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Robot Learning from Demonstrations: Emulation Learning
in Environments with Moving Obstacles

Amir M. Ghalamzan E.a, Matteo Ragagliab

aUniversity of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
bYanmar R&D Europe, Viale Galileo 3/A, Firenze, 50125, Italy

Abstract

In this paper, we present an approach to the problem of Robot Learning from Demon-
stration (RLfD) in a dynamic environment, i.e. an environment whose state changes
throughout the course of performing a task. RLfD mostly has been successfully ex-
ploited only in non-varying environments to reduce the programming time and cost,
e.g. fixed manufacturing workspaces. Non-conventional production lines necessitate
Human-Robot Collaboration (HRC) implying robots and humans must work in shared
workspaces. In such conditions, the robot needs to avoid colliding with the objects that
are moved by humans in the workspace. Therefore, not only is the robot: (i) required
to learn a task model from demonstrations; but also, (ii) must learn a control policy to
avoid a stationary obstacle. Furthermore, (iii) it needs to build a control policy from
demonstration to avoid moving obstacles. Here, we present an incremental approach
to RLfD addressing all these three problems. We demonstrate the effectiveness of the
proposed RLfD approach, by a series of pick-and-place experiments by an ABB YuMi
robot. The experimental results show that a person can work in a workspace shared
with a robot where the robot successfully avoids colliding with him.

Keywords: Robot Learning from Demonstration, Dynamic Environment, Moving
Obstacles

1. Introduction

State-of-the-art Robot Learning from Demonstration (RLfD) approaches (e.g. Gams
et al., 2015; Rai et al., 2016) enables a robot to learn a task and obstacle avoidance
model from human demonstrations. Nevertheless, these approaches do not tackle the
problem in varying environments where humans move objects while the robot is per-
forming the task. As the common vision for the future of robotics suggest robots should
work in non-stationary environments in collaboration with humans (e.g. Maeda et al.,
2017), we present an incremental approach to RLfD (Incremental Robot Learning from
Demonstration (IRLfD)) that enables a robot to learn from demonstrations: (i) a task
model; and (ii) a control policy for avoiding stationary obstacles. In addition, we ex-
tend the control policy such that the robot is capable of avoiding moving obstacles.

For instance, if we consider a human provides a YuMi robot with sufficient demon-
strations to perform a pick-and-place task (as shown in Fig. 1), this exemplifies a pos-
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Figure 1: (a) a human demonstrates the manipulation task by the ABB YuMi robot. A cylindrical object is
considered as an obstacle fixed on the table during the demonstration; (b) the robot performs the task while
avoiding a collision with the moving obstacle using the model learnt from the demonstration. Although the
obstacle is intentionally moved by human to make collision with the robot, the proposed approach effectively
deals with it and allows a successful completion of the task without any collision. (c) shows the trajectory of
the pick-and-place task with an stationary obstacle (red line) and without an obstacle (black line).

sible situation in a future production line in which a human needs a robot to take over
his job (e.g. picking up an object, which moves on a conveyor belt, and placing it in
a box) for a few hours. Thus, to teach the task to the robot he demonstrates the task
a few times (Fig. 1(a)). Then, the robot is desired to adaptively perform the task in
collaboration with other human workers; i.e. robot performs the task while humans are
changing the state of the environment by moving objects in robot workspace. Teaching
a robot how to perform the pick-and-place task in a dynamic environment is very chal-
lenging and demanding (Wheeler et al., 2002). Here, we assume that a sophisticated
vision system in real time provides the robot with the state of the environment, namely
start and goal points and the position of stationary and moving objects.

The contribution of this paper is thus the incremental robot learning from demon-
stration for performing the demonstrated task in a dynamic environment (IRLfD-DE).
In IRLfD, a robot learns (i) a task model and (ii) a control policy only to avoid collid-
ing with stationary obstacles. The IRLfD-DE presented in this paper generalises the
model such that it can generate a trajectory needed to perform the task in an environ-
ment with moving obstacles. By contrast, other approaches (e.g. Gams et al., 2015; Rai
et al., 2016) including IRLfD enable a robot to perform the task just in the presence of
stationary obstacles using the model learnt from demonstrations.

We extend the IRLfD by (i) using an object tracker from OpenCV, which provides
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us with a reasonably fast real time estimation of an obstacle’s position; (ii) utilising
a linear Kalman filter providing a prediction of future positions of the obstacle in a
time horizon and filtering the noise from the obstacle’s position estimated by the ob-
ject tracker; and (iii) by reformulating the utility function of the IRLfD to deal with
the uncertainty of the estimated obstacle’s position. The obtained control system ro-
bustly copes with moving obstacle while performing a task by the model learnt from
demonstrations. We demonstrate the effectiveness of the extended approach by the
pick-and-place example, shown in Fig. 1(a); where the robot successfully performs the
task using the learnt model while a human is moving an object in the workspace of the
robot. The movements of the obstacle may not be linear, as shown in the accompanied
video of the experiment with the YuMi robot. Although we considered a linear model
in the control system, our experiment shows the robot successfully performed the task
while a human was moving an object in the robot’s workspace, due to the uncertainty
included in the learnt model.

The remainder of this paper is organised as follows: firstly, we present an overview
of the works on RLfD in section 2 and the relation between the observational learn-
ing and the IRLfD-DE in section 3; then, the IRLfD is formulated in section 4 and
it is extended to a dynamic environment (IRLfD-DE) in section 5. The effectiveness
of IRLfD-DE is demonstrated by series of experiment in section 6. In section 7, we
discuss the performance of the approach and the experimental results presented in sec-
tion 6. Finally, we present our conclusions and propose some directions for future
works in section 8.

