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Abstract: In this study, a novel multiscale nonlinear ensemble leaning paradigm incorporating empirical mode 

decomposition (EMD) and least square support vector machine (LSSVM) with kernel function prototype is proposed 

for carbon price forecasting. The EMD algorithm is used to decompose the carbon price into simple intrinsic mode 

functions (IMFs) and one residue, which are identified as the components of high frequency, low frequency and trend 

by using the Lempel-Ziv complexity algorithm. The Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model is used to forecast the high frequency IMFs with ARCH effects. The LSSVM model with kernel 

function prototype is employed to forecast the high frequency IMFs without ARCH effects, the low frequency and trend 

components. The forecasting values of all the components are aggregated into the ones of original carbon price by the 

LSSVM with kernel function prototype-based nonlinear ensemble approach. Furthermore, particle swarm optimization 

is used for model selections of the LSSVM with kernel function prototype. Taking the popular prediction methods as 

benchmarks, the empirical analysis demonstrates that the proposed model can achieve higher level and directional 

predictions and higher robustness. The findings show that the proposed model seems an advanced approach for 

predicting the high nonstationary, nonlinear and irregular carbon price. 

Keywords: carbon price forecasting, least squares support vector machine, empirical mode decomposition, particle 

swarm optimization, kernel function prototype 

1.Introduction 

With its increasingly severe consequences, global climate change has become a serious threat to human sustainable 

development. Carbon market, as an effective mechanism dealing with the global climate change, attracts significant 

attention of governments and organizations worldwide. In the past few years, global carbon market, represented by the 

European Union Emissions Trading System (EU ETS), have witnessed a rapid development. However, carbon price 

violent variations remarkably impact emissions reduction performances and market values. Predicting carbon price 

accurately can on the one hand enable us to understand the changeable patterns of carbon price and develop an efficient 

stabilization mechanism for carbon price, on the other hand help investors avoid carbon market risks and increase the 

value of carbon assets (Zhu et al., 2016). However, as emerging policy-based artificial markets, carbon markets are 

impacted by both internal market mechanisms and external environmental heterogeneity ( Zhang and Wei,2010), which 

causes the nonstationary and nonlinear characteristics of carbon prices. Therefore carbon price prediction presents a 

great challenge to researchers and becomes one of the priority topics in the fields of energy and climate economics. 

In the literature there are various methods adopted for carbon price forecasting. Early studies mainly used the 

qualitative analysis to predict carbon price (Reilly and Paltsev, 2005; Kanen, 2006). Recent studies used more complex 

methods for carbon price forecasting, which can roughly be divided into three categories: statistical and econometric 

models, artificial intelligence models, and ensemble (hybrid) models. The traditional statistical and econometric models 
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were widely used for carbon price forecasting. Chevallier (2011) used a nonparametric method to predict carbon prices, 

and found that the method could reduce the prediction error by almost 15% compared with linear autoregression models. 

Byun and Cho (2013) used the Generalized Autoregressive Conditional Heteroskedasticity (GARCH)-family models to 

predict carbon prices, and found that GJR-GARCH was more effective than TGARCH and GARCH in their particular 

case. Koop and Tole (2013) used the dynamic model averaging (DMA) method to forecast carbon prices, and obtained 

a high prediction accuracy. María et al. (2015) applied the ARMAX-GARCH model with a time-varying jump 

probability to predict carbon prices, and obtained higher prediction accuracy than the standard ARMAX-GARCH 

model. Although these models based on stationary data and linear hypotheses can obtain high prediction accuracy, they 

cannot effectively deal with the nonlinearity in carbon price changes. To cope with this major limitation of statistical 

and econometric models, artificial intelligence models, including artificial neural networks (ANN), support vector 

machines (SVM) and least square SVM (LSSVM) were applied for carbon price prediction. For example, Zhu and Wei 

(2011) used the LSSVM method to predict carbon prices, and obtained better results than ARIMA and ANN. Fan et 

al.(2016) used the multi layered perceptron (MLP)-ANN model to predict carbon prices, and gained a good 

performance. These artificial intelligence models can effectively capture the nonlinear patterns hidden in carbon price 

variations, thus obtaining better prediction results than statistical and econometric models. In the meantime, in order to 

overcome the drawbacks of single models and further improve the accuracy of carbon price prediction, ensemble 

(hybrid) models were adopted for carbon price forecasting. Zhu (2012) used an empirical mode decomposition 

(EMD)-based ANN to predict carbon prices, and obtained a higher prediction accuracy than single ANN model. Zhu 

and Wei (2013) used a hybrid forecasting model, incorporating ARIMA and LSSVM, for carbon price forecasting, and 

found that the hybrid model was more effective than single ANN and ARIMA models. Wei and Can (2015) used the 

EMD–GARCH method to forecast the carbon prices of five pilots carbon markets in China, and gained the alternative 

interval of a lower bound of 30 yuan/ton and an upper bound of 50 yuan/ton in the national carbon trading market. Zhu 

et al.(2016) used an ensemble EMD (EEMD) -based LSSVM to predict the carbon price, and found that the proposed 

method could obtain high level and directional predictions. Atsalakis (2016) proposed a computational intelligence 

model with a novel hybrid neuro-fuzzy controller that forms a closed-loop feedback mechanism(PATSOS) to 

forecasting the daily carbon price, and get a higher accurate. Sun et al. (2016) combined variational mode 

decomposition (VMD) and spiking neural networks (SNNs) to improve forecasting accuracy and reliability. Zhu et al. 

(2017) used EMD and evolutionary LSSVM to improve the robustness of carbon price prediction, and obtained more 

robust performance than the other popular forecasting methods. 

Extant studies have shown that multiscale ensemble forecasting can decompose the complex carbon price into 

several simple modes, so as to significantly improve the prediction accuracy of carbon price. However, there are several 

major drawbacks in existing studies. Firstly, in existent multiscale ensemble prediction, the same model is used to 

predict all the simple modes. As each mode has its own data characteristics, models with more appropriate 

mode-specific assumptions model is normally required for predicting it (Zhang et al.,2008; Zhu et al, 2015; Zhu et al., 

2016). Secondly, although LSSVM has a high nonlinear modeling ability, its predictive power is subject to model 

selection. Moreover, existing studies have predetermined the radical basis function (RBF) as the kernel function so as to 

search the model parameters of LSSVM (Yu et al. 2009; Zhu et al., 2013; Silva et al, 2015; Zhang et al., 2015). Few 

works has investigated the suitability of the kernel function for a specific problem. The inappropriate kernel function 

would negatively affect the accuracy of carbon price prediction. Thirdly, existing multiscale ensemble prediction 

models are limited to linear ensemble form, i.e. aggregating the forecasted values of all the modes into the forecasting 

ones of the original carbon price. A linear ensemble approach is not always appropriate for all the circumstances (Liao 
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and Tsao, 2006;  Alonso et al., 2007), thus affecting the accuracy of carbon price forecasting. 

To address the existing drawbacks of carbon price prediction, this research develops a novel multiscale nonlinear 

ensemble leaning paradigm incorporating EMD, LSSVM with kernel function prototype, and particle swarm 

optimization (PSO) to improve the forecasting accuracy of nonstationary and nonlinear carbon price. It is a 

breakthrough study, making both methodological and empirical innovations. Methodologically, it develops a novel 

adaptive multiscale nonlinear ensemble learning paradigm for carbon price forecasting. Firstly, the EMD algorithm is 

used to decompose the carbon price into simple modes. Secondly, the obtained simple modes are identified as the 

components of high frequency, low frequency and trend by using the Lempel-Ziv complexity algorithm. GARCH can 

then be applied to predict the high frequency components with ARCH effects because of its strong short-term memory; 

and LSSVM with a universal kernel function prototype, is applied to forecast the high frequency components without 

ARCH effects, the low frequency and trend components. The proposed model can adaptively select the optimal kernel 

function type and model parameters according to the specific data using PSO, which can make good use of various 

kernel functions types and overcome the drawbacks of single kernel function. Finally, the LSSVM-based nonlinear 

ensemble approach is used to aggregate the prediction values of all the components acquired by different models into 

the forecasting values of the original carbon price, so as to further improve the prediction accuracy. Empirically, the 

proposed multiscale nonlinear ensemble learning paradigm has been tested with the data of the daily European Union 

Allowance futures prices from January 2, 2013 to April 14, 2015, obtained from the Intercontinental Exchange (ICE). 

Compared with popular prediction methods, the empirical analysis shows that the proposed model is the optimal, and 

can effectively deal with the nonlinearity and nonstationarity of carbon prices.  

