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Abstract

Efficient sampling of visual information requires a coordination of eye movements and ongo-

ing brain oscillations. Using intracranial and magnetoencephalography (MEG) recordings,

we show that saccades are locked to the phase of visual alpha oscillations and that this

coordination is related to successful mnemonic encoding of visual scenes. Furthermore,

parahippocampal and retrosplenial cortex involvement in this coordination reflects effective

vision-to-memory mapping, highlighting the importance of neural oscillations for the interac-

tion between visual and memory domains.

Author summary

In everyday life, we constantly move our eyes to sample visual information. In order to

make the sampling efficient, these eye movements need to be coordinated with the intrin-

sic brain dynamics that constrain visual computations. The present study provides novel

evidence for how this coordination is achieved at the neuronal level, from 2 independent

data sets: direct brain recordings in epileptic patients and noninvasive magnetoencepha-

lography recordings in healthy participants. Both studies showed that eye movements are

locked to the phase of alpha oscillations—synchronous and coherent neuronal electrical

activity at 7–14 Hz—just prior to a saccade, i.e., a rapid eye movement that abruptly

changes the point of fixation. Importantly, this coordination is predictive of successful

memory encoding.

PLOS Biology | https://doi.org/10.1371/journal.pbio.2003404 December 21, 2017 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Staudigl T, Hartl E, Noachtar S, Doeller

CF, Jensen O (2017) Saccades are phase-locked to

alpha oscillations in the occipital and medial

temporal lobe during successful memory

encoding. PLoS Biol 15(12): e2003404. https://doi.

org/10.1371/journal.pbio.2003404

Academic Editor: Frank Tong, Vanderbilt

University, United States of America

Received: June 23, 2017

Accepted: December 4, 2017

Published: December 21, 2017

Copyright: © 2017 Staudigl et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data set used to

reach the conclusions drawn in this study is

deposited in the OSF Repository: https://osf.io/

tpykv.

Funding: The Egil and Pauline Braathen and Fred

Kavli Centre for Cortical Microcircuits https://blog.

medisin.ntnu.no/tag/egil-pauline-braathen-and-

fred-kavli-centre-for-cortical-microcircuits/?lang=

en. Received by CFD. The funder had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript. James

https://doi.org/10.1371/journal.pbio.2003404
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2003404&domain=pdf&date_stamp=2018-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2003404&domain=pdf&date_stamp=2018-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2003404&domain=pdf&date_stamp=2018-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2003404&domain=pdf&date_stamp=2018-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2003404&domain=pdf&date_stamp=2018-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pbio.2003404&domain=pdf&date_stamp=2018-01-12
https://doi.org/10.1371/journal.pbio.2003404
https://doi.org/10.1371/journal.pbio.2003404
http://creativecommons.org/licenses/by/4.0/
https://osf.io/tpykv
https://osf.io/tpykv
https://blog.medisin.ntnu.no/tag/egil-pauline-braathen-and-fred-kavli-centre-for-cortical-microcircuits/?lang=en
https://blog.medisin.ntnu.no/tag/egil-pauline-braathen-and-fred-kavli-centre-for-cortical-microcircuits/?lang=en
https://blog.medisin.ntnu.no/tag/egil-pauline-braathen-and-fred-kavli-centre-for-cortical-microcircuits/?lang=en
https://blog.medisin.ntnu.no/tag/egil-pauline-braathen-and-fred-kavli-centre-for-cortical-microcircuits/?lang=en


Introduction

Sampling of visual information has been shown to be rhythmic rather than continuous [1–3].

In particular, brain rhythms clocked by oscillations in the alpha (7–14 Hz) range [4] constrain

visual sampling: electroencephalography (EEG)/magnetoencephalography (MEG) studies in

humans have shown that the trial-by-trial fluctuations in near-threshold visual perception per-

formance depend on the phase of alpha oscillations prior to stimulus presentation [5,6]. Sac-

cadic eye movements overtly sample visual scenes. Here we ask how brain oscillations and

saccades are coordinated in order to allow visual information to be encoded in memory areas.

We addressed this question by tracking eye movements in separate memory experiments

involving MEG in healthy adults and intracranial recordings in epileptic patients (Fig 1). Par-

ticipants were asked to remember images of visual scenes, and we later probed their memory.

The phase locking [7] between presaccadic brain oscillations in relation to saccade onset was

contrasted between later-remembered and later-forgotten images. Building on prior evidence

on the cortical origins of alpha activity underlying visual information sampling [8,9], we

hypothesized that higher phase locking in occipital lobe would be related to successful memory

performance. MEG and intracranial data both showed that eye movements are locked to the

phase of alpha oscillations prior to a saccade. Importantly, this coordination was related to suc-

cessful memory encoding.

