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Abstract 

The species abundance distribution (SAD) has been a central focus of community ecology for 

over fifty years, and is currently the subject of widespread renewed interest. The gambin 

model has recently been proposed as a model that provides a superior fit to commonly 

preferred SAD models. It has also been argued that the model’s single parameter (α) presents 

a potentially informative ecological diversity metric, because it summarises the shape of the 

SAD in a single number. Despite this potential, few empirical tests of the model have been 

undertaken, perhaps because the necessary methods and software for fitting the model have 

not existed. Here, we derive a maximum likelihood method to fit the model, and use it to 

undertake a comprehensive comparative analysis of the fit of the gambin model. The 

functions and computational code to fit the model are incorporated in a newly developed free-

to-download R package (gambin). We test the gambin model using a variety of datasets and 

compare the fit of the gambin model to fits obtained using the Poisson lognormal, logseries 

and zero-sum multinomial distributions. We found that gambin almost universally provided a 

better fit to the data and that the fit was consistent for a variety of sample grain sizes. We 

demonstrate how α can be used to differentiate intelligibly between community structures of 

Azorean arthropods sampled in different land use types. We conclude that gambin presents a 

flexible model capable of fitting a wide variety of observed SAD data, while providing a 

useful index of SAD form in its single fitted parameter. As such, gambin has wide potential 

applicability in the study of SADs, and ecology more generally.  

-------------------------------------------------------------------------------------------------------- 

 

A species abundance distribution (herein ‘SAD’) describes the abundances of all species 

sampled within a given community (Ulrich et al. 2010). Because SADs characterise the 
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structure of ecological communities, they constitute the foundation of much (macro-) 

ecological and biogeographical theory (Preston 1948). Thus, considerable effort has been 

made to characterise empirical SADs in a statistically tractable framework. To date around 30 

different SAD models have been published (McGill et al. 2007). The two most commonly 

used are the logseries (Fisher et al. 1943) and the lognormal (Preston 1948). The Poisson 

lognormal (‘PLN’; Bulmer 1974) is usually preferred to the continuous lognormal as the PLN 

incorporates a sampling theory and the continuous lognormal allows fractional abundances. 

The neutral model of Hubbell (2001) also predicts a SAD, termed the zero-sum multinomial 

distribution (‘ZSM’).   

The logseries has often been found to provide a poor fit to empirical SADs (Ulrich et 

al. 2010; but see White et al. 2012), and the use of the PLN has been criticised, both in 

general terms (Williamson and Gaston 2005), and particularly in comparative analysis, as the 

parameters are not as intuitively interpretable as those of the logseries (but see Engen 2001, 

Sæther et al. 2013). Thus, there is a need for a model that provides a good fit to a variety of 

empirical data, is analytically tractable and possesses an easily interpreted parameter (i.e. one 

that simply describes the shape of the SAD), which can then be used as a system descriptor in 

further analyses.  In a recent paper, Ugland et al. (2007) suggested that a mixed gamma 

binomial distribution (‘gambin’) meets these criteria. Gambin is a stochastic model that 

combines the gamma distribution with a binomial sampling method. The distribution has a 

single parameter (alpha: α), which describes the shape of the distribution.  

A common context in which the form of SADs is of interest is in analyses of 

community responses to disturbance and land use change (e.g. Ugland and Gray 1982, Mac 

Nally 2007, Dornelas et al. 2011). For such purposes, a model must provide a good fit to a 

variety of SAD shapes, and must possess a parameter which summarises, and tracks change 

in, the shape of the distribution and thus allows a comparison between the SADs of 
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undisturbed and disturbed communities. The limited application of gambin thus far has 

produced promising results, with good fits to empirical data (Ugland et al. 2007). However, 

the lack of easily accessible methods for fitting the gambin distribution to empirical datasets, 

and the absence of maximum likelihood methods for estimating α has limited the number of 

applications of the model. Here, we address these issues by presenting a maximum likelihood 

derivation of the gambin distribution in conjunction with an R package (gambin). We then 

use these methods to undertake a comprehensive evaluation of gambin. We present a rigorous 

test of the fit of the gambin distribution using a variety of datasets. First, we use an extensive 

and well-specified arthropod dataset from the Azorean archipelago: a dataset large enough 

(over 90,000 individuals) to permit a statistically powerful comparison of alternative SAD 

models. The dataset includes samples from a range of land use types, which allows us to test 

the applicability of α as an ecological indicator. As the form of the SAD may change with the 

spatial grain of sampling and the number of individuals in a sample (e.g. Preston 1948, 

McGill 2011, Borda-de-Água et al. 2012) a SAD model must perform well across a variety of 

spatial scales, and be relatively independent of sample size, to be of general utility. Thus, we 

also test the utility of α across a range of spatial grain sizes. In addition, we sourced ten 

species abundance datasets from the literature, representing a range of taxa and ecological 

contexts. We use these datasets in combination with the Azorean data to address the 

following questions: 

• Does the gambin distribution provide an adequate fit to the data? 

• Are there are any parts of the empirical distribution in which gambin does or does not 

provide a good fit (cf. Connolly and Dornelas 2011)? 