2. Related works

The problem of generating a trajectory necessary and sufficient for a robot to per-
form a task while it avoids having a collision with obstacles has been studied in the do-
mains of the relevant literature: e.g. (i) motion planning, such as RRT* (Karaman and
Frazzoli, 2010), CHOMP (Ratliff et al., 2009) and STOMP (Kalakrishnan et al., 2011);
and(ii) robot learning from demonstration (Rai et al., 2014; Byravan et al., 2015; Gams
et al., 2015; Tanwani and Calinon, 2016). The optimisation based approach has been
illustrated to be effective in many robotic contexts, including industrial manipulation
where the manipulator’s workspace condition is fixed and known a priori. However, it
may not be pragmatically useful where a robot needs to perform different tasks as per
user need and desire, in an unknown environment and in collaboration with humans. In
this regard, RLfD (e.g. Kober et al., 2012; Krug and Dimitrov, 2015) has been shown
to be practically a useful means of providing a user with the flexibility of programming
a robot by only demonstrating the desired performance behaviour of a new task.

For instance, Tanwani and Calinon (2016) studied the semi-tied Gaussian mix-
ture models for learning a robotic manipulation task from multiple demonstrations,
where the robot can adaptively replicate the task in a different situation, including
different start and goal poses and with a simple stationary obstacle. Furthermore, in-
verse optimal control (IOC), also known as inverse reinforcement learning, learns a
utility function from demonstrations. This utility function is then used to generate ac-
tions every time a robot must perform the demonstrated task (Ng and Russell, 2000;
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Abbeel and Ng, 2004; Ziebart et al., 2008). However, the computational cost is a ma-
jor challenge in IOC. Byravan et al. (2015), for example, proposed an approach of
IOC which was utilised for manipulating an object in a cluttered and stationary envi-
ronment. Although IOC approaches (e.g. Tanwani and Calinon, 2016; Byravan et al.,
2015) showed promising results for learning a model of a task and obstacle avoidance
from demonstrations, they only showed successful experiments with stationary con-
straints/obstacles.

Dynamic movement primitives (DMP), also known as imitation learning, enable a
robot to learn skills very similar to those of humans. These DMP aim at producing a
trajectory in real-time similar to that which is demonstrated. There are a number of
methods that combine DMP with a defined control policy of avoiding a collision with
an obstacle (e.g. Calinon et al., 2010; Guenter et al., 2007; Kormushev et al., 2010;
Park et al., 2008). For instance, Hoffmann et al. (2009) added an acceleration term to
the equations of motion in the DMP formulation to avoid a collision with a moving
obstacle. Although these proposed approaches enable a robot to avoid colliding with
an obstacle with a predefined obstacle avoidance control policy, a non-expert cannot
teach a robot his/her own desired policy of avoiding a collision with different objects
just by demonstration.

A stream of research learns the parameters of a coupling term of the obstacle avoid-
ance control policy added to the DMP formulation. For example, Fajen and Warren
(2003) proposed a 2-D dynamical model to describe human behaviours of steering to-
wards a goal point while avoiding a collision with an obstacle. This obstacle avoidance
function is used as a repulsive force term in combination with DMP (Pastor et al.,
2009). Moreover, Rai et al. (2014) extended this result to 3-D and augmented the reac-
tive feedback coupling term with DMP, where the corresponding parameters are learnt
from human demonstration. They show the DMP converge to the goal point if the
obstacle is stationary. Gams et al. (2015) learned the coupling term of feedback and
feedforward control from human demonstrations by a statistical learning approach. Rai
et al. (2016) used DMP and neural networks to represent a skill and to learn a policy
from human demonstrations, consecutively. However, these works propose a solution
that results in a general modification of the demonstrated trajectory, despite the fact
that in some cases a local deviation from an obstacle-free trajectory is necessary and
sufficient for a robot to perform a task, e.g. the pick-and-place task with the YuMi
robot.

By contrast, Ghalamzan et al. (2015) presented a modular approach, namely IRLfD,
that results in local modification of the trajectory for avoiding an obstacle. This method
includes: (i) regression, (ii) DMP and (iii) obstacle avoidance modules. Although
one could use a unified approach combining all the modules, generalisability is the
main benefit of keeping independent modules of RLfD. Furthermore, the precision and
performance of every module can be independently analysed. On the contrary, an end-
to-end solution learning a model for a specific problem, e.g. Levine et al. (2016); Gu
et al. (2016), may not be easily analysed and/or its parts cannot be used for different
tasks.

Although these existing methods learn efficiently the models of the task and ob-
stacle avoidance from demonstrations, they do not face a moving obstacle. Here, we
extend the IRLfD such that our novel approach copes with moving obstacles in addition
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to stationary obstacles. Thus, it learns a model of the task and an obstacle avoidance
policy from human demonstrations and generalises it to a scene1 with a moving obsta-
cle. Here, we only discuss the problem of collision avoidance in robot’s operational
space between a moving obstacle and an object to be manipulated during the task ex-
ecution. Obstacle avoidance in the configuration space can be successfully dealt with
using a motion planner, (e.g. Ratliff et al., 2009; Kalakrishnan et al., 2011). In fact, the
obstacle avoidance behaviour in the configuration space cannot be human-like because
the robot’s and the human’s body are not identical. Therefore, obstacle avoidance in
the configuration space is always optimally programmed beforehand, e.g. by using the
kinematic redundancy of the robot. On the contrary, to avoid a collision between an
obstacle and the object to be manipulated is most often task specific and a user usually
needs to program it very fast in the robotic site. Our approach provides a robot with this
capability and allows a user to teach the robot a task and obstacle avoidance behaviour
by demonstration; whilst the robot can generalise the learnt model to new start and goal
points in an unseen environment with stationary and moving obstacles. Generalisation
of the learnt model to an environment with a moving obstacle is the main contribu-
tion of this paper. We show the effectiveness/usefulness of the proposed approach by a
series of manipulation experiments in an environment with a moving obstacle.

