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ABSTRACT 

Aim We undertook the largest yet comparative study of the form of the island species–area 

relationship (ISAR) using 207 habitat island datasets and 601 true island datasets. We also 

undertook analyses of (a) the factors influencing z and c values of the power (log–log) model, 

and (b) how z and c vary between different island types.  

Locations Global 

Methods We used an information theoretic approach to compare the fit of 20 ISAR models 

to 207 habitat island datasets. Model performance was ranked according to pre-set criteria, 

including metrics of generality and efficiency. We also fitted the power (log–log) model to 

each dataset and analysed variation in parameter estimates and model fits as a function of key 

dataset characteristics using linear models and constrained analysis of principal coordinates.  

Results The power (non-linear) model provided the best fit to the most datasets, and was the 

highest ranked model overall. In general, the more complex models performed badly. 

Average z values were significantly lower for habitat island datasets than for true islands, and 

were higher for mountaintop and urban habitat islands than for other habitat island types. 

Average c values were significantly lower for oceanic, and significantly higher for inland 

water-body islands, than for habitat islands. Values of z and c were related to dataset 

characteristics including the ratio of the largest to smallest island, and the maximum and 

minimum richness values in a dataset.  

Main conclusions Our multi-model comparisons demonstrated the non-linear 

implementation of the power model to be the best overall model and thus to be a sensible 

choice for general use. As the z value of the log–log power model varied in relation to 



ecological and geographical properties of the study systems, caution should be employed 

when using canonical values for applied purposes. 

Keywords  Applied island ecology, conservation biogeography, fragmentation, habitat 

islands, habitat loss, island biogeography, island species–area relationship, macroecology, 

multi-model comparison, species–area relationship 

 

INTRODUCTION 

The species–area relationship (SAR), i.e. the general increase in the number of species 

recorded with increasing sampling area, is one of the fundamental patterns in biogeography 

(MacArthur & Wilson, 1967; Rosenzweig, 1995; Whittaker & Fernández-Palacios, 2007). A 

number of hypotheses have been put forward to explain SAR phenomena, including the 

Equilibrium Theory of Island Biogeography (ETIB), the habitat diversity hypothesis, passive 

sampling from a regional species pool, and increasing rate of speciation with increasing area 

(e.g. MacArthur & Wilson, 1967; Losos & Schluter, 2000; Triantis et al., 2003; Whittaker & 

Fernández-Palacios, 2007).  

For present purposes, we focus purely on island species–area relationships (ISARs; 

Whittaker & Matthews, 2014). The term ISAR refers to Scheiner’s (2003) type IV curve, 

wherein the number of species sampled within each of a set of isolates is plotted as a function 

of isolate area. It is also necessary to distinguish between different types of islands. Herein 

we define true islands as geographical islands within a matrix of water, i.e. oceanic islands, 

continental-shelf islands and inland water-body islands, whereas habitat islands are isolates of 

natural habitat (including lakes) surrounded by a contrasting non-water matrix type (see 

Whittaker & Fernández-Palacios, 2007).  



The ISAR has broad applicability in ecology and conservation and has been used as 

the basis for protected area design, predicting species extinctions resulting from the loss of 

native habitat, and to estimate regional diversity from smaller-scale sample data (e.g. 

Dengler, 2009; Smith, 2010; Halley et al., 2013; Gerstner et al., 2014). However, despite this 

applied usage in terrestrial systems, most ISAR comparison studies have focused on true 

islands. As such, the development of conservation theory regarding habitat islands has relied 

too heavily on analyses of true island datasets; with insufficient attention to specific habitat 

island ISAR patterns (cf. Laurance, 2008; Mendenhall et al., 2014a). For example, Triantis et 

al. (2012) provided a synthetic analysis of ISARs involving comparisons of fit for 20 ISAR 

models to data from 601 true island datasets. No comparable analysis has been conducted 

using solely habitat island datasets, and as Sala et al. (2005, p.380; see also Halley et al., 

2013) state, the “precise shape of the relationship” in terrestrial systems is unknown. The 

comparability of ISAR patterns between true islands and habitat islands, and the application 

of island theory to habitat islands, are thus key themes within both conservation and 

countryside biogeography (Daily et al., 2003; Pereira & Daily, 2006; Koh et al., 2010; 

Matthews et al., 2014a,b; Mendenhall et al., 2014a, b).  

The past decade has seen a rise in the number of studies examining the form of the 

ISAR (e.g. Dengler, 2009; Tjørve, 2009; Williams et al., 2009; Triantis et al., 2012). Over 20 

functions have been proposed (e.g. Table 1), of which the power function remains the most 

commonly employed. Underpinning this research endeavour is a growing acceptance that the 

choice of function is an integral component of the applications of the ISAR (Guilhaumon et 

al., 2008; Benchimol & Peres, 2013; Halley et al., 2013). For example, linear, convex and 

sigmoidal models will result in very different estimates of richness hotspots when used in 

comparative analyses (Guilhaumon et al., 2008), while the form of ISAR fitted is key to 

predictions of the number of extinctions resulting from habitat loss (Halley et al., 2013). The 



growing popularity of multi-model inference methods in ISAR research (e.g. Guilhaumon et 

al., 2008, 2010; Scheiner et al., 2010; Benchimol & Peres, 2013; Matthews et al., 2014a), is 

evidence of the increasing realisation that ISAR form matters. 