• How does the fit of the gambin distribution compare to three popular competitor SAD 

models (Poisson lognormal, logseries and zero-sum multinomial)? 
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• Is α sensitive to the proportion of individuals sampled from a community (cf. McGill 

2011, Locey and White 2013)?  

• Is the performance of gambin constant across sampling grain sizes (e.g. Šizling et al. 

2009, Borda-de-Água et al. 2012)? 

• Can α differentiate between community structures in different land use types (cf. 

Ugland et al. 2007, Dornelas et al. 2011)? 

Materials and methods 

Gambin distribution   

Here we present a brief overview of the model, noting that a mathematical description of the 

gambin distribution is provided by Ugland et al. (2007). The basic idea underpinning gambin 

is that although the abundance of a species is determined by a mixture of many deterministic 

and stochastic factors, it is possible to obtain a good approximation to the observed species 

abundance curves by modelling the population sizes of the species in a community in two 

steps. First, we define the fitness of a species as the probability of achieving a large 

population size, and represent the frequencies of fitness values (i.e. the probability density) 

across species by a gamma distribution with scale parameter fixed at the value 1. The gamma 

distribution was chosen as the basis of the model as it is known to be a flexible distribution 

and this flexibility is preserved when the number of parameters is reduced by fixing the scale 

parameter. The scale parameter of gambin is set to 1 as the scaling of the distribution is 

achieved by fixing the max octave (see below). This is a pragmatic choice as it allows for all 

octaves to be fitted whilst simultaneously reducing the number of model parameters to one. 

Thus, the shape parameter (α), which determines the form of the distribution, is the only free 

parameter. A small α induces a distribution skewed to the left, i.e. a high density at small 
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abundance values. This is what is observed in logseries-like distributions. A high α induces a 

distribution closer to normal on a log scale of abundances. 

The second step is to link the gamma distribution (i.e. the fitness frequencies) to the 

actual abundance values. As empirical SADs are highly right skewed, we log transform the 

number of individuals into ‘octaves’ (see Gray et al. 2006), and then estimate the number of 

species in each octave (Ugland et al. 2007). While binning has been criticised for resulting in 

the loss of information, it is unlikely to bias parameter estimates (Connolly and Dornelas 

2011). Furthermore, as empirical abundance data often contain a significant amount of 

variation due to sampling effects, the added precision of models that are not based on binned 

data is questionable. We created abundance octaves by a simple log2 transform that doubles 

the number of abundance classes within each octave (a sensitivity analysis demonstrated the 

robustness of the results to this binning procedure; see below). Thus, octave 0 contains the 

number of species with 1 individual, octave 1 the number of species with 2 or 3 individuals, 

octave 2 the number of species with 4 to 7 individuals, and so forth (see Appendix 1 for a 

more detailed description). This binning procedure is method 3 of Gray et al. (2006), and is 

listed by that study as the most appropriate binning method from several reviewed. The 

assignment of a species abundance into octave x is then regarded as the result of a binomial 

process with x trials (see Appendix 1 and Ugland et al. 2007). 

A description of the gambin R package  

The full derivation of the maximum likelihood estimation of gambin, which is novel to this 

paper, is presented in Appendix 1 and is incorporated in an R package (gambin; version 1.0 

accepted by CRAN in September 2013). Examples of use of the gambin package are also 

presented in Appendix 1. The gambin package contains functions to calculate the gambin 

distribution (dgambin) and to fit the gambin distribution to empirical data using maximum 

likelihood (fitGambin), along with a set of utility functions. The dgambin function returns 
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the density function of the gambin distribution, given α and the octave number of the most 

abundant species. The syntax is similar to e.g. the basic density functions in the base package 

stats (e.g. dnorm). To get the gambin distribution in units of species, the gambin_exp 

function is used. 

The fitGambin function accepts a vector of abundances (optionally using a 

subsample of the individuals), which it bins into octaves using the utility function 

create_octaves. It then uses optimisation algorithms in R to identify the value of α that 

maximises the likelihood function. The return value of fitGambin is an S3 object of class 

‘gambin’. This class provides print, confint, predict and plot functions: confint gives the 

95% confidence interval around the estimated α value; predict gives the predicted number of 

species in each octave; and plot creates a bar graph comparing empirical abundances (shown 

as grey bars) to the predicted values from the gambin distribution (shown as black dots).  

Azorean arthropod data 

Our main test dataset forms part of a long-term (1999–2012) biological study, the BALA 

(‘Biodiversity of Arthropods from the Laurisilva of the Azores’) project (see Borges et al. 

2005, Ribeiro et al. 2005). Eighteen fragments of protected native Laurisilva forests were 

sampled for arthropods across seven islands using 100 randomly located transects (150m x 

5m). Datasets were created by pooling the fragment samples present on each individual 

island. One island (Santa Maria) only has a single fragment and was thus not used as an 

island dataset (see Table A1 and A2 in Appendix 2 for site and sample details). Thus, we 

used 18 fragment samples and six island samples in this study. Along each transect, ground 

surface arthropods (largely epigean) were surveyed using 30 pitfall traps (Borges et al. 2005), 

while canopy species were surveyed using a beating tray methodology (Ribeiro et al. 2005) 

focused on three primary tree species (see Table A3 in Appendix 2 for all species 
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information). In all, 6770 samples (3420 pitfall traps and 3350 beating samples) were used 

for the current study (for further details see Gaspar et al. 2008). In addition to the native 

Laurisilva fragments we used data from a related study on several of the islands, sampling 

epigean soil arthropods by the same pitfall methods for two additional land-uses – exotic 

plantation forest, and pasture (Cardoso et al. 2009, 2013).  