Results

Saccade-related phase locking

In order to investigate the temporal coordination of saccades and brain oscillations, the time-

frequency representations of phase and power of the MEG and intracranial data were aligned

to saccade onsets. Accordingly, high presaccadic phase locking would demonstrate an effective

coordination of saccades in relation to brain oscillations. The intracranial data recorded from

3 patients with occipital depth electrodes (Fig 2A) revealed a significantly higher phase locking

for later-remembered as compared to later-forgotten trials in the alpha band (12–14 Hz, clus-

ter randomization: p< 0.005, controlling for multiple comparisons over frequencies, 2-sided

test, fixed-effects statistics). Fig 2B depicts a time-frequency representation of the difference in

phase locking, indicating that the effect is centered around 250 ms prior to saccade onset at

12–14 Hz. When aligning the data to saccade offset (i.e., fixation onset), no significant differ-

ences in phase locking were found (presaccade: p> 0.21, S1A Fig; postsaccade: p> 0.25, S1B

Fig), in line with the idea that activity timed to saccade onset is important for visual processing

[10]. The intracranial results then guided the analyses in the group-level study by confining

the frequency of interest to 12–14 Hz, where MEG data here is presented from 22 healthy par-

ticipants performing the memory task (see “Materials and methods” for exclusion criterions).

A cluster-based permutation test revealed a significant difference in presaccade phase locking

between later-remembered and later-forgotten images in the alpha band (12–14 Hz; cluster

randomization: p< 0.01, controlling for multiple comparisons over sensors, 2-sided test,

Fig 3A).

In the posterior sensors forming a cluster, the difference was most pronounced approxi-

mately 250 ms prior to saccade onset (Fig 3A). Unfiltered data from exemplar depth electrodes

and MEG sensors depicting saccade-onset locked potentials are shown in S2 Fig. Analyzing

the phase locking for later-remembered and later-forgotten pictures separately suggested

the existence of a preferred alpha phase for later-remembered, but not later-forgotten, trials

(S3 Fig).
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Additional analyses of presaccadic spectral power indicated that the phase-locking results

were not biased by spectral power (S4 Fig). A control analysis, in which we related phase

locking to stimulus onset (irrespective of saccadic eye movements), revealed no significant dif-

ferences between later-remembered and later-forgotten scenes (S8 Fig). However, when ana-

lyzing power after stimulus onset (irrespective of saccadic eye movements), significantly less

alpha power was found for remembered as compared to forgotten scenes (12–14 Hz; cluster-

randomization: p< 0.019, controlling for multiple comparisons over sensors and time,

2-sided test, S8 Fig), highlighting the difference between stimulus-onset-related subsequent

memory studies (for an overview, see [11]) and the present saccade-related phase-locking anal-

yses during free viewing. No difference was found when analyzing phase locking or power

after saccade onset (S9 Fig).

Since the average fixation duration between typical eye movements is less than 500 ms, we

also analyzed saccades with a minimum fixation duration of 200 ms prior to saccade onset. In

this analysis, significantly higher phase locking for later-remembered trials than for later-for-

gotten trials at 10 Hz was found (cluster randomization: p< 0.05, controlling for multiple

comparisons over sensors, 2-sided test, S5 Fig). Note that the shorter time window of 200 ms is

Fig 1. Procedure. During the study phase, participants viewed natural scenes (free viewing), indicating whether the depicted scene was indoors or

outdoors (shallow encoding task). After a short distracter task (approximately 6 min), all the images from the study phase were presented again, randomly

interleaved with new pictures. Participants were prompted to judge whether a given image was new or old on a 6-point scale. Image credit: Atsuko

Takashima.

https://doi.org/10.1371/journal.pbio.2003404.g001
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at the expense of frequency resolution now being approximately 5 Hz). Because this analysis

produced higher trial numbers, data from all 36 participants could be analyzed. Again, signifi-

cantly higher phase locking for later-remembered trials than for later-forgotten trials was

found (cluster randomization: p< 0.005, controlling for multiple comparisons over sensors,

2-sided test, S5 Fig). We conclude that the memory encoding related to saccades phase locked

to alpha oscillations is robust with respect to presaccadic epochs of different lengths.

In order to identify the sources of the effects, we computed phase locking in the alpha band

for virtual sensors, applying a dynamic imaging of coherent sources (DICS) beamformer [12].

Fig 2. Presaccadic phase locking in occipital leads of depth electrodes. (A) Electrode locations of depth electrodes in 3 epilepsy patients (color

coded). (B) Phase-locking difference (later remembered–later forgotten) in the occipital leads of the depth electrodes prior to saccade onset (t = 0 s).

Significantly higher phase locking in later-remembered versus later-forgotten trials; cluster highlighted by black box (p < 0.005, 2-sided test, fixed-effects

statistics, 15 leads in bipolar montage). The data set used to generate the analyses shown in this figure can be found here: https://osf.io/tpykv. PLI, phase-

locking index.

https://doi.org/10.1371/journal.pbio.2003404.g002

Fig 3. Presaccadic phase locking in the magnetoencephalography (MEG) data. (A) MEG sensor (planar gradients) analysis shows significantly

higher phase locking (phase-locking index [PLI]) for later-remembered trials than for later-forgotten trials at 12–14 Hz, based on intracranial results