Notwithstanding the recent focus on ISAR form, most applied habitat island ISAR 

studies employ the power model in combination with a set/pre-defined z value, generally 

Preston’s (1962) canonical value of 0.25 (e.g. van Vuuren et al., 2006; see examples listed in 

Kitzes & Harte, 2014). However, previous empirical work suggests a wide range of values 

can occur (see Whittaker & Fernández-Palacios, 2007). In particular, it is expected that 

habitat island ISARs, being less effectively isolated, should have lower z values than true 

islands. This proposition has rarely been tested using multiple datasets and our understanding 

of variation in ISAR parameters remains hazy.  

Few studies have explored ISAR patterns in a large number of habitat island studies. 

Watling & Donnelly (2006) conducted an analysis of several habitat island datasets, but fitted 

just a single ISAR model. Similarly, the meta-analysis of Drakare et al. (2006) only 

considered two ISAR models, and is confounded by the inclusion of nested SARs. Hence our 

paper has three aims. First, we use an information theoretic approach to compare the fit of 20 

ISAR models to 207 habitat island datasets. Second, we test for variation in parameter 

estimates and model fits as a function of various dataset characteristics. Third, we compare 

our findings with those for true island datasets (n = 601; Triantis et al., 2012), to provide the 

most comprehensive comparison of ISARs in the two island types to date.  

MATERIALS AND METHODS  

Habitat island data collection  



Between May 2010 and August 2013 we searched within JSTOR (1913–2003), ISI Web of 

Knowledge (1980–2013) and BIOSIS Biological Abstracts (1980–2003) using the keywords 

‘species richness’, ‘fragments’, and ‘habitat islands’, in different combinations. Certain 

datasets were obtained from the authors of the source papers, whilst others were 

supplemented with additional data from the source paper authors. Following Matthews et al. 

(2014b), our criteria for selecting datasets were: (i) habitat islands constituted discrete 

patches of habitat surrounded by contrasting habitat (we also included a small number of 

datasets consisting of protected areas in which the contrast between the islands and the 

intervening matrix was not so pronounced); (ii) there were at least four habitat islands (as 

Triantis et al., 2012); (iii) the area and number of species of each habitat island were known; 

(iv) data did not overlap with those from any other study already accepted for analysis (data 

for different taxa within the same study system were accepted). 

We also included two datasets of birds in 40 habitat islands in fragmented landscapes 

in North France and South Spain, collected by the first author (see Appendix S1 for details). 

For each dataset we recorded: the latitudinal midpoint of the habitat patches (Lat; for certain 

datasets this was an estimate as precise data were not presented in the source paper), taxon 

(Tax), number of islands (Ni), area of smallest (Amin) and largest island (Amax) and the ratio 

between them (i.e. Amax/Amin; Ascale), minimum (Smin) and maximum (Smax) species 

richness values and the ratio between them (Sscale). We categorised habitat island types 

(Typ) as forest islands, grassland fragments, mountain-top islands (sensu Brown, 1971), 

urban fragments, and other (e.g. gravel pits, protected areas). Forest island datasets were 

defined as those in which the main vegetation type was forest, and the surrounding matrix 

was non-urban. Urban fragment datasets could encompass any main vegetation type 

(typically it was forest), where the surrounding matrix was entirely comprised of intensive 

urban land uses. Island areas were converted into hectares. We tested for multicollinearity 



between predictor variables using variance inflation factors (threshold of four), and we tested 

for normality in each predictor. As a result Amax and Sscale were removed from subsequent 

analyses, while Amin, Ascale, Smin, Ni and Smax were log-transformed to induce normality.  

Model comparison 

Following Triantis et al. (2012) we compared 20 ISAR models (Table 1) using an 

information theoretic approach (Burnham & Anderson, 2002). The linear model was fitted 

using ordinary linear regression. The remaining models were fitted using non-linear 

regression and an expanded version of the ‘mmSAR’ R package model-fitting procedure 

(Guilhaumon et al., 2010; see Triantis et al., 2012, for a more detailed account). Model 

residuals were evaluated for normality using the Shapiro normality test, and for 

homoscedasticity using Pearson correlations. The fit of a model was deemed to be 

satisfactory if both of these assumptions were met, and the optimisation algorithm converged; 

if not the fit was deemed inadequate. To avoid local minima we started the optimisation 

algorithm from multiple different random starting points (n=1000). 

Model performance was compared using Akaike’s information criterion corrected for 

small sample size (AICc; Burnham & Anderson, 2002). The smallest AICc value was taken to 

represent the single best model for a given dataset; all models <2 ΔAICc of the best model 

were considered as having similar empirical support (Burnham & Anderson, 2002). For each 

dataset, we calculated AICc weights (wAICc) to determine the probability of each model 

being the best-fitting model given the set of models and concatenated them to form a model 

selection profile. We also recorded: whether each model provided a satisfactory fit (described 

above), the best fitting model, and the observed shape (linear, convex, or sigmoid) of that 

model fit using the sequential algorithm outlined in Triantis et al. (2012).  



Following Triantis et al. (2012) we computed model generality (the proportion of 

datasets for which a model provided a satisfactory fit) and efficiency (the average wAICc for 

all datasets in which a model provided an adequate fit). An overall model rank was then 

calculated by standardising each of these properties [(criterion value – mean criterion value) / 

standard deviation] and summing the resultant values. 