Model comparison 

Both the 18 native forest fragment samples and the six island samples were used in our first 

model comparison, resulting in 24 different samples. Our first step was to fit the gambin 

distribution to each sample using the gambin R Package. We then fit the two most commonly 

used statistical distributions (PLN and logseries). To fit the PLN we used the poilog R 

package (Grøtan and Engen 2009). The zero-sum multinomial distribution (ZSM) predicted 

by neutral theory was also fit to the 24 samples using the analytical form and likelihood 

function derived from Etienne (2005). We used two approaches to compare the goodness of 

fit of the various models. First, we compared the models using a Pearson’s chi-square (χ²) 

goodness of fit test. As the choice of goodness of fit test has been found to influence results 

(McGill 2003) we also used a Kolmogorov-Smirnov test. Results were found to be the same 

using either test and so we present only the χ² test results herein. Sole reliance on traditional 

goodness of metrics such as χ² has been criticised as unreliable (e.g. McGill 2003). Thus, we 

also used an information theoretic approach (Burnham and Anderson 2002) to compare the fit 

of gambin to that of the three other models (i.e. the PLN, logseries and ZSM). Model 

performance was compared using the Bayesian Information Criterion (BIC) and Akaike’s 

Information Criterion corrected for small sample size (AICc). The smallest BIC and AICc 

values were taken to represent the single best model for a given sample providing that ΔBIC 

or ΔAICc to the next best model was >2 (Burnham and Anderson 2002). The PLN was 
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considered a two parameter model, the ZSM a three parameter model, and gambin and the 

logseries one parameter models. 

Unlike the other distributions in our multi-model comparison, the maximum 

likelihood estimate of the ZSM is very sensitive to the initial parameters used in the 

optimisation process. As such, multiple initial parameter values were used in the model 

fitting process along with different optimisation algorithms in R (‘optim’ & ‘mle2’). As the 

gambin distribution is calculated using octaves, the other distributions in the model selection 

framework were also fitted to binned data using the same binning process as described above. 

The ZSM analysis was restricted to the complete assemblage (i.e. not the sample grain 

subsets and additional datasets; see below) as the model fitting process was very time 

intensive. This omission is unlikely to affect our estimation of gambin’s performance as 

initial observations found the ZSM only rarely provided a superior fit to gambin. 

While statistical approaches to assessing goodness of fit are evidently more objective, 

visually analysing the fitted distribution can provide valuable information (Connolly and 

Dornelas 2011). Thus, for each of the 24 samples we plotted the SAD with the fitted gambin 

model and visually inspected the fit to determine if there are particular parts of the SAD or 

types of SAD patterns where gambin does or does not provide a good fit. 

Sourced datasets 

We also compiled ten additional datasets widely used in SAD studies, representing a variety 

of systems and taxa (Table 1; see Appendix 2 for full acknowledgments to the data 

providers). Although a number of these datasets were used in the original gambin paper by 

Ugland et al. (2007), both our software and the determination of goodness of fit are novel to 

the present study and the inclusion of these datasets thus permits direct comparison with 

Ugland et al. (2007) and with other comparative SAD analyses that have used these datasets. 
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We again deployed the multi-model comparison for each dataset (excluding the ZSM); 

examining the fit using the aforementioned graphical methods at each stage.  

Sample size and grain size 

To determine the sensitivity of model parameters (gambin’s α, the mean of the PLN, and the 

alpha of the logseries) to the proportion of individuals in a sample, we simulated a large 

number of different metacommunities of two types, lognormal (i.e. the SAD of the 

metacommunity was lognormal) and logseries. The set of lognormal metacommunities 

comprised subsets of metacommunities with 50, 100, 500 and 1000 species. For each 

category of species richness, we simulated metacommunities with the number of individuals 

varying from 1000 to 1,000,000. There were 9 lognormal metacommunities simulated (see 

Table A4 in Appendix 3 for their exact properties). In addition, six logseries 

metacommunities were simulated, comprising subsets with 50, 100 and 500 species (each 

with 1000 and 10,000 individuals, details in Table A5 in Appendix 3). This range of 

metacommunities covered the two extremes of observed empirical distributions (i.e. 

lognormal and logseries) and a wide range in number of individuals (N) and number of 

species (S). For each of the described metacommunities we randomly sampled 1%, 10%, 

25% and 50% of individuals using functionality in the gambin R package. We then fit the 

three distributions to each sample and to the full community (i.e. 100% of individuals), 

recording the parameters of each distribution in addition to the maximum and modal octaves 

(see Locey and White 2013) of the observed distribution. This procedure was repeated 100 

times in each case. 