The rest of the paper is organized as follows: Sections 2, 3, 4 and 5 construct the novel adaptive multiscale 

nonlinear ensemble learning paradigm. Section 6 conducts empirical analysis. Section 7 concludes the study. 

2. Methodology 

2.1Empirical mode decomposition 

EMD was proposed as a multiscale decomposition technique that takes advantage of the local characteristics scales 

of the underlying data components and extracts these components known as Intrinsic Modes from the data. It was 

originally proposed by Huang et al. (1998) as an effective empirical method for the nonlinear and non-stationary data. 

These intrinsic modes are defined as the intrinsic mode function (IMF), satisfying the following conditions: (i) The 

difference between the extrema and zero-crossings does not exceed 1. (ii) The functions are zero mean locally and 

symmetric. IMFs satisfying these conditions are zero mean and nearly periodic. Thus they are harmonic with changing 

amplitudes and frequencies at different timescales.  

Compared with the traditional Fourier and wavelet decompositions, EMD technique has several distinct 

advantages. Firstly, it is relatively easy to understand and implement EMD. Secondly, since the decomposition is based 

on the local characteristic timescales of the data and only extrema are used in the sifting process, EMD is local, 

self-adaptive, and very implicative. It is highly efficient for nonlinear and nonstationary time series decomposition, 

therefore can adaptively and robustly decompose carbon price time series into several IMFs and one residue that display 

linear and nonlinear behaviours depend only on the nature of carbon prices. Thirdly, the IMFs derived from EMD have 

a clear instantaneous frequency as the derivative of the phase function. Thus the Hilbert transformation can be applied 

to the IMFs, allowing us to explore the data in a time-frequency-energy space. Last but not the least, in wavelet 

decomposition, a filter base function must be determined beforehand. However, it is difficult for some unknown series 

to determine the filter base function. Unlike wavelet decomposition, EMD does not have to determine a filter base 

function before decomposition. The four merits discussed above makes EMD an effective decomposition tool. 
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2.2 LSSVM with kernel function prototype 

A kernel function is the critical parameter for the LSSVM predictor. When applied in practice, the kernel function 

used in LSSVM predictor is selected based on the prior data characteristics and the problem domain. However, the 

search for the optimal kernel function is a difficult research problem. Researchers usually rely on the empirical analysis 

and prior experience to select the optimal kernel function. Although not optimal, they often resort back to the common 

kernel functions such as RBF as a compromise.   

The commonly used kernel functions include: linear kernel ( , )lin i j i jK x x x x  , polynomial kernel

( , ) ( )d

poly i j i jK x x x x t   , radial basis function (RBF) kernel

2

2

-
( , ) exp(- )

2

i j

rbf i j

x x
K x x


  and sigmoid kernel

( , ) tanh[ ( ) ]sig i j i jK x x s x x h    . According to the Mercer theory, a new kernel function can be constructed with 

linear combination of various kernel functions. Data contains the complete information about a specific problem. A 

kernel function, selected by using the machine learning methods under the data-driven circumstance without any prior 

information, is proved to be the optimal one for the specific problem. Therefore, we introduce a new kernel function 

prototype in this study, which is defined as (Zhu et al.,2016): 

1 2 3 4( , ) ( , ) ( , ) ( , ) ( , )sig rbf poly linK x x K x x K x x K x x K x x            

The proposed kernel function prototype is universal. With different parameters fitted to the specific data, it can 

produce either commonly used single kernel functions, or new kernel function. Thus, it takes advantage of different 

kernel functions and avoids the drawbacks of using a single kernel function. 

There are two model parameters for LSSVM with the kernel function prototype: kernel function type parameter  , 

and kernel function parameter u . Different kernel functions would be produced with different   and u . Using PSO 

algorithm, these two parameters can be coded into the particles to search for their optimal values adaptively. Afterwards, 

the optimal kernel function for the problem is selected adaptively. A single kernel function (for example, 

1 1, 0, 2,3,4i i    , or a mixture kernel function (for example, 0, 1,2,3,4i i   ) can be obtained. 

In this paper, we also use phase space reconstruction (PSR) for the carbon price prediction. Embedding dimension 

( m ) and delay ( ) are two critical parameters for PSR. If m is too small, the fine structure of chaotic system will not 

reveal for carbon prices. If m is too large, it will lead to very complicated computation and noise. Likewise, if  is too 

small, information redundancy would result as the adjacent delay coordination elements differ only slightly in the phase 

space. If  is too large, information loss and folding signal trajectories would result as the association between adjacent 

delay coordination elements would disappear.  

Therefore, PSO algorithm is used to select adaptively the model parameters of LSSVM. These parameters include: 

kernel function type parameter  , kernel function parameter u , PSR m  and  , and penalty factor  . Using PSO 

algorithm, these parameters are coded into the particles. The optimal solutions survive the evolutionary optimization 

process in PSO algorithm.  

2.3 The proposed adaptive LSSVM learning through particle swarm optimization 

Inspired by the foraging behavior of bird flocks, PSO is a new type of swarm intelligent algorithm (Pehlivanoglu, 

2013). In the PSO algorithm, candidate solutions are defined as the particles. Firstly, the particles and their speeds are 

randomly initialized. s denoted the population size, i.e. the number of particles, the location of the ith particle in D–

dimensional space is denoted by 1 2( , , )i i i iDx x x x , 1,2 ,i s . The speeds of particles are denoted by

1 2( , , )i i i iDv v v v , 1, 2 ,i s . D is the number of parameters. The fitness function is predefined to calculate and 
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assign the fitness value to each particle. Afterwards, according to the fitness value of each particle, the local optimum

1 2( , , )best DP P P P and global optimum ),,( 21 Dbest GGGG  of each particle are updated. Finally, the local and 

global optimums of each particle are calculated dynamically using formulas (1) and (2), so that the speed and location is 

updated simultaneously: 

1 1 2 2( 1) ( ) ( ) [ ( ) ( )] [ ( ) ( )]ij i j ij j ijv t w t v t c r P t x t c r G t x t                (1) 

( 1) ( ) ( 1)ij ij ijx t x t v t       (2) 

where t  is the current iteration number. 1 2,r r  are the random numbers distributed uniformly in interval of (0,1) 

respectively. 1 2,c c  are the acceleration factors. The inertia weight ( )w t is calculated using formula (3): 

max min

max

max

( )
w w

w t w t
t


     (3) 

where 
maxw and 

minw are respectively the maximal and minimal inertial weights. 

In the updating process, the speed of each particle is limited into a preset interval:  If max( 1)ijv t v  , then 

max( 1)ijv t v  ; if max( 1)ijv t v   , then max( 1)ijv t v   . The termination condition for the iteration of the PSO 

algorithm is: reaching the preset maximum iteration number. 

In this paper, we proposed an adaptive model selection algorithm, called PSO-LSSVM, as illustrated in Fig.1. 

Step 1: Coding. The integer coding is used for , ,m d ,and the real coding is adopted for other parameters here. 

All the model parameters are coded into a particle, 1 2( , , )i i i iDx x x x , D=12. 

Step 2: Initialization. Randomly generate the particles and their speeds, and set the maximum speed, maximum 

iterations, and ranges of all other parameters.  

Step 3: Define the fitness function of each particle. The fitness function is set to the minimization of the Root 

Mean Square Error (RMSE) and is defined as: min ( , , , , )RMSE m     where 

1

1
[ ( , , , , , )]

n

t i

t

RSME y x m
n

    


    , ( )  is a nonlinear mapping function determined by the LSSVM predictor 

with given parameters and training samples. ix is the samples of training set. iy is the target value corresponding to the 

training sample ix , and n is the size of training set.  

Step 4: Calculate the fitness value of each particle. The fitness function is defined to calculate the fitness value of 

each particle, ( )ipresentF P . The current location is set using the local optimum of each particle ibestP . Then，  the initial 

global optimum bestG  is set to the particle with the optimal fitness value. 

Step 5: Update the speed, location and fitness value of each particle by formulas (l), (2), (3) and (4). 

Step 6: Compare ( )ipresentF P and ( )ibestF P . If ( )ipresentF P ( )ibestF P , then ibest ipresentP P . 

Step 7: Compare the updated ( )ipresentF P and ( )bestF G . If ( )ipresentF P ( )bestF G , then best ipresentG P . 

Step 8: Evaluate whether the termination condition is satisfied. If it is satisfied, the search process is stopped and 

the optimized LSSVM parameters are recorded. Otherwise, let t=t+1, and return to step 4. 
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Fig.1. The process of proposed PSO-LSSVM model. 