3. Relation between IRLfD-DE and observational learning

Schaal (1999); Billard et al. (2008); Argall et al. (2009) present broad overviews of
research on generalising demonstrations to a new environment. Thanks to these studies
and according to the studies of human Observational Learning (OL) (e.g. Thompson
and Russell, 2004; Whiten et al., 2009), we identify different levels of generalising a
demonstrated task under different conditions of an environment: (i) mimicking, (ii) imi-
tation and (iii) emulation. This indicates that humans (i.e. learners) do not learn a single
complex model from demonstrations (i.e. a behaviour model). Similarly, we consider
three modules of robot learning from demonstrations (Fig. 2). Mimicking (Whiten
et al., 2009) is the copying of a model’s body movements. Thompson and Russell
(2004) identified that mimicking must involve no conceptualisation by the observer
concerning the purpose of the action. Hence, it may not be possible to accomplish the
task in a new environment through the mimicking alone. In the early 60s, robots used a
recorded trajectory to perform a task in a fixed industrial environment (Tanner, 1981).
This corresponds with the mimicking in OL. For example, a new position of the object
to be picked causes a failure when repeating the pick-and-place by using a recorded
trajectory. A regression approach (e.g. Calinon, 2009; Billard et al., 2016) can be used
to compute a smooth nonlinear principal trajectory from a dataset collected from noisy
human demonstrations. We recognise such approaches as a mimicking RLfD.

Imitation learning has been defined by Whiten and Ham (1992) as a goal-oriented
copying the form of an observed action. In imitation learning, an observer is assumed
to be able to recognise what the form of the model’s movements is bringing about and
use that to carry out the task. This is analogous to a traditional dynamic movement

1The terms ‘scene’ and ‘environment’ are interchangeably used throughout this paper.
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Observations/Demonstrations

Mimicking: A mean of observations/demonstrations

Emulation: New constrain of environment Imitation: New task constraint

Task execution

Figure 2: A schematic of the learning processes recognised in observational learning such as mimicking,
imitation, and emulation. The arrows show information follows; whereas double-sided arrows show that
information flows in both directions. In the mimicking, an agent just copies a mean of observations without
preserving the purpose of the action. Hence, it may not successfully perform a task if the environment
changes. In the imitation, the learner recognises what the form of the model’s movements is bringing about
and uses that to carry out the task. In the emulation, the observer replicates the expected results of the
model’s action. The execution is a result of combining all these components.

primitives (Schaal, 1999) which can generalise a trajectory such that it satisfies new
task constraints, e.g. a new goal point. It has been proved in neuroscience (e.g. Thor-
oughman and Shadmehr, 2000) that the brain can produce desired motor commands by
combining motor primitives. This is the core idea of DMP.

In emulation learning, the observer replicates the expected results of the model’s
action (Whiten et al., 2009). In the motivating example presented in the introduction
section, emulation corresponds with learning the capability of adapting the trajectory
to suit an environment with some obstacles from the demonstration.

Lastly, many intelligent and context-specific responses of humans to different stim-
uli during a task execution are consistent with the theoretical framework of optimal
control (Todorov, 2004) based on the studies of sensorimotor learning in cognitive
psychology and neuroscience. Prediction provides the brain with expected sensory
consequences. The corresponding motor commands are then used to obtain the de-
sired consequences (Flanagan et al., 2003). Likewise, to perform the task (learnt from
demonstrations) in a dynamic environment, we propose a system, including state pre-
dictions and the control system using these predictions for generating necessary actions
for performing a task robustly.

4. Problem formulation

In the pick-and-place example (1(a)), the robot repeats the task by using a fixed
sequence of end-effector poses in an invariant environment. Performing the task in this
nominal environment imposes some constraints on the robot movements, which is de-
noted by Cn and called task constraints. For instance, the initial and desired pose of the
object determines the initial and terminal points of the trajectory. Cn is invariant across
different demonstrations if the initial and desired location of the object to be manipu-
lated does not change. In mimicking module of IRLfD, a recorded trajectory (called
demonstration) satisfying Cn is thus sufficient for the robot to perform the task (this is
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Figure 3: A sample trajectory of a robot’s end-effector (top left) that is used as a nominal trajectory to
perform a task; its corresponding 2-D path (top right); the trajectory along the first main axis (bottom left)
and the trajectory along the second main axis (bottom right).

called mimicking). If the demonstration is noisy, a regression approach (e.g. Gaussian
process) can compute a smooth trajectory from a few collected demonstrations.

Fig. 3 shows a simulated trajectory that is assumed to be sufficient for a robot to ma-
nipulate an object in a nominal environment. In the imitation module of IRLfD, a DMP
model is trained by this smooth trajectory. The model is then used to generate a new
smooth trajectory for a new start or terminal points (Fig. 10(e)). The task constraint Cn
is determined by the initial and desired location of the object to be manipulated. Let’s
denote by ζ N the smooth trajectory generated by either imitation or mimicking module
and call it nominal trajectory, as shown in Fig. 3. The spatial part of the nominal trajec-
tory, its tangent- and cotangent-space (normal to tangent space) is shown in Fig. 4(a).
We hypothesise that a Utility Function (UF) can generate a trajectory, denoted by ζu,

that satisfies the constraints imposed by both a task and an environment. IRLfD showed
that the parameters of a UF can be computed by minimising the distances between the
demonstrated trajectories and the obtained trajectory. This utility function forms an
attractive field around ζ N as per eq. (1).

UI (xk) =
(
xk−xN

k
)T (

xk−xN
k
)

(1)

where xN
k ∈ ζ N , 1 ≤ k ≤ Te and Te is the number of samples of ζ N .

(
xk−xN

k

)
⊂ Nk

and Nk is orthogonal to a tangent space of ζ N at xk. The cotangent space of trajectory
in Fig. 3 is shown with the red dash-dotted lines in Fig. 4(a). The quadratic utility
function is an imitation module of IRLfD. It is denoted by UI and for this example is
visualised in Fig. 4(b). In addition, the solution to this UF (ζU ), which is identical to
ζ N , is shown with the red line in this figure.
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Figure 4: Nominal trajectory (blue thick line), its corresponding cotangent-space (black dashed line) and
tangent-space (red dash-dotted line) are shown in Fig. (a). Fig. (b) shows a quadratic utility function formed
around the nominal trajectory (red thick line) resembling a task constraint. The region with colder colour
(dark blue) represents the utility with low-cost value. The red dash-dotted lines in Fig. (a) represent the level
sets of this utility function. Fig. (c) represents the contour of the emulation utility function of four obstacles
added to the environment. The emulation utility function represents the scene constraint of avoiding an
obstacle in accordance with obstacle shapes, sizes and positions. In this figure, the nominal trajectory, that
collides with the obstacle on the right-hand side of the figure, and an example trajectory, which avoids
collision with the obstacles, are shown with red and green lines, consecutively. Fig. (d) shows the contour of
the total utility function and a trajectory (red dashed line) that avoids a collision with the obstacle o1, located
on the right-hand side of the figure y1 = [1.5,−0.25], while it has the minimum distances to the nominal
trajectory.