In addition, for a subset of four of the simulated lognormal metacommunities 

representing a range of S and N, 19 samples were taken, ranging from 5% of individuals in 

each metacommunity, to 95% of individuals, at intervals of 5%. The three models (gambin, 
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PLN, and logseries) were fitted to the samples and the relevant parameters recorded. This 

process was repeated 100 times and the mean of the parameter values calculated. We then 

calculated the sample size needed in order for the parameter estimates of the sample to be 

within 10%, 25% and 50% of the parameter estimates for the whole community.  

To test whether the fit of gambin was consistent across sampling grain sizes, three 

native Azorean forest fragments that contained large numbers of transects were selected. For 

each of these fragments the multi-model comparison (excluding the ZSM) was calculated for 

a sample consisting of a single transect, then two transects and so on iteratively up to the 

maximum number of transects in a given fragment. Species abundances were averaged across 

all possible combinations of transects in each case. So, for example, when creating a sample 

from two transects, we averaged species abundances across all possible combinations of two 

transects within that fragment. All samples from each island were combined into island-level 

datasets as examples of larger grain sizes. It was not necessary to keep N constant to calculate 

α in this particular analysis as here we were testing whether the fit of gambin is consistent 

across a range of sample sizes (i.e. a range of N).  

Comparison of alpha values between land use types 

To evaluate the performance of gambin’s α as an ecological indicator, we ranked the different 

habitat types in the Azorean dataset from untransformed (native forest) through moderately 

transformed (non-native forest plantations) to highly transformed (agricultural pasture). Three 

islands, Terceira, Flores and Faial, had suitable sample sizes for each habitat type and for 

these purposes each island was treated as a distinct system. Within each habitat type the 

gambin distribution was fitted to each transect and the α value recorded. This was done using 

a re-sampled set of samples using a fixed N value determined by the number of individuals in 

the least populated transect in order to remove any bias due to differences in sample size 
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between land uses. A Wilcoxon rank sum test was used to determine whether α varied 

significantly as a function of land use. This method was repeated for the alpha parameter of 

the logseries and the sigma parameter of the PLN, again after accounting for differences in 

sample size.  

Testing the sensitivity of alpha to the binning method 

While our binning method (log2) is frequently employed in SAD studies, the choice of log2 

is somewhat arbitrary and theoretically any base could be used to bin the data into octaves. 

Thus, to test the robustness of the decision to use log2, we conducted two analyses. First, we 

calculated gambin’s α for the 18 fragments using our standard log2 binning method and 

compared these values to α derived using a variety of other bases (base e, base 3, base 4 and 

base 5). In order to compare alpha values derived from these different binning methods we 

plotted pairwise comparisons of each α set and tested the degree of correlation in each 

instance using Pearson’s product-moment correlation. Second, we undertook a simulation 

approach. For each run of the analysis, the aforementioned metacommunity simulation 

method was used to simulate communities with a) 10,000 individuals, and b) 100,000 

individuals. For the first iteration of the run, the number of species was set to 50. At each 

subsequent iteration, species number was increased by 50, up to the maximum of 1000 

species (i.e. 20 iterations). At each stage the gambin model was fit to the data using the five 

different binning methods, and the α values recorded. At the end of each run, a Pearson’s 

product moment correlation was calculated for each pairwise comparison of α sets (i.e. 

different binning methods) and the values stored. The number of runs was set to 100 and the 

mean of the correlation values, along with the corresponding standard deviation, was 

calculated for each pairwise comparison. We were unable to test bases higher than 5 due to 

constraints on the number of individuals in our samples. For example, use of base ten resulted 
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in only three octaves for certain samples. All analyses were conducted in R (R Development 

Core Team 2012). 

Results  

Model comparison and inspection of the fit 

For the Azorean fragment and island model comparison analyses, gambin provided a better 

fit to the data according to the Pearson’s χ² test for all but six of the fragments (Table 2), and 

for all but one of the six islands (Table A6 in Appendix 3). For three fragments (16–18), the 

PLN provided a better fit, and for three fragments (7, 10 & 15) and one island (3: Pico) the 

ZSM provided a better fit, according to χ². Gambin outperformed the other three distributions 

according to both BIC and AICc for all 24 samples (Table 2 & Table A6). Gambin also 

performed best for all of the non-Azorean datasets according to χ² tests (Table 1, see Fig. A1 

in Appendix 3 for examples), and for nine of the ten datasets according to AICc and BIC. 

None of the models provided an adequate fit for the British breeding bird data.  

Visual examination suggested that gambin provides a good fit to a variety of 

empirically observed distribution shapes (e.g. Fig. 1a, see also Fig. A1 in Appendix 3), 

ranging from logseries-like to lognormal-like patterns. Equally, the fit is consistent across the 

different parts of the SAD, i.e., for both the rarer species and more common species. 

Nonetheless, visually the fit does not appear to be as good for those samples which exhibited 

a degree of multi-modality within the SAD (e.g. Fig. 1b). 