For our multi-model comparative analyses we used the nonlinear implementation of 

the power model, but for comparison with other studies, we also fitted the logarithmic form 

of the power model to each dataset using standard linear regression in log–log space, 

recording the c and z parameters, the R2 value, and whether the slope of the regression line 

was significantly different from zero. In datasets which included islands with zero species, 

we added one to each island richness value prior to log transformation. 

Model performance consistency 

The effect of sample size 

To determine whether model ranks were consistent across the spectrum of the number of 

islands (Ni) values, model ranks were first determined for all datasets with seven or more 

islands (the minimum was set to seven as AICc could not be computed for datasets with fewer 

islands, see below; cf. Triantis et al., 2012). This process was then repeated for all datasets 

with eight or more islands, and so on, iteratively up to datasets with 20 or more islands. For 

each model we then plotted Ni against model rank and fitted simple linear regressions.  

Robustness 

To test the sensitivity of a best-fitting model to individual data points (a criterion we termed 

‘robustness’) we randomly selected 40 datasets and used a jack-knife procedure. We chose 

this number because the procedure was computationally intensive and 40 represented 

approximately a fifth of our datasets. We hypothesised that model fits for datasets with few 



data points were more likely to be influenced by individual data points and therefore used a 

weighting system in which datasets were weighted (i.e. probability of selection) according to 

the number of islands they contained. For a given dataset we fitted 18 ISAR models to the 

complete dataset and defined the best overall model (Boverall) as that with the lowest AICc 

value. The betap and weibull4 (Table 1) models were not used in this analysis as the fitting 

process was too computationally intensive. We then removed a data point and re-ran the 

model selection, noting the best model for the subset (Btrial). If no model provided a 

satisfactory fit the iteration was discarded. That data point was then re-instated and a different 

point removed, and this process repeated iteratively until the model selection had been run for 

all possible sets (trials) of n-1 data points. We then calculated the percentage of these 

successful trials in which Btrial was the same as Boverall, and the percentage of trials in which a 

Btrial model shape matched the Boverall model shape.  

Explaining variation in ISAR patterns 

Dataset characteristics 

Constrained analysis of principal coordinates (CAP; Bray-Curtis dissimilarity, 9999 

permutations; Anderson & Willis, 2003) was used to determine the amount of variation in the 

model selection profile explained in regards to (a) the best-fitting model (i.e. vectors of 

wAICc), and (b) the best-fitting model shape (i.e. vectors of wAICc summed across models 

for each shape). We used all the aforementioned dataset characteristics, except those 

excluded due to multicollinearity (above), as predictor variables.  

Power (log–log) model 

First, we calculated summary statistics for c and z, and used boxplots and Wilcoxon rank sum 

tests to assess how z and c varied in response to Tax, Ascale, and Typ. We ran these analyses 



twice: first with only parameter estimates from datasets with a significant z value, and second 

with parameter estimates from all datasets. To enable comparisons of c and z values between 

habitat islands (number of significant datasets =135, all datasets =207), oceanic islands (n = 

125 & 193), continental-shelf islands (n = 277 & 353), and inland water-body islands (n =58 

& 66) we fitted the power (log–log) model to the latter three island categories using the 

datasets listed in Triantis et al. (2012); again, running the analysis when only considering 

datasets with a significant z value, and when considering all datasets. We added 11 inland 

water-body island datasets found during our dataset screening process to those compiled by 

Triantis et al. (2012; see Table S1 in Appendix S2).  

Second, we fitted two sets of linear models (LMs), using z and c as the response 

variables and the dataset characteristics as the predictor variables. To provide more equal 

sample sizes between habitat island categories we grouped mountain-top islands and urban 

islands into one category on the basis that they represented more isolated systems than 

datasets grouped under our forest island category. All additional datasets were classified as 

‘other’. We took the absolute value of latitude. Again, we re-ran these analyses twice: once 

for datasets with significant z values (n=133 when z was used as the response variable, and 

133 when c was the response; two and three datasets were removed as outliers based on 

Cook’s distance values, respectively), and once for all datasets. Models were compared using 

AICc. We calculated the weight of evidence (WoE) of each predictor variable by summing 

the Akaike weights of all the models in which a variable was included (cf. Burnham & 

Anderson, 2002). We used the ‘dredge’ function in the ‘MuMIn’ R package (Bartoń, 2012) to 

fit a complete set of models, considering all appropriate predictors. All analyses were 

conducted in R (version 3.0.2; R Development Core Team, 2013). 

RESULTS 



From >1500 published articles, 207 habitat island datasets (Appendix S2) passed the 

screening procedure, comprising 121 vertebrate, 47 invertebrate, and 39 plant datasets; and 

127 forest, 12 mountaintop, 16 grassland, 35 urban and 17 ‘other’ habitat island datasets (a 

map of these datasets is given in Fig. S1 in Appendix S2). The true island datasets sourced 

from Triantis et al. (2012) included 601 datasets, comprising 193 oceanic island datasets, 353 

continental-shelf island datasets and 55 inland water-body island datasets (increased to 66 

with the addition of the 11 we sourced); and 233 invertebrate, 152 plant, and 227 vertebrate 

datasets. 