By contrast, a set of constraints varying across different demonstrations is called
scene constraints, denoted by Cd ,∀ d = 1, ...,ndem where ndem is the number of demon-
strations. For instance, avoiding a collision with an obstacle poses constraints on robot
movements during performing the pick-and-place example. In Fig. 4(c), different types
of obstacles are added to the scene where their location may change across different
task performances. In Fig. 4(d), this constraint results in a trajectory response in ac-
cordance with the obstacle position and orientation (y1), and obstacle type, labelled by
o1. Nonetheless, the initial and terminal point of the trajectories in Fig. 4(b) and 4(d)
are identical because these are the points at which the object to be manipulated must be
picked up and placed. These constraints, namely task constraints, are independent of
the positions of the obstacles, which are called scene constraints. Although ζ N shown
with the red line in Fig. 4(b) satisfies the task constraints, it does not satisfy the scene
constraints caused by the obstacle shown by o1 and results in a collision (Fig. 4(d)). A
trajectory computed by a planner is shown by the green line in Fig. 4(c) that avoids the
collision. However, this trajectory does not allow the robot to pick up and deliver the
object at the desired poses, i.e. it does not satisfy the task constraints. A Gaussian term
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is thus added to the UF which allows obstacle avoidance in IRLfD, as per eq. (2). This
term is denoted by UE and called emulation component of the UF and has a covariance
matrix θ to be learnt from demonstrations.

UE
(
fk : ζ N ,{θ ,y}

)
= e(−fT

k θ−1 fk) (2)

where fk = (xk− y) is a vector of the environmental features and y is the position of
an obstacle. Parameter θ in eq. (2) allows for learning an influence of an obstacle on
the UF in accordance with the shape and size of the obstacle. For each obstacle, one
emulation term is added to the imitation utility function that is presented in eq. (2).
Therefore, the final UF may include many emulation terms, according to the number
of obstacles (nobs) that exist in the environment, as per eq. (3). For instance, Fig. 4(d)
visualises the UF for the task, whose nominal trajectory ζ N is shown in Fig. 4(a), where
4 types of obstacles added to the scene.

U
(
xk : ζ N ,{θ j,y j} j∈[1,nobs]

)
=
(
xk−xN

k
)T (

xk−xN
k
)
+

nobs

∑
j=1

e
(
− jfT

k θ−1
j jfk

)

(3)

A solution trajectory to this utility function ζU(θ ,y) is the desired trajectory of the robot
end-effector that satisfies task and scene constraints. We use ζU instead of ζU(θ ,y) for
the sake of simplicity of the notation.

4.1. Computing Parameters of UF from Demonstrations

To perform the task without a collision with an obstalce in the robot’s workspace,
the robot trajectory must deviate from ζ N . This results in a trajectory which is denoted
by ζU . The deviation is in accordance with the position y and the shape and size
of the obstacles; it is characterised by a Gaussian term in the UF with parameter θ .
Ideally, a utility function estimated from demonstrations is desired to produce a similar
behaviour in response to an added obstacle. Thus, we compute the parameters of the UF
as per eq. (4) by minimising the distance between a trajectory generated by the UF in
eq. (3) and the demonstrated trajectory. We align trajectories by dynamic time warping
and build a signal of distances between corresponding points of the trajectories, i.e.
e(k) = ζU (k)− ζd(k) where yd and θd are the position and parameters corresponding
with the jth obstacle.

θi = argmin
θ

ndem

∑
d=1

td

∑
k

(‖e(k)‖2 +‖e(k)‖∞) (4)

In eq. (4), we assume that all the obstacles have identical shape and size, i.e. they
belong to one object class. If there are more than one object class in the scene, θ for
each obstacle class is computed by eq. (4). We also presume that the class of each
obstacle is given, e.g. a computer vision algorithm provides a class label for each
obstacle. For instance, two obstacles belonging to different object classes are used in
the experiments with UR5 in section 6 whereas one obstacle is used in the experiments
with Yumi.
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We use a numerical optimisation approach (minConf ) with a quasi-Newton strategy
and limited-memory BFGS updates Schmidt (2010). Ghalamzan et al. (2015) proposed
to use only L2 norm of the error signal. This has a very small and even a zero gradient
in some parts of the parameter space θ . Hence, the algorithm converges only with some
initial conditions and the gradient-based optimisation method is not an appropriate
approach for parameter computation. By definition, an obstacle has a local influence
on the utility function and as a result, L∞ norm of the error signal produces a non-zero
gradient where ζU and ζd are different. If ζU converges to ζd , this L∞ term goes to
zero. In fact, it helps the convergence very much and has negligible influence on the
computed optimal parameters. Consequently, we experienced a convergence behaviour
much better than Ghalamzan et al. (2015) by adding L∞ of the error signal in eq. (4).
Even though demonstrations may be noisy, the recovered utility function is desired to
generate noiseless trajectory.

5. Extension to dynamic environments

Similar to proposals in studies of sensorimotor learning in cognitive psychology and
neuroscience (Todorov, 2004; Wolpert et al., 2011), we design the reproduction phase
to cope with the moving obstacles. The approach proposed by Ghalamzan et al. (2015)
is an open loop strategy in which the position of the obstacle is assumed to be known
before generating a collision-free trajectory and it does not change during the whole
experiment. By contrast, we postulate that a skill, which is learnt via a utility function
for a static scene, can be generalised to a dynamic environment by extending the UF
to include a feedforward and a feedback strategy. Thus, we separate a learning phase
from the reproduction phase of our model, as shown in Figs. 5(a) and 5(b). This is very
useful because the learning process occurs in a stationary scene, while the robot can
perform the task in a dynamic environment by extending the model. Eventually, the
robot can use this extended task model and perform the task in a very complex scene
with many moving obstacles.