(p < 0.01, 2-sided test, significant sensors highlighted). The time-frequency representation of the phase-locking difference averaged across highlighted

sensors shows the peak of the difference to be at 250 ms prior to saccade onset (t = 0 s). (B) Phase-locking analysis (PLI) at source level using a dynamic

imaging of coherent sources (DICS) beamformer approach. Cluster-based permutation statistics indicated a significant difference between later-

remembered and later-forgotten trials (p < 0.05, 2-sided test). While the maximum difference was in parahippocampal areas, the source extended to

visual, parietal, and temporal areas. The data set used to generate the analyses shown in this figure can be found here: https://osf.io/tpykv.

https://doi.org/10.1371/journal.pbio.2003404.g003
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Cluster-based permutation statistics at the source level yielded a significantly higher phase-

locking index for later-remembered trials than for later-forgotten trials (p< 0.01, 2-sided test;

Fig 3B). The cluster spanned from visual to parietal and temporal areas, extending into the cer-

ebellum (Fig 3B). The largest differences were found in the parahippocampal gyrus and the ret-

rosplenial cortex, which have been shown to support the encoding of visual scenes [13–15],

and extended into the posterior hippocampus. The MEG source localization is supported by

intracranial data from parahippocampal depth electrodes in the 3 patients, showing signifi-

cantly higher phase locking for later-remembered trials versus later-forgotten trials in the

alpha range (8–10 Hz, p cluster < 0.05; 2-sided test, fixed-effects statistics; S6 Fig)

Memory performance and saccade metrics

The memory performance of the 22 participants included in the main MEG analyses (d-

prime = 2.13, SE = 0.11) was considerably higher than the memory performance in patients

(d-prime = 0.79). In total, 38,177 saccades were detected in the eye tracking data (22 partici-

pants, mean = 1,735.3, SE = 83.6), resulting in an average saccade rate of 2.30 Hz (SE = 0.11).

The saccade rate is at the lower end of the typically reported range, which can be partly

explained by the use of conservative saccade detection criterions to exclude ambiguous eye

tracking data. The saccade rate was significantly higher (t21 = 7.34, p = 3.17 � 10−7) for later-

remembered (mean = 2.37 Hz, SE = 0.10) versus later-forgotten (mean = 2.01 Hz, SE = 0.11)

scenes, which has been reported previously [16,17], but see [18] for conflicting evidence. The

average saccade duration was 28.8 ms (SE = 0.6), and the average fixation duration was 342.5

ms (SE = 13.8). Saccade directions displayed a horizontal bias but were not different for later-

remembered versus later-forgotten trials (Kuiper 2-sample test for each participant, all p-

values> 0.1; S7 Fig).

When only events with a minimum fixation period of 500 ms prior to saccade onset were

included (as in the main analyses), 3,837 saccades remained (mean = 174.4, SE = 13.26) in the

eye tracking data, resulting in an average saccade rate of 0.36 Hz (SE = 0.01). There was no sig-

nificant difference between saccade rates for later-remembered (0.22, SE = 0.02) and later-for-

gotten (0.25, SE = 0.02) scenes (t21 = −1.77, p = 0.091), indicating that the subsequent memory

effect found in all saccades (above) cannot be generalized across all types of saccades. The aver-

age saccade duration was 28.2 ms (SE = 0.8), and the mean fixation duration was 802.9 ms

(SE = 20.4). Saccade directions displayed a horizontal bias but were not different for later-

remembered versus later-forgotten trials (Kuiper 2-sample test for each participant, all

p-values> 0.1; S7 Fig).

In the intracranial data, a total of 1,415 saccades were detected (3 participants, mean =

471.7), resulting in an average saccade rate of 1.25 Hz and a mean fixation duration of 474 ms.

Note that this low saccade rate can partly be explained by the fact that electrooculography

(EOG) signals were used to detect saccades in patients, which is less sensitive than eye tracking,

and by conservative saccade detection criterions to exclude ambiguous EOG data. The mean

saccade duration in patients was 33.7 ms. The saccade rate for later-remembered scenes

(mean = 1.1551) was lower than for later-forgotten scenes (mean = 1.2906) for the patient

data.

When only events that were free of saccades and blinks in a 0.5-s interval prior to saccade

onset were included (as in the main analyses), 434 saccades remained (mean = 144.7) in the

EOG data, resulting in an average saccade rate of 0.42 Hz. The saccade rate for later-remem-

bered scenes (mean = 0.44) was similar to that of later-forgotten scenes (mean = 0.40) for the

patient data. The average saccade duration was 26.2 ms, and the mean fixation duration was

878.6 ms.

Saccades are phase-locked to alpha oscillations during successful memory encoding
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Discussion

In 2 independent data sets, we provide novel evidence for a functionally relevant coordination

of saccadic eye movements and brain activity. Both the intracranial and the MEG data show

that retinal inputs are temporally aligned to a preferential alpha phase. Importantly, this coor-

dination was related to successful memory encoding, suggesting a mechanistic role for alpha

oscillations in coordinating the encoding of visual information. Furthermore, our results point

to an active involvement of task-relevant brain areas in this coordination: MEG and intracra-

nial data yielded the occipital cortex, the parahippocampal gyrus, and the retrosplenial cortex

as sources of the coordination of saccades and alpha phase, which have been shown to support

the encoding of visual scenes [13–15]. The engagement of scene-selective areas may reflect

effective vision-to-memory mapping along visual, parietal, and posterior temporal cortices

[19].

