth factors play a significant role in the signaling and progress of inflammation, which if 

deregulated and becoming chronic, may cause severe disorders such as inflammatory bowel 

diseases and increase cancer risks. Treatment of such diseases has been of great medicinal 

interest for long time.  

Plants that are not foodstuffs have also been used for medical purposes since a long time. 

Rhus tripartita is a local presaharan Tunisian plant located both in the semi-arid and, 

especially, the arid zone and its fruits can be consumed after mixing with water. R. tripartita 

is considered as a medicinal plant that has been used for a long time in Tunisian traditional 

medicine as an anti-diarrheal agent [4-6]. The phytochemicals (phenolic compounds, total 

flavonoids, condensed tannins) are responsible for the anticarcinogenic, antithrombotic and 
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anti-inflammatory medicinal properties of the plant [7]. Several plant extracts have been 

shown to have pharmacologic properties with applications to many disease models including 

EtOH-induced hepatotoxicity [8-10]. We have previously shown that treatment of rats with R. 

tripartita extracts provided a dose-dependent protection against EtOH-induced ulcer [11].  

In the present study, we investigated, in vitro, the influence of EtOH on the intestinal 

mucosa using a cell culture system and examined the antioxidant and anti-inflammatory 

potential of stem, root and leaves extracts of R. tripartita. In vitro cell models increase our 

understanding of mechanisms and actions in human tissues and human colon carcinoma 

Caco-2 cells are the most widely used and validated cell culture systems to study the 

intestinal passage and transport mechanisms [12, 13]. The cellular viability, thiol-related 

parameters, GST activity were assessed to examine the potential preventive effects of plant 

extracts to the adverse effects of EtOH on intestinal cells. Furthermore, we imposed cells to 

an inflammatory stimulus [14] and the impact of plant extracts on the secretion of IL-8, a pro-

inflammatory cytokine, was determined. Finally, a detailed characterization of the metabolic 

content of each of the three extracts was performed by combining NMR and mass 

spectrometry measurements.  

 

2. Materials and Methods  

 

2.1. Chemicals  

All assay reagents were purchased from Sigma-Aldrich (St. Louis, MO) and were of the 

highest analytical grade. Water was purified by a Milli-Q system (Millipore Corp., 

Darmstadt, DE).  
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2.2. Plant material: extraction process and preparation of extracts for in vitro 

experiments.  

R. tripartita (Ucria) were collected from Djebel Thelja, Gafsa, state of Tunisia (Tunisia; 

latitude 34°24’N, longitude 7°55’E). The leaves, roots stems were cut in slices, oven-dried at 

40 °C and grounded. Grounded tissues (50 g) were extracted with 300 ml of methanol/water 

(1:1) solution for 24h at room temperature, under continuous stirring. The solution was 

filtered and centrifuged at 4,500 g for 15 min and the supernatant was lyophilized and stored 

at -20 °C until use.  

Dried extracts of each tissue were dissolved immediately before use in HBSS at a 

concentration of 12.8 mg/ml, filtered (0.22 μm diameter) and diluted to the chosen 

concentration  ± EtOH in HBSS for cell culture experiments.  

 

2.3. Antioxidant properties of plant extracts  

The dried  extracts of R. tripartita stems, roots an leaves were re-suspended ddH2O, filtered 

and assayed for total polyphenols, flavonoids, tannins, anthocyanins, ferric ions and ABTS 

radical scavenging capacity as follows.  

Total polyphenols were determined by a modification of the Folin assay [15]. 50 μl 

appropriately diluted (in ddH2O) plant extracts were mixed with 50 μl, 4x diluted (in ddH2O), 

Folin reagent and 50 μl 1.89 M Na2CO3. After 40 minutes incubation at RT, absorbance was 

measured at 765 nm against a reagent blank (with ddH2O instead of sample). The net 

absorbance was converted to equivalents of gallic acid from a linear standard curve (0-250 

μM).  