In Fig. 1, the robot is tasked with manipulating the white object while a human
is moving a cylindrical red object (which we refer to as an obstacle). In Fig. 1(b), a
human is moving the obstacle on the table. We use an off-the-shelf RGB camera to
collect sensory information about the obstacle position during the experiment. This
is used to build a real-time feedback control strategy. The camera is calibrated in the
robot workspace using the camera calibration toolbox of MATLAB. An object tracker
uses the images acquired by the camera and estimates the positions of the obstacle at
each time, denoted by y j(k). The object tracker applies a colour filtering algorithm,
which is part of the OpenCV library. To filter the noisy signal provided by the object
tracker, a Kalman filter (KF) is also designed to provide a noiseless estimation of the
position of the object, denoted by ŷ j,0(k), that eventually is used as a feedback control
strategy in eq. (5).

Ufb
(
xk : ζ N ,Ω̂

)
=
(
xk−xN

k
)T (

xk−xN
k
)
+

nobs

∑
j=1

e
(
−f̂T

j,0(k) θ−1
j f̂ j,0(k)

)

f̂ j,0(k) =xk− ŷ j,0(k)

(5)
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Figure 5: A scheme of the incremental robot learning from demonstration inspired by observational learning.
In Fig. (a), D = {ζ1, ...,ζNdem} is a set of demonstrated trajectories of a task. There are three levels of
learning from observation/demonstrations: mimicking: a learner builds a model which is the mean of the
observations, denoted by ζ N . Imitation: the mean of the observations is then generalised, denoted by ζ N

U , to
satisfy CN which is different from the demonstrations. Emulation: the trajectoryt generated via imitation is
used in combination with the environmental features to build a Utility Function (UF). The UF can generate a
trajectory that satisfies Cd , denoted by ζU . Fig. (b) shows the generation schematic that extends the approach
to deal with a moving obstacle. This includes a camera, an object tracker, a Kalman filter, a model predictive
and an inverse kinematic block. More details of these blocks are presented in Fig. 6(b). YuMi image is taken from

http://cobotsguide.com/2016/06/abb-yumi/.

where Ω̂ = {Ô1, ..., Ônobs} and Ô j = {ŷ j,0(k),θ j}. A prediction of the future positions
of the object is then included in the UF which we refer to as feedforward. The pre-
dictions are provided by a linear model of the KF, denoted by {ŷ j,1(k), ..., ŷ j,tP(k)} =
KF (y j(k)) where tP is the prediction time horizon. However, the obstacle movements
may not be linear. Thus, an uncertainty about the obstacle position is included in the
UF by incorporating a summation of the UF over some samples of the predicted posi-
tions; the samples are normally distributed around the values computed by the KF and
denoted by ỹ j,t,s(k) =N (ŷ j,t(k),σt) where t = 1, ..., tP. The uncertainty bound is char-
acterised by σt = σa×t+σb where σa and σb are the parameters of the uncertainty and
can be set empirically. In Fig. 6(a), a sample utility function with uncertainty bound
(solid lines) and without uncertainty bound (dashed lines) are shown. In this figure, the
prediction time horizon is 5. The longer the prediction time, the bigger the uncertainty
bound. This implies that we have less confidence in the predicted values with a larger
prediction time. Finally, we use these samples in the UF as per eq. (6) to form the
feedforward control strategy based on the model learnt from demonstrations.

Uff
(
xk : ζ N ,Ω̃

)
=

nobs

∑
j=1

tp

∑
t=1

1
ns

ns

∑
s=1

e
(
−f̃T

j,t,s(k) θ−1
j f̃ j,t,s(k)

)

(6)

where Ω̃ = {Õ1, ..., Õnobs} and Õ j = {ỹ j,t,s(k),θ j}; f̃ j,t,s(k) = xk− ỹ j,t,s(k) and ỹ j,t,s(k)
is the position of the sth sample of the jth obstacle at tth step of the prediction horizon at
the time step k. The total UF combines the feedback and feedforward UF by summing
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¯∆xk+1 = argmin
{∆xk+1,...,∆xk+tP}

{Ufb +Uff}

s.t. : constraints in (7)

∆xk = xk−xN
k , xN

k ∈ ζ N

∆xk+1 = ∆xk + ∆̄xk+1

xk+1 = xN
k+1 +∆xk+1

ẋ∗k+1 =
xk+1−xk

∆t

q̇∗k+1 = J†ẋ∗k+1

¯∆xk+1

Camera

Object tracking

Kalman filter

UB sampling

{ỹt,s, ŷ0}

ŷ j,t(k)

RGB

y j(k)

xk

q̇∗k+1

ẋ∗k+1

Out put

(b)

Figure 6: The left figure in (a) shows the level set of the UF with (line) and without (dashed line) uncertainty
bound. The right figure in (a) shows the UF at time k along a prediction horizon with the considered uncer-
tainty bound that increases with the prediction time horizon. Fig. (b) shows a scheme of the task generation
block combining feedback and feedforward control strategy. It is used to compute an optimal solution at
each time k in the presence of a moving obstacle. YuMi image is taken from http://cobotsguide.com/2016/06/abb-yumi/

eq. (5) and (6). Finally, we find the solution to the combined UF by a Model Predictive
Control (MPC) strategy with some constraints as per eq. (7).

x̄(k) = argmin
{x(k),x(k+1),...,x(k+tP)}





Feedback︷ ︸︸ ︷
Ufb
(
x(k) : ζ N ,Ω̂

)
+

Feed f orward︷ ︸︸ ︷
Uff
(
x(k+ t) : ζ N ,Ω̃

)




s.t. :
∀ t = 0,1, ..., tp; s = 1, ...,ns; j = 1, ...,nobs
x(k); O j(k), Measurement,
{ŷ j,0(k), ŷ j,1(k), ..., ŷ j,tP(k)}= KF(y j(k)) Prediction by KF,
ỹ j,t,s(k) =N (ŷ j,t(k),σt) Sampels inUB,
σt = σa× t +σb UB model,
x(k+ t) = x(k−1+ t)+ a(k+ t) State transition,
x(k+ t) ∈X State constraints,
a(k+ t) ∈U Action constraints.