Model comparison 

AICc could not be computed for datasets with fewer than seven islands (cf. Triantis et al., 

2012), so the model comparison analyses were based on a smaller subset of datasets (Table 

S1 in Appendix S2). Of these datasets, at least one model provided a satisfactory fit in 182 

datasets. The power model provided the best fit (lowest AICc) for 24% (N=44) of the 182 

datasets. The P2 model scored best on the generality criterion, although the power model was 

a close second (Fig. 1), and the power model was the highest ranked model according to the 

efficiency and overall ranking criteria and was the only model to perform well by each metric 

(Fig. 1, Table 1). However, there is a degree of uncertainty in model performance as the mean 

wAICc of the power model was only 0.17, with the second most efficient model (Kobayashi) 

having a mean wAICc of 0.15 (Fig. 1). The more complex models performed poorly, with the 

weibull4, betap, and heleg models (Table 1) never providing the best fit (Fig. 1). The linear 

model ranked second in the number of best fits (Fig. 1a), but was ranked lower in generality 

and efficiency (Fig. 1bc). For the majority of datasets the observed best-fitting model shape 

was convex (mean wAICc of convex models from satisfactory model fits = 0.83; linear = 

0.12; sigmoid = 0.09; see Table S1).  



Sample size and robustness 

The majority of model rankings were consistent across the breadth of Ni values. For example, 

the power model was ranked first for all minimum values of Ni (Fig. 2). The main exception 

was the linear model (Fig. 2), the rank of which significantly decreased with increasing 

minimum Ni (Fig. 2). 

The model rankings appeared relatively robust to the removal of individual data 

points (Table S2 in Appendix S3). The median number of times a data point removal trial 

yielded the same best-fitting model as the overall best, for a given dataset, was 80%, and the 

median number of times a data point removal trial yielded a model with the same shape as the 

best overall model was 100%. 

Dataset characteristics and the model selection profile 

When the model selection profiles (i.e. vectors of wAICc) were used as the dependent term in 

the CAP analysis, the significant predictor variables (i.e. P < 0.05) were Ni, Ascale, Typ, and 

Amin (Table 2). However, these significant variables explained a total of only 11% of 

variation in the choice of best model across the 182 datasets. For model shape (i.e. vectors of 

wAICc summed across models for each shape), the only significant predictors were Ascale 

and Ni, but they explained only 4% of the variation in best model shape across the 182 

datasets. 

The power (log–log) model 

There were 135 datasets with a significant power (log–log) z value (mean R2 = 0.62). The 

median z value was 0.22 (Q1 & Q3=0.16 & 0.32; Fig. 3), and the median c value was 2.27 

(Q1 & Q3 = 1.14 & 3.03; Fig. S2a in Appendix S3). In comparison, z values were larger for 

continental-shelf islands (median=0.28; Q1 & Q3= 0.19 & 0.37; Fig. 3a), inland water-body 



islands (median=0.28; Q1 & Q3= 0.19 & 0.35), and oceanic islands (median=0.35; Q1 & 

Q3= 0.24 & 0.49). The median z value for all true island categories combined was 0.29 (Q1 

& Q3=0.20 & 0.40; a comparison of habitat island z values with those for all true island 

categories combined is provided in Fig. S3 in Appendix S3). The z values were significantly 

lower for habitat islands than for continental-shelf islands (W= 14014, P = < 0.001), inland 

water-body islands (W= 3211, P = 0.048, and oceanic islands (W= 4767, P = < 0.001), 

according to a Wilcoxon rank-sum test. In addition, c values were significantly lower for 

oceanic islands (median=1.45; Q1 & Q3= 0.33 & 2.45; P = < 0.001; Fig. S2a in Appendix 

S3), and significantly higher for inland water-body islands (median=2.81; Q1 & Q3= 1.60 & 

3.78; P = 0.02), than for habitat islands (above). Continental-shelf islands (median=2.2; Q1 & 

Q3= 0.80 & 3.39) had lower c values than did habitat islands, but this difference was not 

significant (P = 0.82).  

Considering only datasets with a significant z value, and within habitat island datasets, 

the median z value was lowest for forest islands (0.20; Fig. 3b), and increased for urban 

islands (0.27), and mountain-top islands (0.30). Due to differences in sample size between 

categories, the only significant pairwise differences were between forest islands and urban 

islands (Wilcoxon rank sum test P = 0.01). The median c value of forest islands was 

significantly larger than mountaintop islands (P < 0.01; Fig. S2b in Appendix S3), but not 

urban islands (P = 0.11). The median z values did not significantly differ between taxa (Fig. 

3c), while vertebrates had a significantly lower c value than plants (Wilcoxon tests; P = 

<0.01; Fig. S2c in Appendix S3), and invertebrates (P = 0.01).  

Considering only significant z values, when z was used as the response variable in a 

set of LMs, the best model contained Ascale (Fig. 3d), Ni, Smin and Smax (Table 3). WoE 

values for these variables were high. The best model had an adjusted R2 of 0.63. Typ and 

Amin were also included in some of the models <2 ΔAICc of the best model. Subsequent 



analysis of the relationship between z and Ascale revealed no clear patterns across the three 

taxa (Fig. S4 in Appendix S3). When c was used as the response variable, the best model 

(adjusted R2 of 0.89) included Amin, Ni, Typ and Smin and each of these variables had high 

WoE values (Table 3).  