Total flavonoids were determined by their reaction with aluminum trichloride [16]. 100 μl 

appropriately diluted (in ddH2O) plant extracts were mixed with 50 μl 2% (w/w) NaNO2. 

After 10 minutes incubation at RT, 50 μl 7.5% AlCl3 and 50 μl 3.5 N NaOH were added. 
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Mixtures were agitated and incubated at RT for 10 minutes. Absorbance was measured at 500 

nm against a reagent blank (with ddH2O instead of sample). The net absorbance was 

converted to equivalents of catechin from a linear standard curve (0-500 μM).  

Total tannins were assayed by their reaction with vanillin under acidic conditions [17]. 

100 μl appropriately diluted (in ddH2O) plant extracts were mixed with 100 μl 4% vanillin (in 

absolute methanol) and 50 μl 100% H2SO4. The mixtures were incubated at RT for 10 

minutes and absorbance was measured at 500 nm against a reagent blank (with ddH2O 

instead of sample). The net absorbance was converted to equivalents of catechin from a linear 

standard curve (0-500 μM).  

The determination of total anthocyanins is based on their pH dependent transformations 

[18]. Briefly, 1 volume of appropriately diluted sample extract was mixed with 0.5 volume 

0.5 M HCl or 0.4 M acetic acid pH 4.5 to reach pH 1 or 4.5, respectively. Absorbances at 520 

and 700 nm were measured after 15 min of incubation at RT and the net absorbance 

difference is calculated as follows: A = (A520-A700)pH1.0 - (A520-A700)pH4.5. The content of total 

anthocyanins was expressed as mg cyanidin 3-glucoside equivalents (CGE, MW 449.2) per g 

extract using the molar absorption coefficient of 26,900 L mol−1 cm−1 (of cyanidin 3-

glucoside).  

Ferric reducing antioxidant power (FRAP) was determined by the reduction of ferric to 

ferrous ions that react with 2,4,6-tri-pyridyl-s-triazine (TPTZ) to form an absorbing complex 

at 595 nm [19]. 100 μl appropriately diluted (in ddH2O) plant extracts were mixed with 100 

μl 300 mM acetic acid: 10 mM TPTZ (initially dissolved at 100 mM in methanol and diluted 

to 10 mM with 40 mM HCl):0.54% FeCl3.6H2O in a ratio of 10:1:1. The mixtures were 

incubated at RT for 10 minutes and absorbance was measured at 595 nm against a reagent 

blank (with ddH2O instead of sample). The net absorbance was converted to equivalents of 

Fe+2 from a linear standard curve of ferrous sulfate heptahydrate (0-250 μM).   
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ABTS radical cation (ABTS•+) scavenging capacity was assayed by a modified version of 

the assay conditions of Valyova et al.[16] ABTS•+ was prepared by mixing equal volumes of 

7 mM ABTS and 2.5 mM potassium persulfate and 12h in the dark at RT incubation. ABTS•+ 

solution was diluted appropriately with ddH2O and 100 μl were mixed with 100 μl ddH2O as 

reagent blank, which should give an absorbance of ~0.7 at 734 nm. 100 μl from samples were 

also mixed 100 μl appropriately diluted ABTS•+ solution. The % ABTS•+ scavenging was 

calculated by the following equation: 100x(Areagent blank-Asample)/Areagent blank and expressed as 

nmoles of equivalents of gallic acid ABTS•+ scavenging capacity from a linear standard curve 

of gallic acid and % ABTS•+ scavenging.  

 

2.4. Metabolic characterization of plant extracts 

Dried stem, root and leaf extracts from R. tripartita were assayed in triplicate for their 

metabolite content by NMR spectroscopy and LC-MS. For NMR, samples were analyzed on 

a Bruker AVANCE III HD 600 NMR Spectrometer (Bruker BioSpin, Karlsruhe, Germany) 

operating at a proton frequency of 600.13 MHz and equipped with a 1.7 mm TCI-cryoprobe 

(1H/13C/15N), using a 1D 1H Nuclear Overhauser Effect SpectroscopY (NOESY) with water 

suppression (Bruker noesygppr1d pulse sequence). The 1D NOESY was acquired using a 10 

ms mixing time, a 7200 Hz spectral width, a 2.28 s acquisition time, a 4 s relaxation delay 

and 128 scans resulting in a total acquisition time of 14 min. 