Our findings are in line with work from the 1960s [20] suggesting a relationship between

alpha oscillations and saccades; however, this effect was not related to perception and memory.

They also support the notion of a preferred alpha phase for the execution of eye movements

[21], by suggesting that during optimal information encoding, the execution of saccades is on

hold until the end of an alpha duty cycle. We propose that effective coordination of saccades

and brain oscillations allows for optimizing the speed of processing in the visual system [22].

The intracranial data in occipital and parahippocampal electrodes showed enhanced phase

locking in the alpha band for later-remembered trials as compared to later-forgotten trials,

albeit with the frequencies being slightly lower in the parahippocampal (8−10 Hz) than in the

occipital depth electrodes (12−14 Hz). This could be interpreted as a shift in the dominant fre-

quency of brain areas along the hierarchy, from visual to memory areas.

The main results presented here rely on events with a minimum fixation duration of 500 ms

prior to saccade onset. The upside of this selection is the exclusion of other saccades or blinks

that would contaminate the time window of interest while keeping a reasonable frequency res-

olution. On the downside, these events may not reflect stereotypical eye movement behavior,

which display an average fixation duration of approximately 250 to 300 ms. However, analyz-

ing events with a minimum fixation duration of 200 ms (at the expense of frequency resolu-

tion) showed very similar phase-locking effects, thus underscoring the robustness of our core

findings.

Although memory studies often treat eye movements as artifacts, their interaction with

memory processes has gained recent interest in the field [23,24]. Importantly, investigating

naturalistic behavior in free-viewing paradigms, as used in the present study, has been shown

to provide crucial insight into the interaction of eye movement behavior and memory pro-

cesses, as, for example, relationships between visual sampling and recognition memory perfor-

mance [16,17] or hippocampal blood oxygen level-dependent (BOLD) activity [25]. Going

beyond these prior findings, the present results indicate that eye movements already have an

effect on memory performance at the stage of their initiation, depending on their coordination

with brain rhythms implicated in the sampling of visual information.

The increase in memory encoding with saccades locked to alpha phase might be supported

by anticipatory attentional deployment [26]. The fact that the phase-locking difference was

found prior to saccade onset might suggest planning of the upcoming to-be-attended location

[27], resulting in a stronger locking between saccades and the phase of the alpha oscillation

and ultimately improved memory encoding. The present results highlight the necessity for a

coordination of alpha oscillations and eye movements for optimal memory encoding. Effi-

ciently sampled visual information could then be integrated by the hippocampal memory

system. A recent nonhuman primate study demonstrated that saccades were aligned to

Saccades are phase-locked to alpha oscillations during successful memory encoding
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hippocampal oscillations of approximately 10 Hz [28]. Future studies should explore interre-

gional synchronization in relation to oculomotor behavior, visual information sampling, and

memory.

Materials and methods

Ethics statement

All participants gave written informed consent before the start of experiment in accordance

with the Declaration of Helsinki. The study was approved by the local ethics committee (com-

mission for human related research CMO-2014/288 region Arnhem/Nijmegen NL). The

patients, who volunteered to participate in the study, had depth electrodes implanted for diag-

nostic reasons. The patients gave written informed consent. The study was approved by the

ethics committee of the University of Munich.

Participants

For the MEG part, 36 young healthy adults were included in the study. Initially, 48 participants

were recruited; however, 12 were removed because of not completing the study (7 partici-

pants), excessive movement artifacts (2 participants), or technical problems during the record-

ings (3 participants). The 36 participants included in this study (24 females; mean age 23.1 y,

range 18−30 y; 35 right handed) reported no history of neurological and/or psychiatric disor-

ders and had normal or corrected-to-normal vision.

Additionally, 3 male patients (age range 30−60 y) with a history of drug-resistant epilepsy

were recruited from the Epilepsy Center, Department of Neurology, University of Munich,

Germany.

Design, procedure, and materials

The study design comprised an MEG and an fMRI (not reported here) session. Session order

was counterbalanced across participants. For each session, 3 stimulus sets of 100 photographs

each were constructed. Half of the pictures depicted indoor scenes, the other half outdoor

scenes (exemplary scenes are shown in Fig 1). Pictures were presented in the MEG chamber

on a 39 × 46 cm back-projection screen subtending a visual angle of approximately 27˚ × 32˚.

Out of the 3 sets, 2 sets (200 scenes) were presented during encoding. During test, these 2 sets

were presented again, plus the third set (100 scenes as foils). Assignment of a set to encoding

or test was counterbalanced across participants. Nine additional scenes were presented during

a short practice session before encoding and test in order to explain the task. Participants were

made aware about the memory test before the start of the experiment.

Fig 1 illustrates the experimental procedure. At study, the pictures were presented for 4 s in

random order with the constraint that no more than 4 scenes of the same type (indoor/out-

door) were shown consecutively. The participants were instructed to judge whether the

depicted scene was indoors or outdoors by button press during the fixation cross. This encod-

ing task was chosen to ensure attention to each scene and promote encoding of the images.

Participants freely viewed the scenes; i.e., they were not expected to fixate. A fixation cross

with variable duration (1–2 s) followed each scene.