The effect of sample size  

Our analyses showed that when simulating lognormal metacommunities, the shape of the 

observed SAD, and thus the value of gambin’s α, varied as a function of the proportion of 

individuals sampled (Tables A4 and A5 in Appendix 3). Fig. 2 illustrates this for one 
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particular lognormal metacommunity. When basing analysis on a small sample, the observed 

SAD exhibits a logseries shape (Fig. 2a), but as the sample size increases, the shape of the 

SAD becomes more lognormal and the modal and maximum octaves both shift to the right 

(Fig. 2c,d), as predicted by Preston’s (1948) veil line concept. The mean and sigma of the 

PLN, and the alpha parameter of the logseries distribution, also change notably with the 

proportion of individuals in the sample (Fig. 2). For the logseries metacommunities, the 

change in gambin’s α with proportion of individuals sampled was not as pronounced as for 

the lognormal metacommunities.  

Gambin and the PLN generally required similar sample sizes in order for the 

parameter estimates of the sample to asymptote towards the parameter estimates of the whole 

community; the logseries generally required slightly smaller sample sizes (see Table A7 in 

Appendix 3 for the full results). For example, for a sample estimate to be within 10% of the 

whole metacommunity parameter estimate, the proportion of individuals sampled from the 

metacommunity needed to be on average: 68% (range: 55–90%) for gambin’s α, 65% (range: 

60–70%) for the mean of the PLN, and 53% for the logseries’ alpha (range: 45%–60%; see 

Table A7 for the equivalent results based on 25% and 50% accuracy).  

The performance of gambin was consistent across sample grain sizes. For each of the 

three Azorean fragments (total of 24 samples) used in the sample size analysis, gambin 

outperformed the PLN and logseries distribution for each combination of transect number 

according to BIC and AICc (see Table A8 in Appendix 3 for results for all three fragments).  

Land use gradient  

Considering Terceira Island, gambin’s α was found to differ significantly between habitat 

types, with the highest mean α belonging to the native forest samples, and the lowest mean α 

belonging to the pasture samples (Fig. 3a). The results were similar for Faial and Flores, 
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except that for these islands the differences between native forest and exotic plantation forest 

were not significant at the 0.05 level (Table 3; see also Fig. 3b,c). The alpha of the logseries 

significantly differentiated between communities in the different land uses (i.e. P < 0.05) in 

two instances (native forest and pasture on Terceira, and native and exotic forest on Flores; 

see Fig. A2 in Appendix 3). The sigma of the PLN did not significantly differentiate between 

any of the communities (Fig. A2). 

Sensitivity to the binning method 

The use of log2 to bin the data into octaves appears to be a robust choice. For the 18 Azorean 

fragments the pairwise comparisons of the alpha values revealed them all to be highly 

significantly positively correlated (P < 0.001 in each instance, Fig. A3 in Appendix 3). The 

comparisons were also highly correlated according to the simulations (Table A9 in Appendix 

3).  

Discussion  

We derived a maximum likelihood estimation of the gambin distribution and used it to 

undertake a comprehensive test of the model. We found that gambin is a flexible model, 

which provides a superior fit to empirical SADs compared to three popular alternatives. This 

flexibility, with only a single free parameter, is advantageous as it enables gambin to provide 

a good and parsimonious fit to a variety of empirical data. Also, the α parameter, which 

summarises the shape of the model, is of analytical utility as it can potentially be used, for 

example, as an explanatory variable in regression models exploring how environmental 

properties influence the SAD. Multi-parameter models, such as the PLN and ZSM, do not 

have this capability, and while the logseries also possesses a single parameter, the logseries is 

not a very flexible distribution and often provides a poor fit to empirical data (see e.g. Table 

2). The flexibility of gambin is also beneficial because the shape of empirical SADs change 
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as a result of many processes; for instance, as a function of spatial grain size and as the result 

of ecological disturbance. Gambin is able to track these changes in SAD shape, and as this 

information is captured in the single parameter, α can be used to compare community SADs 

analytically. 

Goodness of fit and multi-model comparison 

Despite only having a single shape parameter (α), gambin provided a better fit than the other 

models in the majority of instances, including both Azorean and non-Azorean datasets. This 

included distribution patterns where the modal class was the singleton octave (i.e. logseries 

form), and patterns where the modal class represented an octave of more common species 

(i.e. lognormal form). Additionally, the fit provided a more accurate representation of the 

data than the other distributions for the various sample grain subsets (Table A8). It can be 

highly informative to examine how fit changes with scale. Our analyses show that, relative to 

the other distributions, both the fit and performance of gambin remained consistently good at 

spatial scales ranging from a single transect up to fragment- and island- scales of analysis. 

The different scales represent contrasting points along a continuum of community structure; 

the good fit of gambin to all subsets illustrates the potential of the model for SAD research. 

The gambin distribution is restricted to be unimodal, and thus the poor fit to those 

SADs that visually exhibit multimodality is unsurprising (e.g. Fig. 2). Recent work has 

suggested multimodal SADs may be more prevalent than previously assumed (Fig. 1b, 

Dornelas and Connolly 2008, Vergnon et al. 2012, Matthews et al. 2014). However, functions 

capable of generating multimodal distributions tend to be complex. For instance, the tri-

modal Poisson lognormal (PLN3) distribution (Dornelas and Connolly 2008, Matthews et al. 