To assign the resonances, 2D homonuclear 1H-1H TOtal  COrrelation spectroscopY 

(TOCSY) and heteronuclear 1H-13C Heteronuclear Single Quantum Coherence (HSQC) 

experiments were recorded on the same NMR system. To shorten the acquisition time of 

TOCSY and HSQC experiments a Non-Uniform Sampling (NUS) algorithm (Multi-

dimensional Decomposition [20]) was used. The principle of NUS is to acquire only a subset 
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of data points in a semi-random manner to reduce significantly the acquisition time. For both 

experiments the amount of sparse sampling was set to 40%.   

2D 1H-1H TOCSY spectra (Bruker dipsi2esfbgpph pulse sequence) were recorded using a 

DIPSI-2 mixing sequence and with the following parameters: a 285 ms acquisition time, a 65 

ms mixing time, a 7200 Hz spectral width and a 2 s relaxation delay. A total of 16 transients 

were averaged for each of the 512 increments during t1, corresponding to a total acquisition 

time of 2h and 45 minutes. 2D 1H-13C HSQC experiments (Bruker hsqcetgpsp pulse 

sequence) were carried out using a 65 ms acquisition time with GARP 13C decoupling and a 

1.5 s relaxation delay. A total of 64 transients were averaged for each of the 256 increments 

resulting in an acquisition time of 3 hours and 35 minutes.  

For LC-MS, dried stem, root and leaf samples were re-suspended in triplicate in 30 µl 

methanol:water (1:3) per mg of powdered and analyzed on a Thermo Scientific Dionex 

Ultimate RSLC 3000 system coupled with a Thermo Q Exactive mass spectrometer (Thermo 

Fisher Scientific, Hemel Hempstead, U.K.). For each run 4 µL were injected onto a Thermo 

Scientific Hypersil Gold column (2.1 x 100 mm, 1.9 µm particles) and separated at 40 °C 

with a flow rate of 250 µL/min and a gradient from 0.1 % formic acid in water (A) to 0.1 % 

formic acid in methanol (B). The flow was 100 % A for 1 min, followed by a 10 min gradient 

to B, and was constant for 5 min before reverting over 1 min back to A and re-equilibrating 

for another 3 min before the next injection. MS acquisition was started at 0.1 min. MS 

detection for the main set of runs was in the positive/negative ion switching mode, at m/z 

100-1000 and 140,000 nominal resolution. Spray voltage was set to 4.0 kV and -3.5 kV, 

respectively, sheath gas to 40, auxillary gas to 15, capillary temperature to 300 °C, the S lens 

value to 100, ion fill time to 200 ms and AGC target was 1E6 ions. LC-MS/MS data were 

collected under the same conditions, but one ion mode a time, MS at m/z 120-900 with the 

resolution set to 35,000, MS/MS resolution to 17,000 on the five highest signals each (data 

ACCEPTED M
ANUSCRIP

T



10 

 

dependent acquisition; exclusion time 10 s) and collision energy (HCD) of 30 and 60.  The 

data were converted into mzML format divided into positive and negative ion data using a 

batch processing script running ProteoWizard 3.0.7665. An in-house XCMS / Camera script 

was used for alignment of the MS-only data into one raw matrix per ion form (csv format). 

This matrix was imported into the Matlab based DIMS_Pipeline_1_4beta, in which a blank 

filter and a sample filter (100 % in at least one group) were applied. This output was searched 

against the KEGG, BioCyc / A. thaliana, and Lipid Maps databases using our MI-Pack 

annotation software (3 ppm error margin) [21]. Some annotations were improved by 

comparison of collected MS/MS data with authentic spectra (MassBank, 

www.massbank.jp/?lang=en).  