The study phase was followed by a distracter phase during which the participants solved

simple mathematical problems for approximately 1 min, underwent approximately 5 min of

fixation to different locations on the screen used to evaluate eye tracker accuracy, and spent

approximately 1 min with eyes open and approximately 1 min with eyes closed. The distracter

phase prevented participants from covert rehearsing. The distracter period was followed by the
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memory test. At test, the 200 pictures from the study phase and 100 new pictures (foils) were

presented for 4 s each. The presentation order was randomized, with the constraint that no

more than 4 scenes of the same type (old/new) were shown consecutively. After each scene,

participants were prompted to indicate their confidence on whether the scene was old or new

using a 6-point response scale, ranging from “very sure old” (1) to “very sure new” (6). This

picture of the rating scale remained until the participants responded. Before the next scene, a

fixation cross with variable duration (750–1,250 ms) was presented. The procedure for the

patients with intracranial electrodes deviated slightly (see below).

MEG acquisition and preprocessing

MEG was recorded using a 275 whole-brain axial gradiometer system (VSM MedTech/CTF

MEG, Coquitlam, Canada) installed in a magnetically shielded room. The data were sampled

at 1,200 Hz following a low-pass antialiasing filter with a cutoff at 300 Hz. Additionally, hori-

zontal and vertical electro-oculograms were recorded from bipolar Ag/AgCl electrodes

(<10kO impedance) placed below and above the left eye and at the bilateral outer canthi. To

track the position of the head during MEG recording, we used 3 head coils placed at anatomi-

cal landmarks (nasion and both ear canals). Using a real-time head localizer [29], the position

of the head relative to the MEG helmet was tracked. Each participant’s nasion, left and right

ear canal, and head shape were digitized with a Polhemus 3Space Fasttrack.

Preprocessing of the data was done using the Fieldtrip toolbox [30]. Data were divided

into single epochs ranging from 0 to 4 s after picture onset. Epochs were corrected for cardiac

artifacts using independent component analysis (ICA) and sorted according to the behavioral

performance of each participant’s confidence judgments during the recognition test phase.

Pictures that were confidently judged as old (responses 1, 2, and 3) constituted later-remem-

bered scenes, and the remaining pictures were classified as later-forgotten scenes.

Eye tracking acquisition, analyses, and trial definition

An Eyelink 1000 (SR Research) eyetracker was used to monitor the horizontal and vertical

movements of the participant’s left eye. Before recording, the eye tracker was calibrated by col-

lecting gaze fixation samples from known target points to map raw eye data on screen coordi-

nates. Participants fixated on 9 dots sequentially on a 3-by-3 grid. After the calibration run, a

validation run was performed during which the difference between current gaze fixations and

fixations during the calibration was obtained. The calibration was only accepted if this differ-

ence was smaller than 1˚ of visual angle.

Eye tracking and MEG data were simultaneously recorded and analyzed using the Fieldtrip

toolbox. Vertical and horizontal eye movements were transformed into velocities. Velocities

exceeding a certain threshold (velocity > 6× the standard deviation of the velocity distribution,

duration > 12 ms, see Engbert and Kliegl [31]) were defined as saccades. Saccade onsets dur-

ing stimulus presentations in the study phase defined the events of interest (trials). To avoid

potential artifacts from other eye movements and provide a reasonable frequency resolution of

2 Hz, only events that were free of saccades and blinks in a 0.5-s interval prior to saccade onset

(i.e., a minimum fixation period of 500 ms) were included. Saccades that occurred during the

presentation of scenes that were subsequently judged as old (responses 1, 2, and 3) constituted

later-remembered trials. Saccades that occurred during scenes that were subsequently judged

as new (responses 4, 5, and 6) constituted later-remembered trials.

After excluding all participants that had less than 30 remaining trials per condition (later

remembered or later forgotten), 22 participants were included in the further analyses (3,837

trials in total, mean = 174.4, SE = 13.26; mean number of remembered trials = 109.7, SE = 8.8;
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mean number of forgotten trials = 64.7, SE = 9.7). In order to display the temporal dynamics

of the phase locking, the trials were zero-padded to a length of 1.5 s (i.e., adding 500 ms of

zeros before and after the 500 ms of data). Since typical eye movements occur approximately

every 250–300 ms, the events with a minimum fixation period of 500 ms may not be represen-

tative. Therefore, we conducted additional phase-locking analysis on events with a minimum

fixation period of 200 ms prior to saccade onset, including approximately 66% of all detected

saccades. In the 22 participants, a total of 25,077 saccades (mean = 1,139.9, SE = 49.6; mean

number of remembered trials = 802.7, SE = 57.5, mean number of forgotten trials = 337.1,

SE = 26.5) were included. Since this analysis produced higher trial numbers, data from all 36

participants could be analyzed (total number of saccades = 43,226; mean = 1,201.8, SE = 41.3;

mean number of remembered trials = 918.7, SE = 49.6, mean number of forgotten trials = 282.9,

SE = 23.1). These trials were zero-padded to a length of 0.6 s (i.e., adding 200 ms of zeros

before and after the 200 ms of data).