2.4 The proposed multiscale nonlinear ensemble learning paradigm for carbon price forecasting 

The proposed multiscale nonlinear ensemble learning paradigm for carbon price forecasting, namely, 

EMD-HLT-LSSVM, integrating EMD, PSO, kernel function prototype, LSSVM and GARCH models organically, can 

be divided into four stages, as shown in Fig.2. 

Stage 1: Decomposition of EMD 

We decomposed the carbon price into m  IMFs with different amplitudes and frequencies and one residue. IMFs 

are ordered from high frequency to low frequency. These IMFs are independent, characterized by simple structure, 

stable fluctuation, and strong regularity. 

1

( ) ( ) ( )
m

j

j

X t c t Res t


   

Classified by the frequencies of IMFs, we divided IMFs into three categories: (i) High frequency components 

(HFs), with high frequencies and low amplitudes, can characterize the random changes of the carbon price induced by 

the supply and demand imbalance of short-term market in normal operation. Although HFs fluctuate frequently in 

short-term, they cannot generate a long-term effect. Additionally, the fast changing carbon price is accompanied by fast 

recovery speed. The rise (or decline) of price always precedes the decline (or rise) of price, i.e., the gathering effects of 

Particles 

  Particle s 

  Particle 1 Initialization 

…
 

…
 

…
 

 Fitness 

 … Fitness 1 Fitness s 

… Particle 1 Particle s 

PSO 

Training 

Training 

set 

LSSVM 

LSSVM 1 LSSVM s … 

Parameter 1 Parameter s … 

Decoding 

Satisfy stopping 
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Get the optimal model parameters 
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No 
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for carbon price forecasting  
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fluctuations. (ii) Low frequency components (LFs) with low frequencies and high amplitudes, can characterize the 

periodic fluctuations data characteristics influenced by outside environments. The rapid rise or fall of LFs is caused by 

the shocks from the major unexpected events. Though the fluctuation frequencies of LFs are low, they may affect the 

carbon price greatly and even change the pricing mechanism of the carbon market. (iii) Trend component (T) can 

describe the stable change of the carbon price in the long-term. Each component has its unique characteristics. 

Therefore, the accuracy of carbon price prediction is improved if the appropriate forecasting model for each component 

is selected according to its data characteristics. 

Stage 2: Identification of HFs, LFs and T 

The different data characteristics exhibited by HFs, LFs, and T respectively show the different intrinsic properties 

of initial carbon price. Once the decomposition of EMD is finished, the Lempel-Ziv complexity algorithm (Lempel, 

1976) is employed to identify the HFs, LFs, and T, so as to select the optimal models for forecasting each component. 

The identification process is given as follows: 

Step 1: Calculating the complexity iC  of  IMFi , mi ,,2,1  . 

Step 2: Setting the critical value 0 ( 0.8)   so as to find out the min value of k which satisfies the condition of 

0

1 1

/ ,
k m

i i

i i

C C k m 
 

    . 

Step 3: The IMFs from IMF1 to IMFk  are identified as HFs, and the IMFs from IMFk+1 to IMFm are identified as 

LFs. Meanwhile, the residue is identified as T. 

Stage 3: Prediction of HFs, LFs, and T 

The HFs, LFs, and T are forecasted by the following strategy: firstly, the appropriate model is selected based on 

different data characteristics to predict each component individually, and then the individual prediction results are 

aggregated to produce the carbon price forecasts.  

The forecasting model for carbon price time series ( 1,2, , )tX t n can be defined as: 

2 ( 1)
ˆ ( , , , , )t h t t t t m tX f X X X X          

where tX̂ is the predicted value of initial time series, h is the prediction horizon, m, are the embedding dimension and 

delay of PSR respectively, t is the perdition errors. When h=1, it is one-step-ahead forecasting. When h≥2, it is 

h-step-ahead forecasting. 

(1) Prediction of HFs. HFs demonstrate the short-term fluctuations of the carbon price, characterized by high 

randomness, time-varying and aggregation. Make an ARCH test at first, if the HFs are with arch effect, the GARCH 

model is employed to forecast them, otherwise the PSO-LSSVM model is used to forecast them. GARCH(1,1), the 

econometric model with strong short-term memory on a random process with time-varying and aggregation, is 

applicable to forecasting HFs. The details of building the GARCH(1,1) model and the specific modeling processes are 

described in Tim Bollerslev (1986).  

(2) Predication of LFs. Since LFs demonstrate strong periodic fluctuations, the PSO-LSSVM model is used to 

predict LFs due to its nonlinear modeling capability. We use the kernel function prototype to derive the kernel function 

for the LSSVM model. The proposed PSO-LSSVM method can adaptively select the optimal kernel function type and 

model parameters in a data driven approach, as described in Section 2.3. 

(3) Prediction of T. The trend component exhibits clear changing patterns. Therefore, LSSVM model is used to 

model and forecast it. The model selection of LSSVM for T is the same as that in the prediction of LFs. 
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Stage 4: Nonlinear integration of the prediction values of HFs, LFs, and T 

The carbon price is constructed by aggregating from the prediction values of HFs, LFs, and T: 

1 2
ˆ ˆ ˆ ˆ ˆ( s, s, ) ( , , , , )mX f HF LF T f c c c r

  

   

where X̂ is the predicted value of initial carbon price, and sHF


, sLF


, T


are the predicted values of HFs, LFs and T 

respectively. ( )f  is a nonlinear mapping function, determined by the proposed LSSVM model with the kernel function 

prototype, which can minimize the sum of square errors of the training set, defined by  

 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ ( , , , , )][ ( , , , , )]T

m mmin X f c c c r X f c c c r   

It is worth pointing out that, to avoid that the proposed model is trained on future information, we forecast just one 

point every time and repeat the forecasting progress one by one, recursively. Namely, we use the training set to forecast 

next point, then add its real value of this point into the training set as a new training set, and repeat the four stages to 

forecast the next point. 

 

Fig.2. The forecasting process for carbon price with EMD-HLT-LSSVM model 

3. Empirical analysis 

3.1 Data 

The validity of the proposed model is tested using the real carbon market data. We use the daily European Union 

Allowance futures prices with maturity date in December 2015 and 2016. They are known as DEC15 and DEC16 

respectively. The original data source is the Intercontinental Exchange (ICE). It has the maximum trading volume under 
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the EU ETS. The data set is divided into two subsets: a training set and a testing set. The training set is used to estimate 

the model parameters. The testing set is used to evaluate the established models. Details of sample carbon price data set 

are reported in Table 1. 

Table 1. Samples of carbon prices 

Carbon prices Size Date 

DEC15 

Sample set 583 January 02, 2013-April 14, 2015 

Training set 460 January 02, 2013- October 16, 2014 

Testing set 123 October 17, 2014-April 14, 2015 

DEC16 

Sample set 532 January 02, 2013-January 29, 2015 

Training set 420 January 02, 2013- August 21, 2014 

Testing set 112 August 22, 2014-January 29, 2015 

3.2Forecasting evaluation criteria 

We use the RMSE and directional perdition statistics (Dstat) (Zhu and Wei, 2013) to evaluate the prediction 

performance of the established models. When evaluating the predictive power of models, one practical issue is what 

tests should be employed to decide one model is better than other models. To evaluate models more objectively and 

robustly, the superior predictive ability (SPA) test (Hansen and Lunde, 2005) and the model confidence set (MCS) test 

(Hansen et al., 2011) are applied in evaluating the accuracy of level forecasting, while rate test (RT) and 

Pesaran-Timmermann test (PT) (Pesaran and Timmermann, 1992) are applied in evaluating the accuracy of directional 

forecasting. 

3.3Nonstationary and nonlinear tests of carbon prices 

Among different statistical tests, the Augmented Dicky-Fuller (ADF) test is a popular stationarity test and  

Brock-Decher-Scheikman (BDS) test is a popular nonlinarity test. When the BDS test is used, the embedding dimension  

is set to 2-5, and the dimensional distance is set to 0.7 times of the variance of data. The Eviews 8.0 software package is 

employed to test the nonstationarity and nonlinearity of carbon prices, and the test results are shown in Tables 2 and 3. 

The ADF test demonstrates that carbon prices are nonstationary at the significance level of 5%. BDS test demonstrates 

that carbon prices are nonlinear at the significance level of 1% . 

Table 2. ADF test results 

Carbon prices t-Stat Prob. Stationarty 

DEC15 -2.138391 0.2298 × 

DEC16 -2.569762 0.1004 × 

Note:×shows that carbon price is nonstationary at the significance level of 5%. 