 

2.5. Cell culture and experimental design.  

Human colon carcinoma Caco-2 cells (clone 1; passage 10–30; from Dr. M. Rescigno, 

University of Milano, IT) were seeded on multiwell plates (12 or 48 well plates from 

Corning-Costar, Corning, NY) pre-coated with type I collagen (Sigma-Aldrich) at 60,000 

cells/cm2, as in Martirosyan et al. [22]. Cells formed mono-cultures, which were used as 

confluent, fully differentiated after 21 days. Cultures were washed twice with phosphate 

buffered saline (PBS) and for the ethanol (EtOH) toxicity experiments, 10% EtOH (v/v) in 

HBSS was added in the presence or absence of different concentrations of the plant extracts; 

cells were then incubated for 1h at 37 °C.  

For the inflammation induction experiments, 21 days fully differentiated Caco-2 cells 

were incubated for 1h at 37 °C with each plant extract at different concentrations in DMEM 

medium and following the medium was replaced by fresh DMEM with the inflammatory 

cocktail, consisting of IL-1β, TNF-α, IFN-γ and LPS (25 ng/ml, 50 ng/ml, 50 ng/ml and 1 

μg/ml, respectively) for 23h [14]. After incubation the medium was collected, centrifuged at 
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10,000 g and the IL-8 concentration was assessed by an ELISA kit (BD Biosciences 

Pharmingen, San Diego, CA) and normalized per protein amount of the cells as described 

elsewhere [22].  

 

2.6. Determination of cellular viability, metabolic activity, ATP levels.  

Caco-2 cells were grown in 48-well plates for 21 days and were incubated with HBSS  ± 10% 

EtOH  ± extract for 1h at 37 °C. The cell viability and metabolic activity were assessed via 

the neutral red (NR) lysosomal accumulation and the 3-(4,5 dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide (MTT) formazan crystals formation, respectively, while, ATP 

levels were determined by a luminescent-based assay. The treated cells, after washing with 

PBS, were incubated with: 

(i) NR (0.75 ml at 0.33 mg/ml, 3h). After washings NR was extracted in 50% ethanol:1% 

(v/v) acetic acid and absorbance was measured at 540 nm.  

(ii) MTT (0.36 ml at 0.8 mg/ml, 2h).  After washings the formazan crystals were solubilised 

in 0.3 ml DMSO:ethanol:0.9 M NaOH (1/1/1, v/v/v) and absorbance was measured at 

540 nm.  

(iii) HBSS (0.15 ml) for 15 min and then with the luciferin/luciferase substrates (0.15 ml). 

Luminescence was measured for 20 min according to manufacturer’s instructions 

(Promega).  

 

2.7. Determination of reduced thiols and enzyme activities.  

Caco-2 cells were grown in 12-well plates for 21 days and then incubated with HBSS ± 10% 

EtOH  ± extract for 1h at 37 °C and washed with PBS and homogenized by scraping in 500 

μM phenylmethylsulfonylfluoride, via sonication. The homogenate was cleared from cell 

debris by centrifugation at 12,000 g for 10 min and the supernatants were collected and 
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assayed for protein content [23] and oxidative stress related parameters as follows. The same 

procedure for the homogenization and oxidative stress markers determination was performed 

also for samples used for the inflammation experiments, which were also grown either in 12- 

or 48-well plates.  

GST activity was assayed by the kinetics of the formation of the complex S-(DNP)GS by 

the reaction of GSH with 1-chloro-2,4-dinitrobenzene in the presence of GST at 340 nm [24].  

Alkaline (ALP) and acid (ACP) phosphatases activities were determined by their 

transformation of p-nitrophenol phosphate in acetic pH 4.5 or boric acid pH 9.8 buffers, 

respectively, into p-nitrophenol, whose absorbance at 405 nm was measured after an 

alkalinization.  

The total pool of reduced thiols was quantified (due to sample availability and also as a 

holistic more reliable marker of thiol redox state than specific thiols) by their reaction with 

the aldrithiol reagent in 12 M formamide 50 mM acetic acid pH 4.5 buffer and the 

absorbance of the formed complex at 325 nm [25].  