Phase and power analysis

The frequency spectra of the phase and the power of the data were computed by applying a

Fourier transformation to the 500 ms of data prior to saccade onset in each event, after multi-

plication with a hanning taper. Phase and power were calculated for frequencies between 2

and 30 Hz in steps of 2 Hz. The frequency spectra of the phase and the power were used to sta-

tistically test differences between conditions (see “Statistics”).

Synthetic planar gradient representations were approximated by relating the field at each

sensor with its neighbors’ [32]. On each of the resulting 2 orthogonal gradients, Fourier coeffi-

cients were normalized by their amplitude, and the phase-locking index (PLI) [7] was calcu-

lated, by extracting the length of the resulting vector after averaging the phase angles:

PLItf ¼ jn
� 1
Xn

r¼ 1
eiktfr j;

where n = number of trials, and eik equals the complex polar representation of phase angle k in

trial r, for time-frequency point tf.
This was done for later-forgotten and later-remembered trials. The PLI quantifies the con-

sistency of phases across trials at each given time-frequency point. To control for a bias in PLI

due to different trial numbers in conditions, a sample of trials from the condition with the

larger number of trials was randomly drawn, with the number of trials in this sample being

equal to the number of trials in the condition with less trials. The PLI for this sample was com-

puted. After repeating this procedure 1,000 times, PLI values were averaged. This average

reflects an unbiased estimate of the PLI for all trials in the respective condition. After this step,

the 2 planar gradients were combined.

In order to depict the temporal dynamics of phase and power in the data, time-frequency

representations were computed by a sliding time window approach with a window length of

0.5 s in steps of 50 ms across the zero-padded data. After multiplying a hanning taper to each

window, the Fourier transformation was calculated for frequencies between 2 and 30 Hz in

steps of 2 Hz.

To identify potential confounds due to differences in spectral power, power was calculated

on synthetic planar gradients, using the same approach as outlined above. Instead of comput-

ing the PLI, power values were calculated from the Fourier coefficients (amplitude squared).

The PLI analysis on events with a minimum fixation period of 200 ms prior to saccade

onset was performed as defined above, with the exception that the window length was 200 ms

in the sliding time window approach. Due to the resulting frequency resolution of 5 Hz, phase

information was extracted from 5 to 30 Hz in steps of 5 Hz.
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Source-level analyses

To identify PLI differences in source space, a virtual sensor approach applying frequency-

domain adaptive spatial filtering (DICS beamformer [12]) was implemented. This algorithm

constructs a spatial filter for each specified location (each grid point; 10-mm3 grid). The cross

spectral density for the construction of the spatial filter was calculated for the frequency of

interest (12–14 Hz, using orthogonal Slepian tapers around a center frequency of 13 Hz with

spectral smoothing of +/− 2 Hz), for all trials (common filter approach).

Individual structural MR images, acquired on a 3T Siemens Magnetom Prisma MRI sys-

tem (Siemens, Erlangen, Germany), were aligned to the MEG coordinate system, utilizing

the fiducials (nasion, left and right preauricular points) and individual head shapes recorded

after the experiment. A realistic single-shell brain model [33] was constructed for each par-

ticipant, based on the structural MRIs. The forward model for each participant was created

using a common dipole grid (10-mm3 grid) of the grey matter (derived from the anatomical

automatic labeling atlas [34]) volume in MNI space warped onto each participant’s anatomy.

The Fourier data were projected into source space by multiplying them with the spatial

accordant filters, allowing for the phase to be estimated. The PLI was computed on the 2 ori-

entations of the source model, and later averaged, for later-remembered and later-forgotten

trials, respectively.

Statistics

Statistics followed a 2-step approach: first, differences in the intracranial data’s phase locking

(later-remembered versus later-forgotten trials) were evaluated in a fixed-effect manner, by

concatenating all electrodes from all patients. Cluster-based nonparametric permutation statis-

tics [35] identified continuous frequency clusters with significant differences between later-

remembered and later-forgotten PLI while controlling for multiple comparisons over frequen-

cies. Only the cluster with the largest summed value was considered and tested against the per-

mutation distribution. The null hypothesis that later-forgotten and later-remembered trials

showed no difference in PLI was rejected at an alpha level of 0.05 (2-tailed).

Second, statistical quantification of the MEG sensor-level data was performed by a cluster-

based nonparametric permutation approach [35], identifying clusters of activity on the basis of

rejecting the null hypothesis while controlling for multiple comparisons over sensors. The fre-

quency range (12–14 Hz) for the sensor-level statistics was restricted to the outcome of the

intracranial data analyses. For each sensor, a test statistic was calculated, based on a paired

samples t test comparing the PLI for later-remembered versus later-forgotten trials. Sensors

showing a significant effect (p< 0.05, 2-sided t test) were clustered based on spatial adjacency,

with a minimum of 2 adjacent sensors required for forming a cluster. T-statistics were

summed in each cluster. Again, only the cluster with the largest summed value was considered

and tested against the permutation distribution. The null hypothesis that later-forgotten and

later-remembered trials showed no difference in PLI was rejected at an alpha level of 0.05

(2-tailed).