Table 3. BDS test results 

Carbon prices 

m-dimensional space  

2 3 4 5 Linearity 

Stat. Prob. Stat. Prob. Stat. Prob. Stat. Prob.  

DEC15 0.1808 0.000 0.3048 0.000 0.3891 0.000 0.4452 0.000 × 

DEC16 0.1753 0.000 0.2956 0.000 0.3768 0.000 0.3768 0.000 × 

Note:×shows that carbon price is nonlinear at the significance level of 1%. 

3.4 Decomposition of EMD 

The EMD introduced in section 2.1 is used to decompose the carbon prices into IMFs and residue in this study. 

The model is one-step-ahead forecasting, so every decomposition of the carbon price time series is implemented once 

just for the forecasting of only one day’s price. Thus we have to decompose DEC16 for 112 times and DEC15 for 123 

times. For the sake of space limitation, only the first decomposition results of DEC15 and DEC16 is reported in Fig.3. 
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We arranged all the IMFs by their frequency, from highest one to the lowest one. The last one is the residue. We found 

that HFs are characterized by randomness, LFs are characterized by strong periodic fluctuations, and the residue is 

characterized by trend factor. Compared with the original carbon prices, these decomposed IMFs demonstrate simpler 

structure, more stationary fluctuation, and greater regularity. All of these characteristics lead to higher fitting and 

forecasting accuracy.   

 

 

(a) The first decomposition result of DEC15 during January 02, 2013- October 16, 2014  

 

 
 (b) The first decomposition result of DEC16 during January 02, 2013- August 21, 2014 

Fig.3. Results of the first EMD decomposition of carbon prices 

For comparisons, the EEMD and extrema symmetry expansion EMD (Ren et al. 2012) are implemented as well in 

this study. EEMD can restrain the mode mixing, and extrema symmetry expansion EMD can restrain the end effect. 

However, whether those can improve the accuracy effectively in our paradigm for carbon price forecasting is still an 
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open problem, this will be discussed in the following sections. 

3.5 Identification of HFs, LFs, and T 

The Lempel-Ziv complexity algorithm is applied to identify the HFs, LFs of DEC15 and DEC16. For the sake that 

there is a different identification result for each recursive decomposition. The identification result of the first group of 

IMFs and residue is reported in Fig. 4. In this study, the critical value 0  is set to 80%. It is obtained that k is 4 in the 

first group of IMFs and residue of DEC15 and  is 89.4%, thus IMF1-IMF4 belong to HFs, while IMF5-IMF6 are the 

LFs. Similarly k is 3 in the first group of IMFs and residue of DEC16 and  is 80.9%, so IMF1-IMF3 are HFs and 

IMF4-IMF5 are LFs. Besides that, the residues of two carbon prices are the Ts. 

In addition, through the ARCH test，it is found that all of the HFs are with the ARCH effects at the significance 

level of 5%, however, all of the LFs are no ARCH effects at the significance level of 5% in the study. Thus, 

GARCH(1,1) is utilized for the prediction of HFs. Furthermore, for comparisons, the fine-to-coarse reconstruction (FTC) 

algorithm (Zhang et al., 2008; Zhu et al., 2015) is also used to identify HFs, LFs of DEC15 and DEC16. Which of the 

two methods is more appropriate for our paradigm for carbon price forecasting will be demonstrated by comparisons of 

accuracy in the following sections. 

 

(a) The complexities of the first group of IMFs for DEC15 during January 02, 2013- October 16, 2014 
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(b) The complexities of the first group of IMFs for DEC16 during January 02, 2013- August 21, 2014 

Fig.4. The complexities of the first group of IMFs for carbon prices 

3.6 Forecasting results and discussions 

In this study, the proposed EMD-HLT-LSSVM model is used for carbon price one-step-ahead forecasting. For 

comparisons, the single GARCH and LSSVM models, multiscale linear ensemble prediction models including 

EMD-GARCH-Σ (add the values of all IMFs and residue predicted by GARCH), EMD-LSSVM-Σ (add the values of all 

IMFs and residue predicted by LSSVM) and EMD-HLT-Σ (add the values of HFs predicted through GARCH and the 

LFs and T predicted by LSSVM), EMD-HLT(FTC)- Σ(use the fine-to-coarse reconstruction for identification of HFs 

and LFs, and add the values of HFs predicted through GARCH and the LFs and T predicted by LSSVM), as well as 

multiscale nonlinear ensemble prediction models including EMD-GARCH-LSSVM (LSSVM nonlinearly aggregate the 

values of all IMFs and residue predicted by GARCH) and EMD-LSSVM-LSSVM (LSSVM nonlinearly aggregate the 

values of all IMFs and residue predicted by LSSVM) are applied for carbon price forecasting. Meanwhile, 

EEMD-GARCH-Σ (add the values of all IMFs and residue predicted by GARCH), EEMD-LSSVM-Σ (add the values of 

all IMFs and residue predicted by LSSVM), EEMD-HLT-Σ, expansion EMD-GARCH-Σ (add the values of all IMFs 

and residue predicted by GARCH), expansion EMD-LSSVM-Σ (add the values of all IMFs and residue predicted by 

LSSVM) and expansion EMD-HLT-Σ are implemented to compare the decomposition methods. All the GARCH 

models are established in the Eviews 6.0 software package. In addition, the kernel function prototype is selected for all 

LSSVM models, and these models are implemented by the Matlab R2012b platform. In the PSO algorithm, the integer 

coding is used for dm ,, ，and the real coding is adopted for other parameters. The numbers of particles and maximum 

iteration are set to 40 and 10 respectively. Meanwhile, [0,20]m  , [0,5]  , [0.001,10000]s , [0,10]d ,

[ 100,100]h  , [ 50,50], 1,2,3,4i i    , [0.0001,10000]  ,
2 =[0.0001,10000] , 1 2 2c c  , [0.1,0.9]w , and

max max min

6
( )

numbers of particles
v x x   . Table 4 illustrates the optimal model parameters of forecasting the first 

point in the test sets of DEC15 and DEC16 as an example. The comparisons of RMSE and Dstat between prediction 

models are shown in Table 5. The results of SPA test and MCS test are respectively shown in Tables 6 and 7. The 

results of PT test and RT test can be found in Tables 8 and 9. Fig.5 demonstrates the out-of-sample prediction results of 

DEC15 and DEC16 using the proposed EMD-HLT-LSSVM model. 

In terms of level forecasting demonstrated by RMSE, it can be found that, firstly, all the multiscale ensemble 

prediction models obviously outperform single prediction models. This is mainly attributed to the fact that after EMD 

decomposition, the structure and fluctuations of IMFs (residue) carbon prices become simpler, more stable and more 

regular, which significantly improves the prediction accuracy. Secondly, for single prediction models, the prediction 

accuracy of GARCH model is superior over that of LSSVM model, because the former has a strong predicting ability 

for complicated randomness, time-varying and aggregation while original time series present such features. While for 

multiscale ensemble prediction models, LSSVM present advantage over GARCH, because IMFs’ data characteristics of 

simpleness and regularity make the advantage of nonlinear modeling and self-learning visible. Thirdly, compared with 

linear ensemble (Σ), nonlinear ensemble (LSSVM) has a great advantage because it makes full use of different 

structures of all the IMFs, which overcomes the major limitation of the linear ensemble. The last but not least, the 

proposed EEMD-HLT-LSSVM model achieves the highest level accuracy than any other models, which shows that it 

has a significant advantage by integrating multiscale decomposition, hybrid modeling and nonlinear ensemble. From the 

perspective of directional prediction, similar conclusions can be drawn according to the results of Dstat. The proposed 
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EMD-HLT-LSSVM model achieves the optimal direction accuracy both in DEC15 and DEC16. 

From the results of SPA test, the proposed EMD-HLT-LSSVM model obtains the best prediction accuracy on all 8 

loss functions. It indicates that this model has a significant advantage in level prediction which can better depict and 

forecast the volatility characteristics of carbon prices. Similar results can be found in MCS test: compared with other 

models, the proposed EEMD-HLT-LSSVM model achieves the best prediction, which strongly confirms that robustness 

of the proposed model. From the results of PT test, all of the multiscale ensemble forecasting models can reject the null 

hypothesis at the confidence level of 99% for both the carbon prices, which shows that the forecasting directions are 

closely related to the real ones. RT test further reveals that multiscale ensemble prediction models of nonlinear 

ensemble are notably more robust than single prediction models. However, there are no significant differences between 

the multiscale ensemble forecasting models, although the Dstat of proposed EMD-HLT-LSSVM model is the highest. 