 

2.8. Statistical analysis.  

Statistical analysis was performed using two-way analysis of variance (ANOVA) for post hoc 

pairwise comparisons with Bonferroni multiple comparisons correction to compare 

significance over the HBSS control in the absence/presence of plant  extract or 10% EtOH in 

the presence of plant extract, by means of the GraphPad prism program. Results were 

expressed as means ± SD of percentage of the HBSS control and considered statistically 

significant when the P<0.05. 

 

3. Results and Discussion  

3.1. Antioxidant and phytochemical properties of R. tripartita extracts  
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The extracts from stems, roots and leaves of R. tripartita were analyzed for their 

phytochemical components using biochemical approaches for each category of antioxidants 

moieties (Table 1). All extracts are rich in amounts of antioxidant compounds, which are 

responsible for their ferric ions and radical scavenging properties. Comparing the three 

extracts, the root seems more potent in antioxidant capacity, while the leaf and stem extracts 

are of similar antioxidant potential.  

 

Table 1. Phytochemical and antioxidant properties of the R. tripartita extracts.  

 Polyphenols Flavonoids Tannins Anthocyanins  FRAP 
ABTS•+ 

scavenging 

Leaf 5375 ± 290 154 ± 12 318 ± 38 0.254 ± 0.05 2872 ± 204 1.52 ± 0.08 

Root 7968 ± 366 1114 ± 73 670 ± 24 0.251 ± 0.018 4890 ± 161 2.26 ± 0.14 

Stem 6647 ± 185 495 ± 23 363 ± 10 0.079 ± 0.002 3025 ± 52 1.57 ± 0.13 

Total polyphenols were expressed as equivalents of nmoles gallic acid per mg dried extract. 

Total flavonoids and tannins were expressed as equivalents of nmoles catechin per mg 

dried extract. Total anthocyanins were expressed as mg cyanidin 3-glucoside equivalents 

per g extract. Ferric reducing antioxidant power (FRAP) was expressed as equivalents of 

Fe+2 per mg dried extract. ABTS•+ cation scavenging capacity was expressed as equivalents 

of scavenging capacity in nmoles gallic acid per mg dried extract.  

Data represent means ± SD (N=3, n=5, P<0.001).  

 

Combining NMR and LC-MS measurements we were able to detect specific metabolites 

in the three extracts studied. Annotated NMR metabolites are illustrated in  Figure 1, while 

the numerous peaks putatively annotated by LC-MS are summarized in the Venn diagrams 

for both positive and negative ion modes of detection (Figure 2) and in detail in 

supplementary (Supplementary Tables 1 and 2, Supplementary Figure 1).  

NMR analysis for metabolites characterization confirms the aforementioned trend for the 

antioxidant properties as the intensity of the phenolic region (6 to 9 ppm), which is directly 

linked to the total amount of material, higher in the root extract (Figure 1). Root samples are 

also characterized by much increased acetic acid and very low amount of shikimic acid 

compared to the other two extracts (Figure 1, B spectrum). Shikimic acid is an important 
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transitional biochemical metabolite involved in the metabolism of amino acids (in particular 

aromatic amino acids), tannins and alkaloid. The stem extract is clearly the most complex 

based on the NMR spectrum, and is mainly defined by high carbohydrates (especially 

fructose that has only been detected within this extract by NMR) and amino acids (Figure 1, 

A spectrum), and cytosine has only been detected in this extract. Finally, the leaf extract 

(Figure 1, C spectrum) is distinguished by very high shikimic acid amount and very low 

gallic acid content. Gallic acid is a phenolic acid, present in most plants and well known as an 

antioxidant agent.  

 

Figure 1. 1H NMR spectra from the analysis of stem (A), root (B), and leaf (C) extracts. 