Statistical quantification of the source-level data was also performed by a cluster-based non-

parametric permutation approach, now considering the clustering in voxel space. The fre-

quency range for the source-level statistics was defined by the outcome of the sensor-level

statistics, and the alpha level was set to 0.05 (2-tailed). Cluster-based nonparametric permuta-

tion statistics [35] identified continuous spatial clusters with significant differences between

later-remembered and later-forgotten PLI while controlling for multiple comparisons over

voxels. Only the cluster with the largest summed value was considered and tested against the
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permutation distribution. The null hypothesis that later-forgotten and later-remembered trials

showed no difference in PLI was rejected at an alpha level of 0.05 (2-tailed).

Condition-specific PLIs for later-remembered and later-forgotten trials, separately (see S3

Fig), at the time and frequency of interest (12–14 Hz, −0.25 ms) were statistically quantified by

comparing them to a distribution of surrogate PLI values. The surrogate PLI distribution was

constructed for each participant and condition by shifting the data points in each condition’s

trial circularly along the time axis with a random lag, for each sensor. PLI values were com-

puted as explained above, for 1,000 random shifts. Subsequently, 10,000 surrogate grand aver-

ages were constructed by randomly drawing 1 PLI value from each participant’s surrogate

distribution for each surrogate grand average. Condition-specific PLI grand averages were

compared to these 10,000 surrogate grand averages on each sensor and considered to be signif-

icant if they were larger (or smaller) than 97.5% (or 2.5%) of the values in the surrogate grand

average values (2-sided test).

Intracranial data

Three male patients (age range 30–60 y) with occipital depth electrodes were included in the

study. The patients had a history of drug-resistant focal epilepsy and were implanted for diag-

nostic reasons. Recordings were performed at the Epilepsy Center, Department of Neurology,

University of Munich, Germany. The patients gave written informed consent. The procedure

and design of the study was identical to the MEG procedure and design (see above), with the

exception that only 100 pictures were presented during study and 200 scenes (100 old and 100

new) were presented during the memory test. This was done to compensate for inferior mem-

ory performance in a clinical setting.

Patient 1 had 10 depth electrodes implanted, covering bilateral temporal, parietal, and fron-

tal regions and left occipital regions. Patient 2 had 10 depth electrodes implanted, covering

right temporal, parietal, and occipital regions. Patient 3 had 11 depth electrodes implanted,

covering left frontal, temporal, parietal, and occipital regions. The locations of the electrodes

were determined using coregistered preoperative MRIs and postoperative CTs. Electrode loca-

tions were converted to MNI coordinates. Intracranial EEG was recorded from Spencer depth

electrodes (Ad-Tech Medical Instrument, Racine, Wisconsin, United States) with 4–12 con-

tacts each, 5 mm apart. Data were recorded using XLTEK Neuroworks software (Natus Medi-

cal, San Carlos, California, US) and an XLTEK EMU128FS amplifier, with voltages referenced

to a parietal electrode site (1,000 Hz sampling rate). All electrodes that either were identified as

located in the seizure onset zone or showed interictal spiking activity were excluded from anal-

yses. Data were rereferenced offline to each contact’s neighboring contact (bipolar montage).

All bipolar electrodes with both contacts in the occipital cortex were included in the analyses.

Additionally, horizontal and vertical eye movements were recorded from bipolar Ag/AgCl

electrodes (<10kO impedance) placed below and above the left eye and at the bilateral outer

canthi.

Study phase data were cut into single epochs, ranging from 0 to 4 s after picture onset. Sac-

cade onsets were extracted from EOG recordings using the method described above (see “Eye

tracking acquisition, analyses, and trial definition”). Saccade onsets during stimulus presenta-

tions defined the events of interest (trials). All trials were visually inspected for artifacts (e.g.,

epileptiform spikes). Contaminated trials were excluded from the analyses. The encoding trials

were sorted according to each participant’s confidence judgments during the test phase. Pic-

tures that were confidently judged as old (responses 1, 2, and 3) constituted hits, and the

remaining pictures were classified as misses. Time-frequency analyses, PLI, and statistics were

computed as described above.
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Supporting information

S1 Fig. Pre- and postsaccade phase locking locked to saccade offset. (A) Phase-locking dif-

ference (later remembered–later forgotten) on occipital depth electrodes prior to saccade offset

(time = 0 s). There was no significant difference in phase locking between later-remembered

and later-forgotten trials (p> 0.21; 2-sided test, fixed-effects statistics, 15 contacts in bipolar

montage, time = −250 ms). (B) Phase-locking difference (later remembered–later forgotten)

on occipital depth electrodes after saccade offset (time = 0 s). No significant difference in

phase-locking between later-remembered and later-forgotten trials (p> 0.25; 2-sided test,

fixed-effects statistics, 15 contacts in bipolar montage, time = 250 ms). Note that the statistical

tests were performed on the center time bin (−250 ms and 250 ms, respectively). The data set

used to generate the analyses shown in this figure can be found here: https://osf.io/tpykv.