(7)

where k = 1, ...,H and H is the time to complete the task according to the demonstra-
tion. This formulation is well suited for episodic manipulation tasks with a continuous
state space and discrete time. At each time step k, the space to be searched for the opti-
mal solution is the cotangent space of ζ N

dmp at xN
k as shown in Fig. 4(a), i.e. x(k) ∈ Nk.

6. Experimental Result

To show that the model, which is learnt from the demonstration for performing the
task and avoiding obstacles, is highly important for performing many robotic tasks,
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we present two experiments whose datasets collected with a YuMi robot and a UR5
robot. The first experiment is pick-and-place with YuMi (Fig. 1(a)) and the second one
is sweeping with UR5 (Fig. 10(a), 10(b) and 10(c)). The dataset in Fig. 1(c) and 10(d)
are collected by kinesthetic teaching. In kinesthetic teaching, a human user pushes
and pulls a robot arm and moves it to a few waypoints. Then, the robot uses these
demonstrated waypoints to generate a smooth trajectory while it is collecting the cor-
responding data.

We assume these set of demonstrated trajectories are given, denoted by ζd ⊂D ,∀ d =
1, ...,ndem. In addition, we presume there are utility functions for every environment
that can generate trajectories that are very close to the demonstrations. Therefore, the
optimal solution to the utility function satisfies both tasks and scene constraints. The
corresponding utility function is estimated and used to generate the trajectories ζU,d
close to those demonstrated (ζd) that satisfy the corresponding task and scene con-
straints.

Pick-and-place experiment with YuMi aims at demonstrating the contribution of
this paper according to the motivating example presented in the introduction (section
1); whereas the sweeping experiment with the UR5 robot is presented for the sake of
completeness of the description. In the Yumi experiment, the robot must pick up the
white object, shown in Fig. 1(b), from an initial location, which is fixed on a table,
and then place it in the blue box on the table while avoiding colliding with the red
object. We demonstrate the task (Fig. 1(a)) once without any obstacles and once with
the presence of the red object. In this example, the robot is supposed to perform the
task where (1) the position of the box is changed and while (2) a cylindrical red ob-
ject is being moved in the robot’s workspace. This experiment with YuMi illustrates
the effectiveness of IRLfD-DE on performing a task in an environment with a mov-
ing obstacle. Of note, the noisy data set collected by the UR5 robot does not include
the nominal trajectories (Fig. 10(d)); whereas the nominal trajectory is present in the
Yumi dataset (Fig. 1(c)). The demonstrated trajectories with and without the stationary
obstacle, namely ζd and ζN , are shown in Fig. 1(c) with black and red lines, consecu-
tively. The UF is built based on the demonstrations where the reproduction error and
the accuracy achieved using the computed model are2 MSER = 5.7168×10−5 [m] and
Pr = 76.96. The number of sample points of the demonstrated trajectory is H = 2596.
Fig. 7 shows the pick-and-place experiment with the Yumi ABB robot. Fig. 7(a) and
7(b) show the correspondence between the position of the red and white objects. This
illustrates how our approach effectively enables the robot to avoid colliding between
white object and the moving obstacle (red object). We performed the experiment five
times in total while the human was intentionally trying to move the object in the robot’s
workspace and cause a collision between the white and red objects. These different ex-
periments aim at illustrating the capability of the IRLfD-DE to cope with such moving
obstacles in real human-robot shared workspaces with different velocity profiles of the
obstacle. As shown in Fig. 8, the robot successfully generalises the task at two levels:
(i) at imitation, it puts the object in the box at a new position (in Fig. 8, the terminal

2Pr = MSEd−MSEU
MSEd

× 100 where MSEd = 1
td ∑td

k=1 ‖ζd(k)− ζ N(k)‖2 and MSEU = 1
td ∑td

k=1 ‖ζd(k)−
ζU (k)‖2. For more details, please see (Ghalamzan et al., 2015).
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Figure 7: (a) and (b) show the top and perspective view of the trajectories of the robot’s end-effector (blue
line) during task execution and the moving obstacle (red line). These figures show the robot successfully
avoids colliding with the obstacle which is moved by a person on the table to intentionally cause collision.
The black dashed lines show the correspondence between the position of the robot’s end-effector and the
obstacle at every time step.
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Figure 8: The end effector trajectories of the pick-and-place task performed with YuMi robot (blue line)
and the corresponding trajectories of the red object. The first forth rows at left show the robot successfully
complete the task while avoiding the moving red cylinder. The very right row of figures show the robot put
the object in the box at a new position while avoiding the moving obstacle. In these experiments, it is tried
to demonstrate different collision behaviours by moving the red object with different velocities showing the
performance of IRLfD-DE in coping with such situations. At some parts the x1 cannot be changed further
because the robot has reached the joint limits, e.g. in the first figure at right at t = 5− 7[s], x1 cannot be
further decreased.

point of the trajectory in the right row is different than the trajectories presented in
other rows of the figure) and (ii) at emulation, it avoids colliding with the moving red
cylindrical object in the robot workspace (Fig. 8). Fig. 9(a) shows the velocities of the
red object. In addition, Fig. 9(b) is the box plot of the velocity of the red object across
different experiments. The white object is manipulated along x2 while the red object
is approaching it mostly along x1. Hence, the approach velocity is mostly represented
by the velocity of the red object. This figure shows that our proposed approach suc-
cessfully avoids collision with the moving obstacle whose velocities are in the range
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Figure 9: (a) shows the velocities of the red object during performing the experiment; (b) is the box plot of
the velocity of the red object across different experiments. The white object is manipulated along x2 while
the red object is approaching it mostly along x1. Hence, the approach velocity is mostly represented by the
velocity of the red object. This figure shows that our approach successfully avoids collision with the moving
obstacle with velocities in the range of 0.1 to 0.45 [m/s]; 9(c) shows trajectories of the corresponding distance
of the robot’s end-effector and the red object. By comparing the corresponding distances and the velocities
of the red object one can see the minimum distance in some cases are less than the demonstrated distance.
For instance, at time 5−6[s] the distance of the first experiment is less than the demonstrated one (0.11cm)
because the robot reached the joint limit and cannot move further in the direction needed for avoiding the
obstacle; (d) shows the box plot of the distances in (c). The distribution of the minimum distances shows that
our approach successfully could avoid collision with the moving obstacle by keeping the distance between
the end effector and the red object according to the demonstration.