When our power model analyses were re-run using parameter estimates from all 

datasets (i.e. including non-significant parameter estimates) our results were qualitatively 

similar to those based on significant parameter estimates (all results based on these data are 

provided in Table S3 and Figs. S5 & S6 in Appendix S3). For simplicity, in the Discussion, 

we focus solely on results based on significant parameter estimates.  

DISCUSSION 

Of 20 ISAR models and for 207 habitat island datasets, the power model (nonlinear form) 

was the overall best model. In separate analyses using the log–log power model, we found 

that z and c varied between datasets, with 63% and 89% of the variation explained by various 

dataset characteristics, respectively. 

Model performance 

It is reassuring that the power model consistently emerged as the best overall model given the 

preponderance of SAR studies which exclusively use this model (e.g. Watling & Donnelly, 

2006). Our results are also consistent with those of Triantis et al. (2012) using true island 

datasets, in which it was found that the power model was the best-ranked model overall. The 

more complex models generally performed poorly (Fig. 1), and as such it seems inappropriate 

to prefer them over simpler models for general use either in habitat island or true island 

studies. With regard to shape, the best-performing models were convex (mean wAICc of 

0.83). The poor performance of sigmoidal models, such as the Logistic and Gompertz models 



(Table 1) may reflect the limited range in area of most habitat island systems. Scale 

dependency in ISAR shape has long been debated (e.g. He & Legendre, 1996), and logistic 

models are theorised to be potentially appropriate only over a large range of island areas (He 

& Legendre, 1996; Triantis et al., 2012), a prediction seemingly backed up by our results. 

Considering datasets in which the best fit provided an observed linear shape, the median 

Ascale value was 78, whilst the medians for datasets in which the best model provided an 

observed convex or sigmoidal shape were 151 and 161, respectively. In addition, Ascale was 

a significant predictor variable in the CAP analysis of the best model shape, but explained 

only a small amount of variance in the choice of best model shape (Table 2): again, possibly 

due to the smaller number of datasets in the larger Ascale categories. 

In general, our predictor variables failed to explain variation in the identity and shape 

of the best-fitting models (Table 2). This may indicate that other dataset-specific factors, such 

as matrix properties, hunting pressure, etc., act to modulate the functional form of the ISAR 

(e.g. Benchimol & Peres, 2013). We have argued elsewhere that such ‘confounding variables’ 

may underpin the good fit of discontinuous piecewise ISAR models to a number of habitat 

island datasets (Matthews et al., 2014b).  

Interpreting the parameters of the power (log–log) model 

Our study represents the largest collection of solely habitat island datasets used to date in an 

ISAR synthesis, and only focusing on ISAR-structured data (i.e. no nested SARs; Drakare et 

al., 2006). Thus, it is encouraging that our reported average and range of z values are 

consistent with values published in other syntheses that have included habitat island datasets 

(Table 4).  

A central aim of much SAR research has been to determine whether the z parameter is 

biologically interpretable (Connor & McCoy, 1979; Rosenzweig, 1995; Triantis et al., 2012). 



One particular area of interest has focused on the idea that more permeable matrices 

surrounding islands will result in lower z values as individuals of certain taxa can more easily 

disperse between islands, leading for example to rescue effect processes (Watling & 

Donnelly, 2006; Whittaker & Fernández-Palacios, 2007). Hence, it has been argued that 

habitat island systems should, in general, have lower z values than true island systems (see 

Table 4; MacArthur & Wilson, 1967; Rosenzweig, 1995). In illustration, Mendenhall et al. 

(2014a) show that forest fragments in an agricultural matrix in Costa Rica have lower 

extinction rates and shallower ISAR slopes than nearby true islands in Panama. Our results 

indicated that in general habitat islands (median z = 0.22) do indeed have lower z values than 

both continental-shelf islands (0.28), and oceanic islands (0.35; Fig. 3a), most likely 

reflecting the dominant processes involved in island biota assembly/disassembly (Triantis et 

al., 2012). We also found that median z increased from forested islands (0.20) to mountain-

top islands (0.30) and urban islands (0.27; Fig. 3b), indicating that z seemingly responds to 

matrix type (see also Watling & Donnelly, 2006).  

ISAR z values were also found to be affected by Smin, Smax, Ascale and Ni. For Ni 

the effect was negative, meaning z decreased with increasing Ni. This finding is consistent 

with our model selection results as we found that the linear model performed better as the 

number of islands in a dataset decreased. Thus, it seems that in datasets with low Ni values 

there is more of a linear shape to the ISAR in arithmetic space, which in turn often results in a 

steeper ISAR in log–log space. That z decreased with increasing Ascale seems to imply that 

the most dramatic increase in richness occurs over a low range of island areas and that 

beyond a certain size of island the gain in richness from additional area becomes slight. The 

negative effect of Smin on the z value, coupled with the positive effect of Smax, makes sense 

as together these two variables represent the range in species richness within a dataset. If we 

assume that Smin typically occurs on a small island, while Smax occurs on one of the largest 



islands, then decreasing Smin and increasing Smax will necessarily result in a steeper slope in 

log–log space.  