Numbers correspond to the metabolites identified. 1: 3,4 dihydroxymandelic acid, 2: 

Acetylcarnitine, 3: Alanine, 4: Betaine, 5: Carnitine, 6: Choline, 7: Cytosine, 8: 

Cystathionine, 9: D-Glucose, 10: Fatty Acids, 11: Fructose, 12: Gluconic acid, 13: Gallic 

acid, 14: Isoleucine, 15: Malic acid, 16: Malonic acid, 17: Mannose, 18: Methanol, 19: N,N-
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Dimethylaniline, 20: N-acetylglucosamine, 21: Phenol , 22: Proline, 23: Quinic acid, 24: 

Shikimic acid, 25: Succinic acid, 26: Sucrose, 27: Threonine, 28: Threonic acid, 29: Xylose  

 

The LC-MS runs resulted in final matrices with 8717 features (defined by a unique 

combination of m/z value and retention time) in the positive and 5691 features in the negative 

ion mode. Only relatively few features appear in all three extracts, which is partly due to the 

XCMS settings filtering out weaker signals in the extracts concerned, but clear differences 

were already expected from the LC-MS profiles (Supplementary figure 1). There is a good 

overlap in the two ion modes (Figure 2). Although signal intensity does not necessarily 

correspond to compound concentration, it is noticeable that quite a few of the most intense 

signals are flavonoids or polyphenols. The most intense feature in negative ion mode and 

second-most intense in the positive ion mode has been annotated as a gambiriin, a catechin 

(Supplementary tables 1 and 2). This signal is higher in stem than in root extract though 

and therefore not a major cause of the activity. A good number of other features strongest in 

root extract have been annotated as catechins (flavonoids) and other antioxidants, e.g. the 

glycosylated flavonoids phlorizin and tribuloside, or procyanidin C1 (cinnamtannin A1). 

Examining only a subset of features, those that are KEGG annotated in all three extracts and 

present in both positive and negative ion modes, we find just four different flavonoids and 

one tannin, but 16 different phenolic compounds and several (acenaphthene-1,2-diol, 4-

hydroxymandelate, 4-hydroxyaminoquinoline N-oxide, 2-(acetamidomethylene)succinate) 

known reducing agents of NAD+ or NADP+ (Supplementary Table 3). While the individual 

annotations would be difficult to confirm at this point (basically requiring authentic 

standards), it is clear that many different, potentially active compounds are present in the 

extracts, including some of the most intense signals.  
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The current dataset is too small to allow a statistical correlation between compound classes 

and activities; it would require labor-intense assay-driven purifications to determine the most 

active compounds in this mix. A relatively small overlap with the NMR results was expected, 

as this is a technique mostly complementary to reversed-phase LC-MS.  

 

Figure 2. Venn diagrams of metabolites putatively annotated by LC-MS in positive and 

negative ion modes for stem (yellow), root (red) and leaf (green) extracts.  

 

3.2. Cytoprotective effects of R. tripartita extracts on EtOH-induced stress  

Initially the cytotoxicity of EtOH was evaluated by the lysosomal accumulation of the neutral 

red (NR) dye (Figure 3), and 10% (v/v) EtOH was chosen as a working condition for the 

following experiments as a concentration that is in the order of magnitude used in 

experiments in this cell line [26, 27]. Furthermore, the plant extracts used were also tested by 

NR for possible toxicity, and were found not to be toxic upon 1h exposure in saline (i.e. 

HBSS) and even up to 24h in culture medium (i.e. DMEM). This was necessary to establish 

the range of non toxic concentrations of the extracts for our experiments within the chosen 

range (0.8-6.4 mg extract/ml).  
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Figure 3. Cytotoxicity of EtOH on Caco-2 cells. Cytotoxicity was assayed by lysosomal 

accumulation of neutral red (NR) in fully differentiated confluent Caco-2 cells exposed for 1h 

to EtOH (0-14% v/v). Data represent means ± SD (N=3, n=5, P<0.001). *Samples 

significantly different from the HBSS control.  