2014) possesses eight parameters compared to gambin’s one. Moreover, complex 

distributions such as the ZSM and PLN3 can be problematic to fit, with an increased chance 
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of locating local maxima when deriving the log-likelihood. While gambin cannot capture 

multimodality, to the extent that distributions analysed herein are in fact multimodal in 

character, the gambin model nonetheless provided a better statistical fit than the logseries, 

PLN, and the ZSM.  

Model performance and sample size 

That the shape of the SAD is not a constant property of any given community is well known 

(Magurran 2007). However, the separate issue of sample SADs being poor representations of 

community SADs when sample size is low is often overlooked (but see Preston 1948; Pielou 

1975; Green and Plotkin 2007, McGill 2011, Locey and White 2013). Our simulations 

indicate that this issue is particularly problematic when the SAD of the community being 

sampled is lognormal, bringing into question the utility of SADs when sample sizes are low. 

In particular, it appears that if the community SAD is lognormal, a sample size of 10% of the 

community’s individuals will result in a sample parameter estimate that may differ from the 

community α estimate by up to 50%. This issue arises because the shape of the sample SAD 

changes considerably with varying sample size in relation to the community being sampled 

(Fig. 2), and as outlined above, the flexibility of gambin means the model accurately tracks 

this change in SAD shape. This small sample problem appears to be general, as it affects the 

parameters of the PLN and logseries distributions as well as gambin (Table A7; see also 

Pielou 1975, McGill 2011). The relative stability in gambin’s α for samples from the 

logseries metacommunities makes intuitive sense, as the modal octave of each sample always 

corresponded to the singletons’ octave. Providing specific recommendations regarding a 

minimum value of N necessary to obtain accurate estimates of gambin’s α is difficult as the 

accuracy depends in part on the size of the community being sampled, which in empirical 

systems is often impractical to calculate. However, as an indicative guideline, we agree with 

McGill (2011), who suggests a minimum N of 1000 individuals.  
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As gambin’s α varies with sample size, any rigorous comparative analysis of α should be 

based on keeping N constant across samples. A recent study by Locey and White (2013) drew 

similar conclusions. Focusing on SADs and the feasible set concept, they reported that the 

specific form of the SAD is constrained by N, and that differences in the form of the SAD 

between communities may result purely from differences in sample size. Our methodology of 

comparing gambin α values using repeated re-sampling to a common N (using functionality 

provided in the gambin R package) provides a way of circumventing the sample size 

problem, and our comparative analysis of variations in α between land use types (Table 3) 

indicates that gambin α can have discriminatory power as an ecological indicator when used 

in this way. We advocate this method more generally in SAD research, as our analyses 

indicate the parameters of various SAD models (i.e. not just gambin) are related to the 

number of individuals in the sample and thus using the re-sampling method provides an 

unbiased way of using model parameters in comparative analysis. 

We are also confident that our choice of log2 to bin the data into octaves is appropriate. 

While using different bases did result in small differences between alpha values, each set of 

alpha values was highly correlated with every other set (Fig. A2 and Table A9 in Appendix 

3). Thus, the behaviour of alpha was consistent irrespective of the binning method employed 

and we are confident our study findings are not dependent on the log base used.  

The alpha parameter as an ecological metric 

It has long been appreciated that the SAD of undisturbed communities (i.e. those in 

equilibrium) resemble the lognormal, while disturbed communities more closely follow a 

logseries SAD (Gray and Mirza 1979, Ugland and Gray 1982). We have shown that the 

gambin distribution is flexible, meaning it can fit a variety of empirical SAD shapes 

(including lognormal and logseries -like shapes), and that the distribution shape is adequately 
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characterised by the model’s single parameter (α): low values of alpha indicate logseries-like 

SADs, and high alpha values indicate lognormal-like SADs. Again, the only other 

distribution with a single parameter which can be used in a similar way is the logseries, and 

this is much less flexible than gambin and fits far fewer datasets. 

Our Azorean analyses support the claim (Ugland et al. 2007) that gambin’s α is a 

useful metric with which to compare communities affected by different types of disturbance 

or habitat transformation, as they showed that α generally decreased from the relatively 

untransformed native forest transects, to exotic plantation forest, to the highly transformed 

pastures (cf. Meijer et al. 2011, Cardoso et al. 2013). These differences were significant in 

seven out of nine cases, indicating that this metric provides a reasonably sensitive diagnostic 

tool. Land use change is frequently cited as the main driver of current biodiversity loss (e.g. 

Fischer and Lindenmayer 2007), and thus any ecological metric which can effectively 

characterise the impact of land use change on the SAD, and community structure more 

generally, is a useful addition to the ecologist’s statistical toolbox. Furthermore, this finding 

is of particular interest considering that the logseries and PLN distributions were generally 

unable to differentiate between the different land uses to the same degree (Fig. A3).  