The lack of difference in z values between taxa is interesting as studies that focused 

primarily on true islands have found significant inter-taxa differences (Sólymos & Lele, 

2012; Triantis et al., 2012), whilst a separate analysis of habitat island datasets also found no 

significant difference (Watling & Donnelly, 2006). We are unsure as to the precise causes of 

this result, but it is possible that our taxonomic division (i.e. plants, vertebrates and 

invertebrates) is simply too coarse, with too much internal variation in dispersal powers 

within the groupings (Aranda et al., 2013); while dividing species into smaller taxonomic 

groups leads to sample sizes too small to allow any reasonable inference. Interestingly, 

vertebrates had significantly lower c values than plants and invertebrates. The c parameter is 

often overlooked and has been argued to reflect a number of different properties; for 

example, the average size of the most common species, a measure of carrying capacity, and a 

scale-independent measure of diversity (Gould, 1979; Whittaker & Fernández-Palacios, 

2007; Triantis et al., 2012). Our finding that vertebrates have a significantly lower c value 

supports the latter two hypotheses as vertebrates, in general, are less diverse than plants and 

invertebrates. 

Conservation implications and conclusions 

Habitat loss is the biggest driver of the current wave of species extinctions (Schipper et al., 

2008). It is thus essential that conservation biogeography develops an accurate and coherent 

methodology for using the ISAR to predict extinctions resulting from habitat reduction (Sala 

et al., 2005). Deriving any generalities regarding the form of the ISAR in habitat islands, 

alongside deriving appropriate parameter values to use in prediction exercises, are essential 

components of this research programme (Halley et al., 2013). The functional form of the 

model is a particularly important consideration as the different forms of the ISAR curve 



translate to varying forms of their respective first derivatives, and thus different species 

extinction rates for a given amount of habitat area (Fig.S7 in Appendix S3 illustrates this 

issue using a convex and sigmoidal model).  

The large number of datasets used herein allows us to provide at least partial answers 

to a number of the questions that have been posed in connection with applied use of the SAR 

(e.g. Connor & McCoy, 1979; Rosenzweig, 1995; Laurance, 2008). For example, in a 

seminal critique of the use of the SAR in biogeography, Connor & McCoy (1979), list, 

amongst others, (1) the unreserved use of the power model, and (2) the use of canonical z 

values of 0.25 derived from traditional island theory (e.g. Preston, 1962), as widespread 

incorrect assumptions. Regarding issue (1), we have shown that the power model is markedly 

the best overall model according to our criteria and thus is in general a sensible choice (but 

see Smith, 2010). Regarding issue (2), we found that z varies according to a number of 

different properties, such as island type, a variable which is linked to matrix type: as the 

intervening matrix becomes more hostile/less permeable, the z value increases. This is 

particularly concerning as the majority of past studies have used z values from a set range 

(0.18–0.25) to predict extinctions (see Halley et al., 2013). Our results indicate such values 

may be appropriate for only a subset of systems; while the median z (log–log model) value 

when all datasets with a significant model fit (n=135) were considered was 0.22, 51 datasets 

had z values >0.25. Perhaps a better approach when the aim is to predict extinctions would be 

to adjust z values according to a particular context/set of site specific conditions (as Triantis 

et al., 2010). This need not introduce large amounts of complexity, and even very basic 

adjustments have had positive results (Pereira & Daily, 2006; Koh et al., 2010; Mendenhall et 

al., 2014a, b). There is a need for more research in this area, and further broad-scale tests of 

previously published ‘calibrated’ and ‘countryside biogeographic’ SAR models.  



It is important to recognise that determining the functional form of the ISAR in 

habitat island systems and selecting the most appropriate model, or set of models, are but 

steps towards improving the accuracy of ISAR extinction predictions (Matias et al., 2014). A 

number of other factors are also relevant. For example, (i) variables other than area have been 

found to modulate the SAR (e.g. hunting pressure; Benchimol & Peres, 2013); (ii) the ISAR 

is often unable to accurately predict the total richness of a set of isolates (Matthews et al., 

submitted); (iii) and there may be interactions between the effects of decreasing patch area 

and increasing patch isolation (Hanski et al., 2013). A further issue is that the majority of 

studies, including the present analysis, include all sampled species in SAR calculations. 

However, in a recent paper we have shown that habitat specialists and generalists respond 

discordantly to habitat insularization: the first derivative of a multi-model ISAR curve was 

generally steeper for specialists than for generalists (Matthews et al., 2014a; see also Banks-

Leite et al., 2012). Thus, the inclusion of generalist species in SAR calculations may act to 

mask the impact of habitat loss on specialists.  

It is necessary to highlight two potential issues with our analyses. First, whilst island 

type in this study is likely coupled with matrix type, it would have been preferable to include 

more precise information on matrix type in our models. The categorization used was 

necessarily coarse given the lack of detailed information provided in many source papers, but 

the fact significant differences were found suggests this may be a productive avenue for 

further work in the future. Second, as with any meta-analysis the inclusion of multiple 

datasets from different sources mixes studies that had varying aims, sampling protocols and 

sampling effort, which may affect the inferences drawn (Whittaker, 2010). It is thus possible 

that variations in data quality have influenced our results. To counter this issue we read and 

checked the methods of each source papers before accepting a dataset. Having done so we 

saw no reason to assume that variation in sampling effort would be biased towards any 



particular island type or taxon. However, future work might usefully be undertaken, for 

example, to determine whether studies have consistently under-sampled the larger islands in a 

dataset (which might affect conclusions on ISAR curve shape, for example). See Appendix 

S2 for a more detailed discussion of data quality issues in SAR studies. 

Due to constraints on resources and data availability, the analysis of SARs remains 

one of the most important analytical methods in the conservation biogeographer’s tool kit. 