 

The cytotoxic effect upon exposure of fully differentiated confluent Caco-2 cells to EtOH 

was reverted upon addition of increasing concentrations of the plant extracts, with the root 

extract being the more potent, as shown by both NR and MTT tests (Figure 4). Considering 

the metabolic activity, it seems that the extracts stimulate the cellular metabolism, which is 

decreased (due to toxicity) by EtOH. This effect is mirrored in the decrease of ATP. 

However, considering ATP, all three extracts decrease intracellular ATP levels with the stem 

causing the minimum decrease.   
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Figure 4. Protective effects of plant extracts on EtOH-induced cytotoxicity. Cytotoxicity was 

assayed by the lysosomal accumulation of neutral red (NR), metabolic activity (MTT crystal 

formation), and ATP levels in fully differentiated confluent Caco-2 cells exposed for 1h to 

EtOH (10% v/v) in the presence or absence of plant extracts (0-6.4 mg/ml). Data represent 

means ± SD (N=3, n=5) of values expressed as a percentage of the HBSS control. Samples 
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statistically significant were detected in the absence/presence of EtOH from the HBSS 

control (*) or only for the presence of EtOH over the 10% EtOH in the absence of extracts (#) 

using 2 way ANOVA (p>0.05).  

 

A more thorough determination of the reduced thiol pool as well as thiol-related EtOH 

metabolizing enzymes (e.g. GST) would provide a more detailed picture of the oxidative 

effects of EtOH on intestinal cells and their response over co-administration of plant extract 

material (Figure 5).  
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Figure 5. Impact of plant extracts on thiol redox state, glutathione-S-transferases and 

phosphatases of fully differentiated confluent Caco-2 cells. Reduced thiols, glutathione-S-

transferase (GST), and acid (ACP) and alkaline (ALP) phosphatases activities were assayed 

in confluent Caco-2 cells exposed for 1h to EtOH (10% v/v) in the presence or absence of 

plant extracts (0-6.4 mg/ml). Data represent means ± SD (N=3, n=5) of values expressed as a 

percentage of the HBSS control. Samples statistically significant were detected in the 

absence/presence of EtOH from the HBSS control (*) or only for the presence of EtOH over 

the 10% EtOH in the absence of extracts (#) using 2 way ANOVA (p>0.05). 

 

EtOH was shown to induce a significant increase in the activities of GST and ALP, while 

there was no significant change in reduced thiols content and ACP activity. The increase of 

GST activity by EtOH has also been observed in vivo in rats [8, 9] and could be attributed to 

a response of the cells against the possible production of acetaldehyde upon oxidation of 

EtOH. Furthermore, ALP activity has also been detected to be increased due to EtOH in other 

human colon carcinoma cell lines [28] and rats in vivo [29], while in humans its increase has 

been associated with certain medical conditions such as liver-associated diseases [30]. 

Although the function of this elevated level remains not clear, in the intestinal cells, a 

comparable increase in the activity of ALP was observed upon exposure of Caco-2 cells to 

silver nanoparticles[31].  

The treatment with various plant extracts resulted in different cell responses. The 

administration of the leaf extract in the absence of EtOH, decreased reduced thiol levels and 

ACP and ALP activities, as those of GST but at higher doses. For GST, a dual behavior 

(initial increase followed by decrease at high concentrations of the extract) was observed 

upon co-administration of EtOH together with the extract. The root extract did not alter the 

levels of GST, but in the case of co-administration with EtOH, it increased GST more than 
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the leaf extract. In contrast to the leaf, the root extract decreased less the ACP and ALP 

activities in the absence of EtOH and increased them more in the presence of EtOH. Finally, 

the stem extract did not decrease significantly reduced thiols, but increased GST in the 

presence of EtOH more than the other extracts, and showed a similar action with the root 

extract for ACP and ALP activities (with less increase in the presence of EtOH).  