That α fails to differentiate between Azorean native and exotic forest in Faial and 

Flores simply indicates that the SADs of these two land uses are similar in form, for these 

islands. This is an ecologically interesting result, which likely reflects the large number of 

introduced arthropod species on the Azores. The majority of these introduced species are well 

adapted to exotic forest habitats in the archipelago, and are often sampled in relatively high 

abundances (Cardoso et al. 2013). Thus, it is likely that the inclusion of such species obscures 

the impact of the loss of native Laurisilva forest on community structure, resulting in similar 

SAD shapes between forest types. However, removing the introduced species from the 
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analysis is not an option in this case as it often results in sample sizes too low to permit 

accurate estimation of α (above; see also McGill 2011).  

The lack of easily accessible methods to fit the gambin distribution hitherto, coupled 

with the absence of a maximum likelihood derivation, has restricted gambin’s dissemination 

among the ecological community. The new methods and R package presented in this paper 

alleviate this issue and allow for both easy computation of α, and the incorporation of gambin 

within information theoretic model comparisons. Characterised by a single parameter that is 

analytically practical, can be easily interpreted, and provides flexibility, and taking into 

account the results of our tests, gambin presents a promising tool for future SAD research.  
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Appendix 2. Azorean data information and additional dataset acknowledgements 

Appendix 3. Supplementary results 

TABLES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Location Taxon S N Source Best Model 

     χ² AICc & 
BIC 

Barro Colorado Island, Panama  Trees (>10cm) 229 20852 Hubbell  et al. (2005) Gambin Gambin 
UK Birds 503 151781104 Baker  et al. (2006) + + 
Firth of Clyde, Scotland Marine nematodes 113 8896 Lambshead (1986) Gambin Gambin 
Australia Corals 154 44225 Dornelas and 

Connolly (2008) 
Gambin Gambin 

English Channel Marine nematodes 321 1200 Unpublished data Gambin Gambin 
Irish Sea  Marine nematodes 178 58372 Lambshead and 

Boucher (2003) 
Gambin Gambin 

Rothamsted, UK Lepidoptera 195 6813 Williams (1964) Gambin Gambin 
Pasoh Forest Plot, Malaysia  Trees (>1cm) 808 295133 FRIM (2013) Gambin Gambin 
Hinkley Point, UK Fish (1981-2003) 82 3891 Magurran and 

Henderson (2003) 
Gambin Gambin 

Sherman Forest Plot, Panama Trees 129 3363 Condit (1998) Gambin Gambin 

Table 1. Additional datasets used in the multi-model comparison and the associated 
dataset characteristics: location, taxon, number of species (S) and number of individuals 
(N). The full related acknowledgements are presented in Appendix 2. The best model 
was determined by comparing gambin with the Poisson lognormal distribution (PLN) 
and the logseries distribution using both a Pearson’s χ² goodness of fit test and an 
information theoretic approach. PLN has two parameters and gambin and the logseries 
are single parameter models. A model was selected as best by means of the information 
theoretic approaches if it had the lowest BIC and AICc using a minimum difference in 
both criteria of two. + relates to cases where none of the distributions provided a 
satisfactory fit. 
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Table 2. Goodness of fit and model selection results for arthropod SADs of 18 (No.) native 
Laurisilva forest fragments in the Azores. Arthropods were sampled using a standardised 
pitfall trap and canopy beating methodology between 1999 and 2004. For each fragment the 
Pearson’s χ² statistic and associated P value (in parentheses) are presented for the gambin, 
logseries, Poisson lognormal (PLN) and zero-sum multinomial (ZSM) distributions. The 
Bayesian Information Criterion (BIC) and Akaike’s Information Criterion corrected for small 
sample size (AICc) are also given for all four distributions. PLN has two parameters and the 
ZSM has three parameters. Gambin and the logseries are single parameter models. The best 
model according to each criterion, using a minimum difference of two, is highlighted in bold 
for each fragment. Fragment information can be found in Table A1 in Appendix 2 

 

 

 

 

 

 

 

 

 

No. Gambin Logseries PLN ZSM 

 χ²  (P) BIC AICc χ²  (P) BIC AICc χ²  (P) BIC AICc χ²  (P) BIC AICc 
1 19.6(0.03) 395.6 395.7 52.8(0.03) 421.3 421.3 25.4(0.01) 403.1 403.8 20.0(0.04) 414 417.1 

2 3.8(0.92) 339 339.2 42.2(0.16) 377.1 377.3 8.1(0.53) 344.2 345.3 3.9(0.98) 367.9 371 

3 11.3(0.34) 491.2 491.3 36.5(0.4) 515.4 515.4 18.1(0.05) 500.8 501.5 19.0(0.06) 508.1 510.3 

4 8.2(0.51) 365.9 366.1 37.3(0.32) 393.6 393.8 13.4(0.15) 372.1 373.2 10.0(0.63) 386.6 389.7 

5 10.9(0.36) 413.1 413.1 38.1(0.33) 439.3 439.4 16(0.1) 420.7 421.4 11.3(0.42) 431.9 434.2 

6 23.7(0.01) 412.1 412.2 68.4(0.01) 446.9 447 29.8(0) 418.8 419.5 33.3(0.11) 436.5 439.6 

7 25.5(0.01) 526.5 526.5 67.2(0.01) 563.4 563.5 26.3(0.01) 532.6 533.3 10.5(0.49) 550.4 552.6 