Thus, it is essential that studies attempt to synthesise information across systems in order to 

produce general guidelines. Based on the results of this study, we suggest the following 

guidance for using the ISAR with habitat island data:  (a) if only one model is to be used, the 

power model is a sensible choice, (b) convex models should generally be preferred to linear 

and sigmoidal models, particularly if very large islands are not the focus of study, (c) 

depending on the aim of the study, calibrating the z value of the power model based on 

system specific characteristics will improve predictive accuracy, and (d) as the software is 

freely available (Guilhaumon et al., 2010), it can be enlightening to fit a selection of models 

and use a multi-model inference approach, especially for use in conservation applications.  
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TABLES 

Table 1 The 20 ISAR models compared in the model selection. Adapted from Triantis et al. 
(2012); for further information on the various models see Dengler (2009), Tjørve (2009) and 
Williams et al. (2009). *the epm1 model can be either convex or sigmoidal in shape 
depending on the parameter values. The overall model rank was calculated by standardising 
the generality and efficiency criteria [(criterion value – mean criterion value) / standard 
deviation] and summing the resultant values. 

 

 

 

 

 

 

 

 

 

No. Model name Model code No. pars. Model shape Overall 
rank 

1 Power power 2 Convex 1 
2 Exponential expo 2 Convex 2 
3 Kobayashi Logarithmic koba 2 Convex 3 
4 Linear linear 2 Linear 4 
5 Persistence Function 2 P2 3 Sigmoid 5 
6 Monod monod 2 Convex 6 
7 Rational ratio 3 Convex 7 
8 Asymptotic asymp 3 Convex 8 
9 Extended Power 2 epm2 3 Sigmoid 9 
10 Weibull-3 weibull3 3 Sigmoid 10 
11 Logistic heleg 3 Sigmoid 11 
12 Morgan–Mercer–Flodin mmf 3 Sigmoid 12 
13 Beta-P betap 4 Sigmoid 13 
14 Weibull-4 weibull4 4 Sigmoid 14 
15 Negative Exponential negexpo 2 Convex 15 
16 Persistence  Function 1 P1 3 Convex 16 
17 Gompertz gompertz 3 Sigmoid 17 
18 Power Rosenzweig power_R 3 Convex 18 
19 Chapman–Richards chapman 3 Sigmoid 19 
20 Extended Power 1 epm1 3 Convex/Sigmoid* 20 



Table 2 Constrained analysis of principal coordinates (CAP) results for analyses of factors 
explaining the amount of variation in the model selection profile, for 182 habitat island 
datasets. The predictor variables used in the analyses were the number of islands, island type 
(Typ.), the area scale (the area of the largest island in a dataset divided by the area of the 
smallest island), the minimum island area (Min. area), the minimum and maximum species 
richness values in a dataset (Min. & Max. species), taxon, and the latitude of the study area. 
Only predictor variables with significant effects (P < 0.05) are presented in each table. We 
used these predictors in conjunction with CAP analyses (Bray-Curtis dissimilarity, 9999 
permutations) to determine the amount of variation in model selection profile explained in 
regards to (a) the best model, and (b) best model shape. (L) indicates predictor variables that 
were log transformed. The model selection results from 182 habitat island datasets were used 
in the CAP analyses. 
 
 
 
 

a) Best model 

Variable Df Var. F P 
Number of islands (L) 1 11.81 10.1 < 0.01 
Typ. 5 6.99 1.2 0.04 
Area scale (L) 1 4.24 3.63 < 0.01 
Min. area (L) 1 1.69 1.44 0.04 
Residual 173 202.25   
 

b) Best model shape 

Variable Df Var. F P 
Area scale (L) 1 1.52 5.04 < 0.01 
Number of islands (L) 1 0.79 2.62 0.01 
Residual 189 53.93   
 

 

 

 

 

 

 

 

 



Table 3 Parameter estimates for a set of the most parsimonious linear models, modelling (a) 
the z value of the power (log–log model) and (b) the value of the c parameter, for 135 habitat 
island datasets. The predictor variables included the latitude of the study site (Lat.; absolute 
value was used), area of the smallest island (Amin), area scale (Ascale; i.e. Amax/Amin), the 
number of islands (Ni.), the minimum and maximum species richness values for a dataset 
(Smin & Smax) the taxon (Tax.), and the habitat island type (Typ.). The best model (i.e. 
lowest AICc) and all models within ΔAICc of < 1.5 of the best model in (a), and within 
ΔAICc of < 2 of (b) are given in each instance. Only datasets with significant z values were 
used. The weight of evidence of each variable, calculated by summing the Akaike weights of 
all the models in which a variable was included, is also given. + indicates a significant effect 
of taxon or habitat type. A blank space indicates that a variable was not included in a model. 
(L) indicates predictor variables that were log transformed. The AICc and the delta AICc 

(ΔAICc) for each model selection are also presented. 

a) z value 

Model 
Number 

Lat. Ascale(L) Amin(L) Ni (L) Smax 
(L) 

Smin 
(L) 

Tax Typ. ΔAICc wAICc 

1  -0.03  -0.03 0.14 -0.17   0 0.16 
2  -0.04 <-0.01 -0.03 0.15 -0.17   1 0.09 
3  -0.03  -0.03 0.15 -0.17  + 1.34 0.08 
4  -0.04 <-0.01 -0.03 0.15 -0.17  + 1.39 0.08 
Weight 
of 
evidence 