In other studies, the effect of EtOH and acetaldehyde on the integrity and functions of the 

tight junctions in intestinal cells was also assessed [32, 33]. The disruption of the tight 

junctions barrier would allow increase in epithelial permeability to hydrophilic substances in 

the gastric and the intestinal lumen as well as possible passage of toxic substances. In our 

experiments, we detected both a 70% decrease in the transepithelial electrical resistance 

(TEER) and the paracellular passage of phenol red of 4.6 fold and 16 fold from apical to 

basolateral and basolateral to apical, respectively due to EtOH toxicity (data not shown). In 

vitro, EtOH-induced toxicity results in loss of cellular integrity in intestinal cells as shown by 

ZO-1 expression, paracellular dye passage and transepithelial electrical resistance (TEER) 

decrease [26, 27]. In this context, alcohol may change the pharmacokinetics and 

bioavailability of drugs through changes in gastrointestinal system as shown for opioid and 

other drugs [34, 35] and the impact of ethanol metabolism and drug interactions outside of 

the liver should be taken into account.  

Plant extracts are multicomponent systems, and some have bioactive effects such as 

hepatoprotective and antioxidant properties in vivo against EtOH-induced toxicity [9, 10]. For 

R. tripatita, we have previously shown that the root bark extract protects over EtOH-induced 

ulcer in rats,[11] while others demonstrated its antifungal and antibacterial properties [4, 6]. 

 

3.3. Anti-inflammatory properties of R. tripartita extracts  
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Intestinal epithelial cells play an important role in the immunological inflammatory response 

of the gut especially after shock and trauma. EtOH toxicity is a significant contributing factor 

and may increase the appearance of posttraumatic complications. EtOH has been shown to 

induce inflammatory responses in both in vitro and in vivo models. Amin et al.[36] showed 

that low (<2%) EtOH concentrations induce pro-inflammatory cytokine (TNFα and IL-6) 

release and barrier dysfunction. However, in our effort to detect IL-8 after 1h exposure to 

EtOH and a total 24h post EtOH exposure, no detectable amount of IL-8 was present in the 

culture medium of Caco-2 cells. Therefore, to estimate if the plant extracts could have an 

anti-inflammatory effect, we imposed the cells to a severe inflammatory condition using an 

inflammatory cocktail [14]. As shown by the secreted IL-8 level, a decrease was observed 

upon the administration of the EGGC, as positive control, but also in a dose-dependent 

manner when the plant extracts were administered (Figure 6). This clearly shows the anti-

inflammatory protective role of the extracts. The leaf extract seems to be the more potent 

followed by the root extract, while the least anti-inflammatory is the stem extract.  
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Figure 6. Preventive anti-inflammatory effects of the plant extracts. IL-8 levels secreted by 

Caco-2 cells incubated for 1h to plant extracts (0.8-6.4 mg/ml) and then exposed for the 

following 23h to an inflammatory cocktail, in the absence of the extract. Data represent 

means ± SEM (N=3, n=4, P<0.001) of values expressed as a pg IL-8 normalized per mg cell 

protein. *Samples significantly different from the corresponding cocktail (C) in the absence 

of extract. EGGC (E) was used as a control of anti-inflammatory vegetal substances, while 

cells were grown also in medium in the absence of inflammatory cocktail (M) as a negative 

control for induction of inflammation.  

 

4. Conclusion   

This research study showed, for the first time, the chemical composition of R. tripartita 

different tissues and their protective effects on EtOH-induced cytotoxicity and inflammation 

on intestinal cells. The root, leaf and stem extracts of R. tripartita showed high amounts of 

antioxidant compounds, with the root extract having the higher antioxidant capacity. The 
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aforementioned observations are strengthen by the putative annotation of compounds by 

NMR and LC-MS. The extracts protected dose-dependently fully differentiated confluent 

Caco-2 cells against EtOH-induced cytotoxicity and stimulated the cellular metabolism that 

was decreased upon EtOH exposure. The extracts had different effects on reduced thiols 

contents and on GST, ALP and ACP activities in the absence or presence of EtOH. These 

different cellular responses could be attributed to differences between the extracts’ contents 

and/or to a possible interaction of EtOH with the pharmacokinetics of the extracts. The 

extracts of R. tripartita showed a powerfull anti-inflammatory activity as revealed by a dose-

dependent decrease in the levels of IL-8.  
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