It is noted that, the impact of mode mixing on carbon price forecasting is demonstrated by the comparison between 

EMD and EEMD which is designed to restrain the mode mixing. The results show that with the same conditions, the 

performance of EMD is better than that of EEMD in terms of RMSE and Dstat, while the difference between them is not 

significant at the significant level of 5%. The reason may lie in that: through EMD decomposition, carbon prices are 

decomposed into simple modes, which significantly improves the prediction accuracy. Otherwise, the mode mixing 

have no huge impacts on our predicted models and their prediction accuracies, which can also be drawn from the results 

of SPA test, MCS test, PT test and RT test. 

As for the end effect of EMD, for comparison, this study utilizes the extrema symmetry expansion method to deal 

with this problem. It is found that the accuracy of expansion EMD is slightly higher than that of EMD, but the 

difference between them is not significant at the significant level of 5% as well. Namely, in our paradigm, expansion 

EMD cannot improve the prediction significantly. The main reason may lie in that the end effect of EMD 

decomposition is not so significant as not to lower the performance of the proposed models, which can also be drawn 

from the results of SPA test, MCS test, PT test and RT test. 

Compared with the fine-to-coarse reconstruction algorithm, the Lempel-Ziv complexity algorithm has a superiority 

in the proposed models. However, the difference between them is not significant at the significant level of 5% as well, 

which is drawn from the results of SPA test, MCS test, PT test and RT test. 

We can draw the following conclusions based on our results from the empirical analysis: firstly, the proposed 

EMD-HLT-LSSVM model produce forecasts at higher level of accuracy than those of other models, in terms of the 

level and directional predictions. Secondly, multiscale ensemble prediction models demonstrate the superior 

performance than single prediction models, when it is used to predict carbon prices. This results suggest that in the case 

of carbon price prediction, decomposition-ensemble strategy can lead to significantly improved prediction accuracy. 

Thirdly, because of its superior capability to handle the high nonstationarity and nonlinearity of carbon prices, the 

proposed EMD-HLT-LSSVM model, integrating multiscale decomposition, hybrid modeling and nonlinear ensemble, 

is more applicable to forecast carbon prices. Fourthly, the EEMD, extrema symmetry expansion EMD and 

fine-to-coarse reconstruction algorithm have no significant effect on our proposed models and carbon price forecasting. 

Finally, overall the proposed EMD-HLT-LSSVM model obtain the highest level of carbon price prediction accuracy. It 

can offer a competitive carbon price prediction approach.   

Table 4 The optimal parameters of proposed model for the first prediction 

Carbon 

prices 

Parame

ters 

Original 

series 
IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 RES 

Ensemble 

(LSSVM) 

DEC15 d 3.0 GARCH GARCH GARCH GARCH 9 8 1 0 
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(October 

17, 2014) 

t -0.3201 (1,1) *1 (1,1) (1,1) (1,1) 17.6943 9.0981 7.3660 7.672 

2  0.01 2696.60 8207.8 202.668 43.52 

s 4465.6 8355.42 8887.94 6705.00 3650.67 

h -51.18 -13.4478 -33.7888 3.35906 -8.750 

λ1 -0.7856 -4.4547 1.0647 -1.2799 -0.1335 

λ2 1.064 4.000 4.4843 -6.1840 -3.0601 

λ3 2.350 -3.2264 5.5932 3.9282 4.4781 

λ4 -3.306 0.2478 -1.0372 -5.6424 1.0427 

  3850.29 955.85 1731.22 5386.54 4430.70  

m 8.0 5 6 3  

  1.0 1 1 1  

DEC16 

(August 21, 

2014) 

d 7 

GARCH 

(1,1) 

GARCH 

(1,1) 

GARCH 

(1,1) 

10 10 *2 2 0 

t -13.6104 -5.8449 -15.3125  2.093 1.8399 

2  6610.22 5399.51 709.2759  7551.26 5586.5 

s 5309.58 0.0001 1786.51  9273. 60 4627.8 

h -77.5338 -24.9955 -18.5010  45.2077 16.3845 

λ1 4.781117 -8.63625 -0.79254  2.0912 0.005 

λ2 3.401495 -2.2915 6.5770  3.3021 1.5827 

λ3 2.971208 -0.4763 0.09029  -0.9549 8.4280 

λ4 -2.02444 -0.5852 -3.05356  5.07029 0.6017 

  5540.994 7496.12 643.2569  7417.05 2231.5 

m 5 6 5  4  

  1 1 1  1  

Note:*1GARCH(p, q) , in which p, q are respectively the orders of autoregressive and moving average. 

     *2 The training set of forecasting first point in DEC16’s testing set is decomposed into only five IMFs. 

 

 

Table 5 Comparison of the RMSEs and the Dstats 

MODEL 
DEC15 DEC16 

RSME Dstat1 RSME Dstat1 

GARCH 0.110 0.626 0.111 0.598 

LSSVM 0.123 0.593 0.117 0.580 

EMD-GARCH-Σ 0.104 0.667 0.105 0.634 

EMD-LSSVM-Σ 0.103 0.683 0.103 0.670 

EMD-HLT-Σ 0.099 0.715 0.101 0.705 

EMD-HLT(FTC)-Σ 0.102 0.699 0.103 0.696 

EMD-GARCH-LSSVM 0.096 0.715 0.096 0.714 

EMD-LSSVM-LSSVM 0.094 0.724 0.095 0.723 

EMD-HLT-LSSVM 0.089 0.748 0.090 0.741 

expansion EMD-GARCH-Σ 0.104 0.675 0.105 0.661 

expansion EMD-LSSVM-Σ 0.102 0.683 0.102 0.670 

expansion EMD-HLT-Σ 0.099 0.715 0.099 0.688 

EEMD-GARCH-Σ 0.105 0.659 0.108 0.625 

EEMD-LSSVM-Σ 0.104 0.675 0.107 0.634 

EMD-HLT-Σ 0.103 0.691 0.105 0.688 
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Table 6 Results of SPA tests 