0.27 1 0.45 0.84 1 1 0.38 0.38 
  

 

b) c value 

Model 
Number Lat. Ascale(L) Amin(L) Ni (L) Smax 

(L) 
Smi
n (L) Tax Typ. ΔAICc wAICc 

1   -0.22 0.13  1.16  + 0 0.12 
2   -0.22   1.14  + 0.42 0.09 
3 <-0.01  -0.22 0.16  1.17  + 0.45 0.09 
4   -0.22  0.08 1.09  + 1.73 0.05 
Weight 
of 
evidence 

0.38 0.25 1 0.57 0.28 1 0.25 0.87 
  

 

 

 

 

 



 

Table 4 Reported average and/or range of z values of isolate systems from a selection of 
island species–area relationship syntheses and meta-analyses. Only studies which focus on 
multiple datasets/island systems are included. *Represents a theorised range of z values, i.e. 
not results from a synthetic analysis. +This number includes datasets that report z values 
derived from nested SAR data, rather than ISAR data; the average z value reported in the 
table only relates to the ISAR structured datasets. 

 

Dataset Island type No. of 
datasets 

Taxon 
studied 

Reported average and/or 
range of z values 

This study Habitat islands 207 Multiple 
taxa 

Median = 0.22 (Q1 & 
Q3=0.16 & 0.32). 

 

Connor & 
McCoy (1979) 

Multiple island 
types 90 Multiple 

taxa 

Mean = 0.31; standard 
deviation = 0.23 (range= -

0.28 to 1.13). 
Drakare et al. 

(2006) 
Multiple island 

types 794+ Multiple 
taxa 

Average = 0.24 (range = 0 to 
c. 1) 

Rosenzweig 
(1995) True islands * * Range: 0.25-0.33 * 

Sala et al. 
(2005) 

Oceanic and 
mountaintop 

islands 
26 Vascular 

plants 

Mean = 0.34; standard 
deviation = 0.14 

 

Sólymos & Lele 
(2005) 

Multiple island 
types 94 Multiple 

taxa 

Mean = 0.23 (90% confidence 
limits of 0.06 & 0.41). 

 

Triantis et al. 
(2012) True islands 601 Multiple 

taxa 

Mean = 0.32; standard 
deviation = 0.16 (range = 0.06 

to 1.31). 
 

Watling & 
Donnelly (2006) 

Habitat islands 
& true islands 118 Multiple 

taxa 
Habitat islands: mean = 0.20. 

True islands: mean = 0.26. 



FIGURES 

 

 

Figure 1 The performance of 20 species–area relationship models fitted to 182 habitat island 
datasets. Performance was measured in three ways: (a) the proportion of datasets for which a 
given model provided the best fit (i.e. had the lowest AICc value), (b) the proportion of 
datasets for which a given model provided a satisfactory fit (generality), and (c) the average 
AICc weight for datasets in which a given model provided a satisfactory fit (efficiency). The 
weibull4, betap, and heleg models have been omitted from (a) as they never provided the best 
fit to a dataset. For full model names and associated information see Table 1. 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 2 Change in model performance with the number of habitat islands in a dataset. 
Results for two models are displayed: (a) linear and (b) power models. The rank of a model 
refers to the model selection analysis in which 20 island species–area relationship models 
were compared using AICc. A model rank was determined by standardising the generality and 
efficiency criterion values (see ‘Materials and Methods’), and adding these standardised 
values together. Thus, rank 1 refers to the model with the largest (larger values indicating 
better performance) sum of standardised generality and efficiency values. Model ranks were 
first determined for all datasets with four or more islands, and then for all datasets with five 
or more islands, and so on, iteratively up to datasets with 20 or more islands. The linear 
model rank results were chosen as this was the model with the biggest change in model rank 
with the number of islands in a dataset. A linear regression line was fitted through the points 
and we tested to see if the slope of the line was significantly different from zero; ‘Slope sig.’ 
refers to the P value of this test. 

 

 

 

 



Figure 3 Variation in the z parameter of the power (log–log) model across: (a) all island 
types, (b) different habitat island types, (c) different major taxa, and (d) area scale (log 
transformed). NB (b)–(d) were calculated using only habitat island datasets. For all plots, 
only datasets with significant z values (P < 0.05) were included. For reasons of clarity, the 
box plots were constructed after omitting the small number of z values < 0 (all subsequent 
statistics were performed using the full set of data). Thus, in (a) there were 132 habitat island, 
125 oceanic island, 58 inland water-body (‘Inland’), and 277 continental-shelf island datasets 
(‘C. shelf’). In (b) there were 75 forest, 12 mountaintop and 21 urban habitat island datasets. 
In (c) there were 26 invertebrate, 20 plant and 86 vertebrate datasets. Area scale was 
calculated as the area of the largest island in a dataset divided by the area of the smallest 
island. Area scales larger than 5 have been omitted. The box plots display the median (thick 
black line), the first and third quartiles (thin black box). The whiskers extend from the hinge 
to the highest value that is within 1.5 multiplied by the inter quartile range, of the hinge. 
Outliers are indicated by solid dots. Significant differences in z values between dataset 



categories are displayed as different lowercase letters above the box plots. Values that do not 
significantly differ between categories have the same lowercase letters. 

 