of 0.1 to 0.45 [m/s]; the effectiveness of our approach may be better understood by
Fig. 9(c) showing the corresponding distance of the robot’s end-effector and the red
object. By comparing the corresponding distances and the velocities of the red object
one can see the minimum distance in some cases are less than the demonstrated dis-
tance. For instance, at time 5−6[s] the distance of the first experiment is less than the
demonstrated one (0.11cm) because the robot reached the joint limit and cannot move
further in the direction needed for avoiding the obstacle. Fig. 9(d) shows the box plot
of the distances represented in Fig. 9(c). The distribution of the minimum distances,
which is in the range of [0.09,0.15] cm, shows that our approach could successfully
cope with the very nonlinear movements of the obstacle. These nonlinear movements
shown in Fig. 9(c) characterise the very complex dynamic of the object movements.

In terms of practical aspects of the implementation, we considered two separate
processes here: (1) hard real-time component, (2) soft real-time component. For the
computation process, we use a PC with a quad-core Intel c© Core R© i3-2120 processor,
8 GB of RAM and a real-time Linux-based operating system. The soft real-time com-
ponent is labelled by the “Task Generation Phase” (TGP) in Fig. 5. In this component,
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exec. time
mean [ms] 1.5034
std [ms] 1.3327
min [ms] 0.6500
max [ms] 16.7030

Table 1: TGP process execution time

an object tracker detects a moving obstacle and estimates its position, which is then
filtered by a Kalman filter (KF). The KF also provides a set of predicted positions of
the object at every time step k. This information is then used in the MPC-based opti-
misation problem in eq. (7). The optimisation is solved by COBYLA, a nonlinear opti-
misation algorithm (Powell, 1994) that can compute the solution very quickly. We em-
pirically checked the computation speed which illustrates that the computation of the
solution to the eq. (7) by the COBYLA algorithm satisfies the necessary soft real-time
constraint. In particular, table 1 reports the statical information about the measured
execution times of a population of 10,000 complete iterations of the TGP, i.e. object
detection, tracking, Kalman filter and nonlinear optimisation. Table 1 shows that the
average of the execution time is 1.5034 [ms] with a standard deviation of 1.3327 [ms].
According to the study presented in Miller response to control activation, e.g. clicking
of the typewriter key, which is no more than 100 [ms] is considered to be instantaneous.
Furthermore, the highest frequency at which a human can perceive visual information
is 13 [ms]. Here, we consider a time-frequency of 20 [ms] to be enough for real-time
collaboration between a human and a robot. The maximum and minimum time dura-
tions required for the TGP computation are 16.7030 [ms] and 0.6500 [ms]. Therefore,
we set the time for computing the TGP to be 20 [ms], i.e. 50 Hz, which is necessary
for a human to perceive it as a real-time process. On the other hand, the second process
is hard real-time, which is shown with the grey block labelled as “Inverse Kinematics”
in Fig. 5(b) and 6(b). This process communicates with the robot at a frequency of 250
Hz, necessary for the robot’s real-time controller. This process sends the robot the nec-
essary joint positions required for the low-level joint control of the robot. Although the
IK works at 250 Hz, the TGP provides the IK with the updated joint positions at the
frequency of 20 Hz. In order to bridge between the values at different frequencies, a
first-order hold is utilised at 250 Hz that interpolates the consecutive Cartesian points
computed by the TGP. This makes IK generate a smooth trajectory. The IK will send a
piecewise constant Cartesian trajectory to the robot if the first-order hold is not used.

Here, we also present one example of sweeping experiment (which was fully pre-
sented in (Ghalamzan et al., 2015)) to show that using IRLfD-DE in a scene with mul-
tiple obstacles is straightforward. In this experiment, the UR5 industrial manipulator
learns how to sweep an object into a dustpan from a few demonstrations while avoiding
colliding with two types of objects. All the objects are located on the table shown in
Fig. 10. The object to be swept is in front of the dustpan and the obstacles, namely the
cup and the marker (Fig. 10(a) and 10(b)), are in the way of the robot, during demon-
strations. The Sweeping task is demonstrated twice while avoiding a collision with the
marker (Fig. 10(a)) and twice while avoiding colliding with the cup (Fig. 10(b)). The
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Figure 10: A human is demonstrating how to sweep the green cube (Ta) into the dustpan (G) while avoiding
colliding with obstacles, namely a marker shown in (a) and a cup shown in (b), by moving the UR5 robot
arm. This example illustrates that the robot learns a model of the task and obstacle avoidance policy from
demonstration and then performs the sweeping task by successfully combining different obstacle avoidance
policy with the task model. Fig. (c) shows a scene of sweeping example with a new location of the dustpan
(shown with G), the marker and the cup (shown with O1 and O2). Both task and scene constraints are different
from those demonstrated; (d) shows the demonstrated trajectories for the sweeping task. The red dashed and
blue lines correspond with Fig. 10(a) and 10(b), respectively. 10(e) shows the trajectories generated using
the corresponding UF corresponding with the scene shown in (c). The trajectory successfully satisfies the
task constraint and avoids colliding with both obstacles in the scene. (Ghalamzan et al., 2015)

corresponding trajectories are shown with the red dashed and blue line in Fig. 10(d).
The Gaussian process is then used (according to the first level of IRLfD) to compute
an average path ζ N from the demonstrations. A DMP model trained by this trajectory
generates the necessary trajectory (ζ N

dmp) for sweeping the object into a dustpan at a
new position shown with G in Fig. 10. The parameter of a utility function for avoiding
the obstacles, namely the marker and the cup, is learnt from demonstrated trajectories.
Finally, the UF is built according to ζ N

dmp and positions of the obstacle in the scene
as in section 5. The utility function yields a new trajectory that satisfies both the task
and scene constraints. The constraints imposed by the objects in the scene, namely the
marker and coffee cup, are shown consecutively with O1 and O2 in Fig. 10. According
to the demonstrations, we expect the UF generates a different response to O1 and O2,
as shown in Fig. 10(e). The cup results in a deviation from ζ N

dmp which is larger than
the one caused by the marker. This example illustrates that different obstacle avoid-
ance policy learnt separately from different demonstrations are combined in a single
UF. This allows keeping the learning process very simple; despite the task execution
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which can be complex. This experiment is fully discussed in (Ghalamzan et al., 2015);
nonetheless, we briefly presented it here to show the performance of IRLfD in the
presence of two different types of obstacles. Because performing the pick-and-place
task with multiple moving obstacles is not feasible due to the limited workspace of the
YuMi robot, we presented the sweeping task with two different obstacles to show the
feasibility of using the IRLFD-DE to cope with the multiple moving obstacles.