Table 7 Results of MCS tests 

DEC15 

BENCHMARK 
LOSS FUNCTION 

MSE1 MAE1 MSE2 MAE2 HMSE HMAE QLIKE RLOG 

GARCH 0.4468 0.2710 0.4518 0.2677 0.4316 0.2728 0.4564 0.4475 

LSSVM 0.2318 0.2042 0.2246 0.2037 0.2252 0.2041 0.2557 0.2437 

EEMD-GARCH-Σ 0.5302 0.5292 0.5150 0.5172 0.5133 0.5180 0.5667 0.5451 

EEMD-LSSVM-Σ 0.5392 0.6363 0.5150 0.6336 0.5916 0.6617 0.5726 0.5451 

DEC15 

BENCHMARK 
LOSS FUNCTION 

MSE1 MAE1 MSE2 MAE2 HMSE HMAE QLIKE RLOG 

GARCH 0.0614 0.0801 0.0603 0.0761 0.0572 0.0307 0.0675 0.0434 

LSSVM 0.0166 0.0095 0.0156 0.0096 0.0155 0.0096 0.0178 0.0168 

EEMD-GARCH-Σ 0.1168 0.0856 0.063 0.1235 0.0822 0.0961 0.0858 0.0762 

EEMD-LSSVM-Σ 0.1697 0.2249 0.1686 0.2179 0.17 0.2367 0.1697 0.1698 

EEMD-HLT-Σ 0.166 0.1063 0.1665 0.1045 0.1642 0.1095 0.1672 0.1655 

EMD-GARCH-Σ 0.1312 0.1898 0.1468 0.1981 0.1214 0.1871 0.124 0.1222 

EMD-LSSVM-Σ 0.1332 0.0965 0.1281 0.1319 0.1313 0.1197 0.1387 0.1757 

EMD-HLT-Σ 0.2071 0.2293 0.2188 0.2358 0.1858 0.2165 0.2117 0.2008 

EMD-HLT(FTC)-Σ 0.1794 0.2596 0.1435 0.2498 0.155 0.2736 0.1618 0.1558 

expansion EMD-GARCH-Σ 0.1481 0.1591 0.1048 0.157 0.139 0.1201 0.1272 0.1492 

expansion EMD-LSSVM-Σ 0.1907 0.2701 0.1871 0.2652 0.1809 0.2682 0.2053 0.1945 

expansion EMD-HLT-Σ 0.3147 0.3938 0.3256 0.4065 0.3023 0.3849 0.3067 0.305 

EMD-GARCH-LSSVM 0.5785 0.4364 0.562 0.4323 0.5607 0.4372 0.5759 0.5688 

EMD-LSSVM-LSSVM 0.6844 0.7095 0.6652 0.7152 0.6971 0.7229 0.7118 0.6979 

EMD-HLT-LSSVM 0.9698 0.967 0.974 0.9698 0.9695 0.9711 0.9674 0.9683 

DEC16 

BENCHMARK 
LOSS FUNCTION 

MSE1 MAE1 MSE2 MAE2 HMSE HMAE QLIKE RLOG 

GARCH 0.0482 0.0375 0.0285 0.0264 0.00257 0.0519 0.01004 0.0198 

LSSVM 0.0134 0.0196 0.0086 0.0083 0.0129 0.0081 0.0037 0.0084 

EEMD-GARCH-Σ 0.0748 0.0754 0.0561 0.07003 0.0529 0.106 0.045 0.0534 

EEMD-LSSVM-Σ 0.0928 0.0106 0.0586 0.117 0.0642 0.1263 0.0501 0.0689 

EEMD-HLT-Σ 0.1655 0.2097 0.1767 0.15411 0.1545 0.18072 0.1604 0.1583 

EMD-GARCH-Σ 0.0859 0.1305 0.0804 0.1296 0.0966 0.1312 0.0991 0.0987 

EMD-LSSVM-Σ 0.145 0.1453 0.143 0.1446 0.1527 0.2477 0.1484 0.1498 

EMD-HLT-Σ 0.2361 0.2575 0.2187 0.26519 0.2474 0.4006 0.2708 0.265 

EMD-HLT(FTC)-Σ 0.2262 0.2399 0.2054 0.2375 0.2544 0.3432 0.2551 0.2549 

expansion EMD-GARCH-Σ 0.13 0.1334 0.1149 0.1328 0.152 0.1464 0.1936 0.1512 

expansion EMD-LSSVM-Σ 0.2983 0.1726 0.3048 0.176 0.2977 0.2706 0.2929 0.3892 

expansion EMD-HLT-Σ 0.3546 0.278 0.3141 0.285 0.3752 0.3845 0.3924 0.672 

EMD-GARCH-LSSVM 0.6017 0.3198 0.5489 0.3207 0.6647 0.3522 0.6953 0.672 

EMD-LSSVM-LSSVM 0.6333 0.3433 0.6205 0.3346 0.6471 0.3594 0.6412 0.6432 

EMD-HLT-LSSVM 0.9844 0.9795 0.9814 0.9782 0.9865 0.9821 0.9867 0.9864 
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EEMD-HLT-Σ 0.5934 0.5292 0.5328 0.5172 0.5916 0.5180 0.5726 0.5952 

EMD-GARCH-Σ 0.5934 0.5292 0.5241 0.6336 0.5133 0.6152 0.6001 0.5952 

EMD-LSSVM-Σ 0.5934 0.5292 0.5242 0.5172 0.5916 0.5180 0.6001 0.5952 

EMD-HLT-Σ 0.6587 0.6857 0.6008 0.6531 0.6248 0.6617 0.6192 0.6083 

EMD-HLT(FTC)-Σ 6.4130 0.6363 0.5974 0.6336 0.6248 0.6617 0.6192 0.6083 

EXPANSION EMD-GARCH-Σ 0.5604 0.5292 0.6008 0.5172 0.5133 0.5180 0.5667 0.6233 

EXPANSION EMD-LSSVM-Σ 0.5934 0.6363 0.6008 0.6336 0.5916 0.6617 0.6359 0.6235 

EXPANSION EMD-HLT-Σ 0.6672 0.6363 0.6351 0.6336 0.6783 0.6617 0.6359 0.6235 

EMD-GARCH-LSSVM 0.6672 0.6857 0.6504 0.7061 0.6783 0.6952 6.613 0.6524 

EMD-LSSVM-LSSVM 0.6955 0.6857 0.6504 0.7082 0.6783 0.6952 0.6613 0.6524 

EMD-HLT-LSSVM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

DEC16 

BENCHMARK 
LOSS FUNCTION 

MSE1 MAE1 MSE2 MAE2 HMSE HMAE QLIKE RLOG 

GARCH 0.3053 0.0571 0.3108 0.0521 0.2643 0.0667 0.0859 0.1022 

LSSVM 0.0556 0.0024 0.0784 0.0026 0.0371 0.0015 0.0426 0.0415 

EEMD-GARCH-Σ 0.4523 0.1237 0.4051 0.1159 0.5210 0.0953 0.5540 0.2822 

EEMD-LSSVM-Σ 0.3053 0.1237 0.3415 0.0816 0.2643 0.1167 0.5540 0.4192 

EEMD-HLT-Σ 0.5761 0.4532 0.5334 0.1457 0.6317 0.5077 0.6272 0.6269 

EMD-GARCH-Σ 0.4523 0.1237 0.4051 0.1159 0.5210 0.1363 0.5486 0.5162 

EMD-LSSVM-Σ 0.5761 0.1600 0.4156 0.1457 0.5210 0.1363 0.6259 0.6269 

EMD-HLT-Σ 0.5761 0.4532 0.5334 0.4024 0.6317 0.5077 0.6272 0.6269 

EMD-HLT(FTC)-Σ 0.5761 0.3421 0.5334 0.1159 0.6317 0.1788 0.6259 0.6269 

Expansion EMD-GARCH-Σ 0.4523 0.1600 0.4051 0.1127 0.5210 0.1538 0.5652 0.5162 

Expansion EMD-LSSVM-Σ 0.5761 0.2047 0.5334 0.1922 0.6317 0.2200 0.6272 0.6269 

Expansion EMD-HLT-Σ 0.5761 0.4532 0.5334 0.4024 0.6317 0.5077 0.6272 0.6269 

EMD-GARCH-LSSVM 0.5946 0.2816 0.6052 0.4024 0.7072 0.5077 0.7097 0.7088 

EMD-LSSVM-LSSVM 0.5946 0.4532 0.6052 0.4024 0.7072 0.5077 0.7097 0.7088 

EMD-HLT-LSSVM 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 

Table 8 Comparisons of PT tests 

Model 

Carbon price 

DEC15 DEC16 

t-value P-value t-value P-value 

GARCH 2.573 0.011 1.998 0.048 

LSSVM 2.017 0.046 1.633 0.105 

EEMD-GARCH-Σ 3.401 0.001 3.321 0.001 

EEMD-LSSVM-Σ 3.752 0.000 3.416 0.001 

EEMD-HLT-Σ 4.082 0.000 3.928 0.000 

EMD-GARCH-Σ 3.58 0.001 2.794 0.006 

EMD-LSSVM-Σ 3.924 0.000 3.443 0.001 

EMD-HLT-Σ 4.529 0.000 4.199 0.000 

EMD-HLT(FTC)-Σ 4.206 0.000 4.117 0.000 

Expansion EMD-GARCH-Σ 3.71 0.000 2.524 0.013 

Expansion EMD-LSSVM-Σ 3.896 0.000 2.687 0.008 

Expansion EMD-HLT-Σ 4.62 0.000 3.807 0.000 
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EMD-GARCH-LSSVM 4.592 0.000 4.468 0.000 

EMD-LSSVM-LSSVM 4.771 0.000 4.792 0.000 

EMD-HLT-LSSVM 5.28 0.000 5.049 0.000 

 

Table 9 Comparisons of RT tests 

Carbon 

price  
Test model 

Base model 

GARCH LSSVM 
EEMD-G

ARCH-Σ 

EEMD-

LSSVM

-Σ 

EEMD-H

LT-Σ 

EMD-G

ARCH-Σ 

EMD-LS

SVM-Σ 

EMD-HL

T-Σ 

EMD-HL

T(FTC)-

Σ 

Expansion 

EMD-GA

RCH-Σ 

Expansion 

EMD-LSSV

M-Σ 

Expansion 

EMD-HL

T-Σ 

EMD-GA

RCH-LS

SVM 

EMD-LS

SVM-LS

SVM 

DEC15 

LSSVM 
-0.523 

(0.601)              

EEMD-GA

RCH-Σ 

0.532 

(0.595) 

1.057 

(0.292)             

EEMD-LSS

VM-Σ 

0.803 

(0.423) 

1.328 

(0.185) 

0.271 

(0.787)            

EEMD-HLT

-Σ 

1.078 

(0.282) 

1.604 

(0.11) 

0.545 

(0.586) 

0.274 

(0.784)           

EMD-GAR

CH-Σ 

0.667 

(0.505) 

1.192 

(0.235) 

0.135 

(0.893) 

-0.136 

(0.892) 

-0.41 

(0.682)          

EMD-LSSV

M-Σ 

0.94 

(0.348) 