8 19(0.06) 458.4 458.3 45.1(0.14) 480.4 480.3 27.8(0.01) 468.3 468.6 44.2(0) 473.6 476.7 

9 9.2(0.51) 418.3 418.3 35.6(0.44) 445.8 445.8 14.2(0.16) 425 425.7 31.7(0) 442.1 445.2 

10 19.5(0.01) 531.8 532.2 45.3(0.07) 559.2 559.5 20.3(0.01) 539.3 540.9 7.8(0.56) 549.9 554.1 

11 7.5(0.67) 331.2 331.2 24.8(0.9) 346.8 346.9 13.3(0.21) 337.7 338.4 70.8(0) 343.7 346.7 

12 23.6(0.01) 510.7 510.9 50.9(0.03) 538.7 538.9 24(0.01) 517.9 519 27.4(0.01) 529 532.1 

13 25.2(0.01) 582.9 582.9 58.5(0.01) 615 615 34.8(0.01) 593.1 593.8 28.8(0) 604.5 607.6 

14 15.7(0.07) 485.7 485.9 45(0.1) 514.2 514.4 19.7(0.02) 493.7 494.8 20.2(0.31) 505.3 508.4 

15 24.9(0.01) 387.2 387.4 33(0.52) 404.4 404.6 17.4(0.07) 390.8 391.9 8.5(0.58) 398.3 401.3 

16 28.6(0.01) 467.1 467.5 43.4(0.11) 487.1 487.4 23.3(0.01) 471.9 473.5 32.8(0.04) 479.7 483.9 

17 30.3(0.01) 244.4 245.2 55.8(0.01) 261.9 262.8 30.0(0.01) 247.1 250.2 34.9(0.04) 258.1 266.3 

18 29.9(0.01) 440.2 440.6 50.3(0.03) 460.5 460.9 26.1(0.01) 444.6 446.2 31.3(0.14) 453.1 457.3 
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Island Test 
statistics Native/Exotic Native/Pastures Exotic/Pastures 

Faial W 22 15 1 
P value 0.53 0.036 0.016 

Flores W 12 32 29 
P value 0.864 0.034 0.028 

Terceira W 195 1210 80 
P value 0.05 <0.001 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Wilcoxon rank sum test results for the significance of difference of α values of the gambin 
distribution between transects of different land use groups, for three Azorean islands: Faial, Flores 
and Terceira. For each island the analysis was run using the standardised re-sampled island samples 
(i.e. all transects were re-sampled in order to keep sample size constant). The number of individuals 
used to standardise the calculations in each instance is given in Table A2 in Appendix 2. 
Significance was set at the 0.05 level and all significant P values are highlighted in bold. The three 
land-uses were native Laurisilva forest, exotic plantation forest and pasture. The sample size (i.e. 
number of transects) for each grouping was as follows. Faial: native forest (8), exotic forest (6), and 
pastures (8). Flores: native forest (12), exotic forest (4), and pastures (8). Terceira: native forest 
(33), exotic forest (13), and pastures (35). 
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FIGURE CAPTIONS 

 

 

Figure 1. Examples of the fit of the gambin distribution (black dots), the logseries (red 
triangles), and Poisson lognormal (blue squares) to observed data (bars). (a) Data are for 
arthropods from a fragment (No. 2, see Table A1 in Appendix 2) of native Laurisilva forest 
on the island of Faial, Azores. The α parameter of the gambin distribution is 1.9. (b) Data are 
for arthropods from a fragment (7, see Table A1) of native Laurisilva forest on the island of 
Pico, Azores. The α parameter of the gambin distribution is 1.8. In both plots, gambin 
provides the best fit according to both BIC and AICc.  

 

 

 

 

 

 

 

 

 



28 
 

 

 

Figure 2. Changing shape of the observed species abundance distribution with sample size. 
Data were sampled from a simulated lognormal metacommunity (number of individuals (N) 
=10,000, number of species=100). The four plots correspond to different levels of sampling 
from the metacommunity: a) 1% of individuals (N=100) sampled from the metacommunity, 
b) 10% of individuals (1000), c) 50% of individuals (5000), and d) 100% of individuals, i.e. 
the full metacommunity (N=10,000). On each plot the α parameter of the gambin distribution 
(Gam), the alpha of the logseries distribution (LS), and the mean of the Poisson lognormal 
distribution (PLN) calculated using the sampled data are given. The fit of the gambin 
distribution (black dots), PLN (blue squares) and logseries (red triangles) to each sample is 
also presented.  
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Figure 3. Difference in the gambin distribution α parameter values (standardised to keep 
sample size constant) between transects of the three land use types (native forest, exotic 
plantation forest, and pasture) on three Azorean islands: a) Terceira, b) Faial, c) Flores. The 
number of individuals used to standardise the calculations in each instance is given in Table 
A2 in Appendix 2. The box plots display the median (red line), the first and third quartiles 
(black box), and the minimum and maximum values (whiskers). The significance of 
differences between land use types according to Wilcoxon rank sum tests are presented in 
Table 3. 

 