7. Discussion

In our approach, namely IRLfD-DE, the robot learns a model of a task from demon-
strations in a stationary scene and IRLfD-DE generates trajectories necessary to per-
form the task at different levels of generalisation: (1) it computes a noiseless trajectory
from noisy observations, denoted by ζ N , at the mimicking level; (2) it computes ζ N

dmp
that satisfies task constraint at the imitation level; (3) it computes ζU that satisfies the
constraints imposed by the task and the scene, denoted by Cn and Cd , according to the
imitation and emulation level of IRLfD; (4) it computes a trajectory that satisfies the
varying constraints of the task and the scene, i.e. a scene with a moving obstacle.

This paper is accompanied by a video of two experiments: (1) sweeping with the
UR5 robot and (2) manipulation with the ABB YuMi robot. The video shows the com-
plete processes of RLfD. First, the task is demonstrated with a stationary obstacle at
every demonstration. Then, the robot learns a model of task and obstacle avoidance
from demonstrations and replicates the sweeping task in the presence of two stationary
obstacles. The pick-and-place experiment with YuMi is then presented, including (i) a
human demonstrates the task with and without obstacle and (ii) the robot performs the
task while a human is moving an obstacle in the robot’s workspace. These experiments
show how the proposed approach facilitates human-robot collaboration such that a user
can easily teach the desired task as well as desired obstacle avoidance control policies
to an out-of-the-cage robot. The experiments also prove the effectiveness of our ap-
proach in terms of learning a model from simple task demonstrations in the presence
of only a single stationary obstacle each time where the robot generalises this model
and perform the task in complex situations with moving obstacles. Of note, it may
not even be possible to demonstrate the task with a moving obstacle using kinesthetic
teaching. Although we did not experiment with more than one moving obstacle, utilis-
ing the approach for such an example is straightforward. The computation complexity
for adding other moving obstacles increase linearly with the number of obstacles, i.e.
it is nobsC(IRL f D−DE) where nobs is the number of obstacles and C(IRL f D−DE) is
the computation complexity for using IRLfD-DE model for performing the task while
one obstacle is moving in the robot’s workspace.

The results of the examples presented in this paper support the premise stated in
the introduction. This is practically useful for a common situation in the human-robot
collaboration context. An increasing interest in HRC and the desire to use robots out-
of-the-cage in collaboration with human workers are the main motivation for this work.
A human co-working with a robot may need to change a robot’s behaviour from time to
time. Here, by the behaviour we mean the task and obstacle avoidance control policy.
We also discussed the computation costs of the reproduction phase, illustrating the
feasibility of the proposed approach in real time.
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Although this approach can already be used in many manipulation tasks, extending
it to tackle a higher dimensional problem will be an interesting future work. In ad-
dition, it is appealing to study this approach jointly with configuration space obstacle
avoidance, where the latter does not need to be learnt from demonstration and can be
programmed in advance as proposed by Ratliff et al. (2009). What is the maximum
distance that the robot’s end-effector can deviate from a given nominal trajectory in a
dynamic environment? The answer to this question creates a further intriguing future
study.

For instance, the YuMi robot reaches the workspace limits at some segments of the
trajectory where x1 = 0.48 [m] in Fig. 7(a) because the human intentionally tries to
cause as much deviation as possible. One example strategy may be to stop perform-
ing the task if there is such an interfering element in the scene. For example, if the
total optimal UF value of the next step exceeds a predefined threshold, the robot stops.
Lastly, a study on using a probabilistic approach for the emulation utility function is
also of interest for future research; therefore, any deviation from the nominal environ-
ment can be considered in the learning emulation UF. Moreover, one can investigate
the online adaptation of the generated trajectory to a new target point in the proposed
approach, as it has been studied by Pastor et al. (2009). Lastly, this approach can also
be investigated for grasping and manipulation problems in combination with methods
(e.g. Ghalamzan et al., 2016) developed for selecting the optimal grasp.

8. Conclusion

In this paper, we extended the approach to robot learning from demonstrations pre-
sented by Ghalamzan et al. (2015) such that it can be used to generate the necessary
trajectory to satisfy the constraints of avoiding a collision with a moving obstacle.
Hence, a model of the task trajectory and the response to a stationary obstacle is learnt
from demonstrations, as a robot can use the model to perform the task in a dynamic
environment. By dynamic environment, here, we refer to an environment in which
the constraints of the task and the environment can change. For instance, in the pick-
and-place example, the target point of the trajectory changes at each task execution;
whereas the obstacle moves during task execution. Although one may use a unified
framework (e.g. Levine et al., 2016; Gu et al., 2016), providing an end-to-end RLfD
solution to the problem presented in this paper, such an approach would become hard
to interpret and more difficult to use for a different task. Here, we propose incremental
robot learning from the demonstration for dynamic environment (IRLfD-DE) that is
easy to use, interpret and evaluate. The modules of IRLfD-DE provide us with dif-
ferent levels of generalisation which correspond with observational learning in human
studies. We demonstrate the effectiveness and usefulness of the approach with a prac-
tical example of pick-and-place by a YuMi ABB robot. This experiment illustrates
how a user can easily determine the behaviour of the robot by using this approach.
In addition, we show how the approach can handle multiple stationary obstacles in an
experiment.
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