1.466 

(0.144) 

0.407 

(0.684) 

0.137 

(0.892) 

-0.137 

(0.891) 

0.272 

(0.786)         

EMD-HLT-

Σ 

1.499 

(0.135) 

2.028 

(0.044) 

0.964 

(0.336) 

0.693 

(0.489) 

0.419 

(0.676) 

0.829 

(0.408) 

0.556 

(0.578)        

EMD-HLT(

FTC)-Σ 

1.217 

(0.225) 

1.744 

(0.082) 

0.683 

(0.495) 

0.413 

(0.68) 

0.139 

(0.89) 

0.548 

(0.584) 

0.276 

(0.783) 

-0.28 

(0.78)       

Expansion 

EMD-GAR

CH-Σ 

0.803 

(0.423) 

1.328 

(0.185) 

0.271 

(0.787) 

0.000 

(1) 

-0.274 

(0.784) 

0.136 

(0.892) 

-0.137 

(0.892) 

-0.693 

(0.489) 

-0.413 

(0.68)      

Expansion 

EMD-LSSV

M-Σ 

0.94 

(0.348) 

1.466 

(0.144) 

0.407 

(0.684) 

0.137 

(0.892) 

-0.137 

(0.891) 

0.272 

(0.786) 

0.000 

(1) 

-0.556 

(0.578) 

-0.276 

(0.783) 

0.137 

(0.892)     

Expansion 

EMD-HL 

T-Σ 

1.499 

(0.135) 

2.028 

(0.044) 

0.964 

(0.336) 

0.693 

(0.489) 

0.419 

(0.676) 

0.829 

(0.408) 

0.556 

(0.578) 

0.000 

(1) 

0.28 

(0.78) 

0.693 

(0.489) 

0.556 

(0.578)    

EMD-GAR

CH-LSSVM 

1.499 

(0.135) 

2.028 

(0.044) 

0.964 

(0.336) 

0.693 

(0.489) 

0.419 

(0.676) 

0.829 

(0.408) 

0.556 

(0.578) 

0.000 

(1) 

0.28 

(0.78) 

0.693 

(0.489) 

0.556 

(0.578) 

0.000 

(1)   

EMD-LSSV

M-LSSVM 

1.642 

(0.102) 

2.172 

(0.031) 

1.107 

(0.27) 

0.835 

(0.404) 

0.561 

(0.575) 

0.971 

(0.332) 

0.699 

(0.486) 

0.142 

(0.887) 

0.422 

(0.673) 

0.835 

(0.404) 

0.699 

(0.486) 

0.142 

(0.887) 

0.142 

(0.887)  

EMD-HLT-

LSSVM 

2.08 

(0.039) 

2.613 

(0.01) 

1.543 

(0.124) 

1.271 

(0.205) 

0.995 

(0.321) 

1.407 

(0.161) 

1.133 

(0.258) 

0.576 

(0.565) 

0.857 

(0.393) 

1.271 

(0.205) 

1.133 

(0.258) 

0.576 

(0.565) 

0.576 

(0.565) 

0.252 

(0.801) 

DEC16 

LSSVM 
-0.272 

(0.786) 
             

EEMD-GA

RCH-Σ 

0.97 

(0.333) 

1.243 

(0.215) 
            

EEMD-LSS

VM-Σ 

1.113 

(0.267) 

1.386 

(0.167) 

0.142 

(0.888) 
           

EEMD-HLT

-Σ 

1.401 

(0.163) 

1.675 

(0.095) 

0.428 

(0.669) 

0.286 

(0.775) 
          

EMD-GAR

CH-Σ 

0.55 

(0.583) 

0.822 

(0.412) 

-0.42 

(0.675) 

-0.561 

(0.575) 

-0.848 

(0.397) 
         

EMD-LSSV

M-Σ 

1.113 

(0.267) 

1.386 

(0.167) 

0.142 

(0.888) 
0 (1) 

-0.286 

(0.775) 

0.561 

(0.575) 
        

EMD-HLT-

Σ 

1.694 

(0.092) 

1.969 

(0.05) 

0.719 

(0.473) 

0.577 

(0.565) 

0.291 

(0.772) 

1.14 

(0.256) 

0.577 

(0.565) 
       

EMD-HLT(

FTC)-Σ 

1.546 

(0.123) 

1.821 

(0.07) 

0.573 

(0.567) 

0.431 

(0.667) 

0.145 

(0.885) 

0.993 

(0.322) 

0.431 

(0.667) 

-0.146 

(0.884) 
      

Expansion 

EMD-GAR

CH-Σ 

0.411 

(0.681) 

0.683 

(0.495) 

-0.558 

(0.577) 

-0.7 

(0.485) 

-0.987 

(0.325) 

-0.138 

(0.89) 

-0.7 

(0.485) 

-1.279 

(0.202) 

-1.132 

(0.259) 
     

Expansion 

EMD-LSSV

M-Σ 

0.55 

(0.583) 

0.822 

(0.412) 

-0.42 

(0.675) 

-0.561 

(0.575) 

-0.848 

(0.397) 

0.000 

(1) 

-0.561 

(0.575) 

-1.14 

(0.256) 

-0.993 

(0.322) 

0.138 

(0.89) 
    

Expansion 

EMD-HL 

T-Σ 

1.401 

(0.163) 

1.675 

(0.095) 

0.428 

(0.669) 

0.286 

(0.775) 

0.000 

(1) 

0.848 

(0.397) 

0.286 

(0.775) 

-0.291 

(0.772) 

-0.145 

(0.885) 

0.987 

(0.325) 

0.848 

(0.397) 
   

EMD-GAR

CH-LSSVM 

1.843 

(0.067) 

2.118 

(0.035) 

0.866 

(0.387) 

0.724 

(0.47) 

0.438 

(0.662) 

1.288 

(0.199) 

0.724 

(0.47) 

0.147 

(0.883) 

0.293 

(0.77) 

1.427 

(0.155) 

1.288 

(0.199) 

0.438 

(0.662) 
  

EMD-LSSV

M-LSSVM 

1.993 

(0.047) 

2.27 

(0.024) 

1.015 

(0.311) 

0.873 

(0.383) 

0.587 

(0.558) 

1.437 

(0.152) 

0.873 

(0.383) 

0.296 

(0.768) 

0.442 

(0.659) 

1.577 

(0.116) 

1.437 

(0.152) 

0.587 

(0.558) 

0.149 

(0.882) 
 

EMD-HLT-

LSSVM 

2.3 

(0.022) 

2.578 

(0.011) 

1.318 

(0.189) 

1.176 

(0.241) 

0.889 

(0.375) 

1.741 

(0.083) 

1.176 

(0.241) 

0.598 

(0.551) 

0.744 

(0.458) 

1.881 

(0.061) 

1.741 

(0.083) 

0.889 

(0.375) 

0.45 

(0.653) 

0.176 

(0.861) 

Note: **zRT(p-value). 
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(a) Out-of-sample prediction results of DEC15 

 

(b) Out-of-sample prediction results of DEC16 

Fig.5. Predicted results of EEMD-HLT-LSSVM model

4. Conclusion 

In this paper, we propose a novel multiscale nonlinear ensemble learning paradigm for carbon price prediction. It 

integrates EMD, LSSVM with kernel function prototype and PSO models. Firstly, we use the EMD algorithm to 
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decompose the carbon prices into their constituent components. These include several IMFs and one residue with strong 

regularity, simple structure, and smooth fluctuations. Secondly, the Lempel-Ziv complexity algorithm is used to identify 

HFs, LFs, and T. Thirdly, we use the GARCH model to predict the HFs with ARCH effects, and used the LSSVM 

model with kernel function prototype to predict the other IMFs (include LFs and the HFs without ARCH effects) and T 

according to their own data characteristics. Fourthly, we use LSSVM-based nonlinear ensemble to aggregate the 

forecasts of HFs, LFs, and T and produced the final prediction values of the original carbon price. We found that the 

proposed model could obtain higher level and directional predictions and higher robustness compared with the common 

popular prediction methods. Thus our results suggest that the proposed model is competitive for predicting the high 

nonstationary, nonlinear and irregular carbon price. 

This study only performs the carbon price one-step-ahead forecasting. How to run the carbon price 

multi-step-ahead forecasting is one further challenge. Besides, this study only uses carbon price time series data for 

modeling and forecasting. How to introduce more factors to build the better prediction model is a second further 

challenge. Effectively addressing the two challenges can further enhance the prediction accuracy of the high 

nonstationary, nonlinear and irregular time series data. In the future, the proposed method will be tested using various 

real market data. 
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APPENDIX 

1.EMD 

In practice, IMFs are usually extracted following the sifting process as follows: 

(1) Identify all the maxima and minima of carbon price time series ( )x t ; 

(2) Generate their upper and lower envelopes, max ( )e t  and min ( )e t , with cubic spline interpolation.  