(TIF)

S2 Fig. Presaccadic unfiltered data. Unfiltered data, averaged across trials locked to saccade

onset (time = 0 s). (A) Exemplar data from an occipital depth electrode (bipolar montage). (B)

Exemplar data from a parahippocampal depth electrode (bipolar montage). (C) Exemplar data

from a magnetoencephalography (MEG) sensor. Note the more regular, slow frequency fluctu-

ations in the averaged potentials for later-remembered trials (left) as compared to later-forgot-

ten trials (right). The data set used to generate the analyses shown in this figure can be found

here: https://osf.io/tpykv.

(TIF)

S3 Fig. Condition-specific phase-locking index (PLI) contrasts. (A) Difference between

later-remembered trials and surrogate data at 12–14 Hz, −250 ms. (B) Difference between

later-forgotten trials and surrogate data at 12–14 Hz, −250 ms. Significant sensors are

highlighted (p< 0.05, 2-sided). The data set used to generate the analyses shown in this figure

can be found here: https://osf.io/tpykv.

(TIF)

S4 Fig. Presaccade power. (A) Topography of magnetoencephalography (MEG) sensor-level

statistics (planar gradients) for power averaged over 12–14 Hz at −0.25 s (corresponding to the

phase-locking index [PLI] effect); no significant difference (cluster-based permutation statistic,

no clusters found). The bar plot (error bars represent SEM; dots indicate individual partici-

pants) depicts 12–14 Hz power on sensors showing the significant phase-locking effect. No

significant difference (t21 = 0.07, p> 0.9, 2-sided t test) between later-remembered and later-

forgotten trials in the respective time interval (−0.25 s) was found. (B) Occipital depth elec-

trodes showed no significant difference in power (t14 = 1.27, p> 0.2, 2-sided t test), averaged

over 12–14 Hz at −0.25 s (c) Parahippocampal depth electrodes showed no significant differ-

ence in power (t10 = 0.71, p> 0.7, 2-sided t test), averaged over 8–10 Hz at −0.25 s. The data

set used to generate the analyses shown in this figure can be found here: https://osf.io/tpykv.

(TIF)

S5 Fig. Presaccadic phase locking for 200-ms minimum fixation duration. Magnetoenceph-

alography (MEG) sensor (planar gradients) analysis shows significantly higher phase locking

(phase-locking index [PLI]) for later-remembered than forgotten trials at 10 Hz (correspond-

ing to a frequency range of 7.5 to 12.5 Hz), averaged in the −0.2- to 0-s interval prior to saccade

onset (left: N = 22, p< 0.05, 2-sided test, significant sensors highlighted; right: N = 36,

p< 0.005, 2-sided test, significant sensors highlighted). The data set used to generate the analy-

ses shown in this figure can be found here: https://osf.io/tpykv.

(TIF)
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S6 Fig. Presaccade phase locking on parahippocampal leads of depth electrodes. (A) Elec-

trode locations of parahippocampal depth electrodes in 3 participants (color coded). (B)

Phase-locking difference (later remembered–later forgotten) on parahippocampal depth elec-

trodes prior to saccade onset (time = 0). Significantly higher phase locking in later-remem-

bered versus later-forgotten trials at 8–10 Hz (p< 0.05, highlighted; 2-sided test, fixed-effects

statistics, 11 contacts in bipolar montage). The data set used to generate the analyses shown in

this figure can be found here: https://osf.io/tpykv.

(TIF)

S7 Fig. Saccade directions. Saccade directions for (A) all detected saccades in the magnetoen-

cephalography (MEG) data set and (B) for saccades in the MEG data set with a minimum

fixation period of 500 ms prior to saccade onset (as used in the main analysis). For both (A)

and (B), the distributions for later-remembered (middle column) and later-forgotten trials

(right column) did not differ significantly (Kuiper 2-sample test for each participant, all p-

values> 0.1). The data set used to generate the analyses shown in this figure can be found

here: https://osf.io/tpykv.

(TIF)

S8 Fig. Phase locking and power after stimulus onset. (A) Cluster-based permutation statistics

showed no significant differences in phase locking between later-remembered and later-forgot-

ten scenes at 12–14 Hz, controlling for multiple comparisons over time (0 to 4 s) and sensors

(p cluster> 0.9). There were also no significant differences after averaging time over 1-s bins (all

clusters p> 0.64). (B) Cluster-based permutation statistics (controlling for multiple comparisons

over sensors and time: 0 to 4 s) showed significantly lower power for later-remembered scenes

than for later-forgotten scenes at 12–14 Hz (p cluster< 0.018; time = 1.55–2.6 s). The data set

used to generate the analyses shown in this figure can be found here: https://osf.io/tpykv.

(TIF)

S9 Fig. Phase locking and power after saccade onset. (A) Topography of magnetoencepha-

lography (MEG) sensor-level statistics (planar gradients) for phase locking averaged over 12–

14 Hz at 250 ms; no significant difference (cluster-based permutation statistic, all clusters

p> 0.72). (B) Topography of MEG sensor-level statistics (planar gradients) for power averaged

over 12–14 Hz at 250 ms; no significant difference (cluster-based permutation statistic, no

clusters found). The data set used to generate the analyses shown in this figure can be found

here: https://osf.io/tpykv.

(TIF)
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