(3) Calculate the point-by-point mean, ( ( ))m t , from the upper and lower envelopes: max min( ) ( )
( )

2

e t e t
m t


 ； 

(4) Extract the mean from carbon price time series and define the difference between ( )x t  and ( )m t as ( )d t :

( ) ( ) ( )d t x t m t  ; 

(5) Check the properties of ( )d t : 

① If it is an IMF, denote ( )d t  as the ith IMF and replace ( )x t  with the residue ( ) ( ) ( )r t x t d t  . The ith 

IMF is often denoted as ( )ic t and the i  is called its index; 

② If it is not an IMF, replace ( )x t  with ( )d t ; 

(6) Repeat steps (1) – (5) until the residue satisfies the stopping criteria. At the end of this sifting procedure, carbon 

price ( )x t  can be expressed as
1

( ) ( ) ( )
m

i m

i

x t c t r t


  , where m  is the number of IMFs, ( )mr t  is the final residue, 

and ( )( 1,2, )ic t i m are the IMFs, which are nearly orthogonal to each other, and all have nearly zero means.  

2.LSSVM 

For a dataset    
1

1,2, , , ,
l

n

i i i i i i i
x , y i l S x , y x R y R


   ， , in which ix is an input vector, iy is the output 

vector corresponding to i
x , and l is the sample size, LSSVM is defined as the following optimization problem : 

 

2 2

1

1
min ( , , )

2 2

. .

( ) , 1,2,

l

i

i

T

i i i

Q b e e

s t

y x b e i l


 

 



 

   


 

where ( )  is a nonlinear mapping function, nR is a weight vector, ie R is an error vector, and 0  is a penalty 
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factor. By introducing the Lagrange multiplier ia , we can obtain: 

1

( , , , ) ( , , ) [ ( ) ]
l

T

i i i i

i

L b e a Q b e a x b e y   


      

According to the Karush-Kuhn-Tucker (KKT) condition, we can get: 

1

1

0 ( ) 0

0 0

0 0

0 ( ) 0

l

i i

i

l

i

i

i i

i

T

i i i

i

L
a x

L
a

b

L
e a

e

L
x b e y

a

 




 






   




  



    



      






 

By eliminating variables and ie , the linear equations are obtained: 

1

0 1 0

1

T

v

v

b

a yI 

     
     

       
. 

where
1 2[ , , ]T

ly y y y ,1 [1,1, 1]T

v  ,
1 2[ , , ]T

la a a a ，I is a first-order unit matrix,  is a non-negative positive 

definite matrix of l l which can meet the Mercer condition that ( , ) ( ) ( ), , 1,2,T

i j i j i iK x x x x i j l     , )(K is a 

kernel function. For any a kernel function, an   can be determined and ,a b are calculated using the above linear 

equations. Therefore, an LSSVM predictor can be built: 

1

( ) ( , )
l

i j

i

f x a K x x b


  . 

3.RMSE and directional perdition statistics (Dstat) .They are defined respectively as: 

2

1

1
ˆ[ ( ) ( )]

n

t

RMSE x t x t
n 

   and 
1

1
100%

n

state t

t

D a
n 

   

where ( )x t and ˆ( )x t are respectively the actual value and predicted value, n  is the size of testing set, and

ˆ1, [ ( 1) ( )][( ( 1) ( )] 0

0

x t x t x t x t
a

others

    
 
 ，

. Obviously, the smaller the RMSE, the greater the Dstat is, and the higher 

the prediction accuracy is.  

4. SPA test. 8 different loss functions are selected to test the prediction accuracy of the models, i.e.  

( 1,2, 8)iL i  . L1 and L2 are mean squared error (MSE) and mean absolute error (MAE) respectively, which 

is commonly used in such judgments. Based on them, L3 and L4 take quadratic terms into consideration. L5 and L6 

introduce the heteroscedasticity. L7 is estimated by the Gauss likelihood function and L8 is similar to the value of 

Mincer-Zarnowitz regression. The specific definition of each loss function is defined as: 
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It can be calculated from every prediction model ),,1,0(, JkM
k

  to get the 8 loss functions, denoted by 

ki

tL ,
. Define 0M as the base model for SPA test, for other J models ( jk ,2,1 ), relative loss function is obtained 

as: 
ki

t

i

t

ki

t LLY ,0,,  . The null hypothesis H0 is: compared with one other model kM , 0M  has the best performance 

in prediction. The following statistic is defined as: 

kk

ki

t

ki

SPA Y
T



,

,
max  

ki

t

n

t

ki

t YnY

,

1

1, 


  

where kk  is the consistent estimation of standard error for 
ki

tY ,
. The empirical distribution of 

SPAT can be 

obtained from the process of Bootstrap. Following Hansen and Lunde (2005), the parameters of Bootstrap are set as: 

10000 and 0.5 for the resamples and the dependence respectively. A higher the p-value (closer to 1) of SPA test, the less 

likelihood that the null hypothesis can be rejected, which means a higher prediction accuracy of the base model. 

5. MCS test. The process of choosing the base model in SPA test may cause the problem of multiple comparisons. 

To handle this drawback, Hansen et al. (2011) developed MCS test. Similar to SPA test, MCS test assumes that all 

prediction models are in a collection of 
TM  and the relative loss functions of any two models (u and v) is defined as: 

vi

t

ui

t

uvi

t LLY ,,,  . MCS test carries out a series of significance tests in the collection to eliminate the models with a 

poor predictive ability. The null hypothesis H0 is: The two models have the same prediction ability. The following range 

statistic is defined: 

)var(
max

,

,

, uvi

t

uvi

t

Mvu
R

Y

Y
T


  





n

t

uvi

t

uvi

t YnY
1

,1,
 

In the MCS test, the empirical distribution of 
RT  can be obtained from the process of Bootstrap as well. 

Following Hansen et al.(2011), the parameters of Bootstrap are set as: 10000 and 2 for the resamples and the block 

length respectively. For a given model )( TMkk  , the higher the p-value is, the higher its prediction accuracy is.  

6. RT test. It is expressed as 








 nN

n

pp

n

pp

pp
z

BBAA

BA

RT
),1,0(~

)1()1(  

where Ap and Bp are respectively the accuracies of directional prediction of models A and B. The null hypothesis of RT 

test is that the accuracies of directional prediction of models A and B are the same. As to the two-sided test, when the 

absolute value of RTz exceeds 1.96, the null hypothesis is rejected at the significance level of 5%. 
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7. PT test. It is defined as 
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where 
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ttttt xxxxH
n

p
1

11 )]ˆ)([(
1

ˆ , i.e., the accuracy of directional prediction of the model, 

measured by Dstat. Meanwhile, )ˆ1)(1(ˆ 1111 ppppp  , 


 
n

t

ttt xxH
n
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1

11 )(
1
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n

t

ttt xxH
n

p
1

11 )ˆ(
1

ˆ  , and









0,0

0,1
)(

x

x
xH . The null assumption of PT test is that the predicted direction 

and the actual direction are independent of each other. When the absolute value of PTz is greater than 1.96 in the 

two-sided test, the null hypothesis is rejected at the significance level of 5%. 
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A novel multiscale nonlinear ensemble learning paradigm for 

carbon price forecasting 
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Highlights 

 

>A novel multiscale nonlinear ensemble learning paradigm is proposed for carbon price forecasting. 

>Carbon price is decomposed into regular modes via ensemble empirical mode decomposition . 

>Particle swarm optimization is used for model section of least square support vector machine with kernel 

function prototype. 

>The high frequency, low frequency and trend modes are identified by the Lempel-Ziv complexity. 

>Empirical results show that the presented approach can exceed the popular forecasting methods.  

                                                             
*
 Corresponding author: Bangzhu Zhu, Tel: +86 15915761388; Email:wpzbz@126.com. 
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Figure 2



(a) The first decomposition result of DEC15 during January 02, 2013- October 16, 2014 

 (b) The first decomposition result of DEC16 during January 02, 2013- August 21, 2014 
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Figure 3



(a) The complexities of the first group of IMFs for DEC15 during January 02, 2013- October 16, 2014 

(b) The complexities of the first group of IMFs for DEC16 during January 02, 2013- August 21, 2014 
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(a) Out-of-sample prediction results of DEC15 

(b) Out-of-sample prediction results of DEC16 
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