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ABSTRACT
In this Letter, we answer a simple question: Can a misaligned circumbinary planet induce
Kozai–Lidov cycles on an inner stellar binary? We use known analytic equations to analyse
the behaviour of the Kozai–Lidov effect as the outer mass is made small. We demonstrate a
significant departure from the traditional symmetry, critical angles and amplitude of the effect.
Aside from massive planets on near-polar orbits, circumbinary planetary systems are devoid
of Kozai–Lidov cycles. This has positive implications for the existence of highly misaligned
circumbinary planets: an observationally unexplored and theoretically important parameter
space.

Key words: methods: analytical – celestial mechanics – planets and satellites: dynamical
evolution and stability – binaries: close.

1 IN T RO D U C T I O N

In 1962, there were two independent papers published on an ef-
fect seen in the gravitational three-body problem. Lidov (1962)
investigated the effect the Moon has on artificial satellites orbiting
the Earth. Kozai (1962) looked at asteroids orbiting the Sun under
the influence of Jupiter. Both systems were qualitatively the same:
an inner restricted three-body problem with initially circular orbits
and all of the orbital angular momentum confined to the outer orbit
(Fig. 1a). It was discovered that when the two orbital planes were
significantly misaligned, between 39◦ and 141◦, there was a high-
amplitude modulation in the eccentricity of the inner orbit (in their
examples the satellite and the asteroid) and the mutual inclination.
Contrastingly, the outer eccentricity was seen to remain constant.
Overall, this is known as a Kozai–Lidov (K-L) cycle or effect.

The K-L effect was later generalized to the case of three bodies of
comparable mass (Harrington 1968; Lidov & Ziglin 1976) for the
application to triple star systems (Fig. 1b). It has subsequently been
implicated, for example, in the production of tight stellar binaries
(period � 7 d). In this scenario, the K-L cycle induced on the inner
binary leads to close encounters between the two stars, at which
point tidal friction dissipates orbital energy and shrinks the inner
orbit (e.g. Mazeh & Shaham 1979; Eggleton & Kisseleva-Eggleton
2006; Fabrycky & Tremaine 2007).

The theory has been extended to eccentric outer orbits, in which
case higher order effects cause the system to be chaotic, possibly
inducing flips in the inner orbit orientation. This has been applied
to multiplanet systems (Fig. 1c) by Naoz et al. (2011) in order
to explain why a surprisingly large fraction of hot-Jupiters are
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misaligned or even retrograde (Hébrard et al. 2008; Schlaufman
2010; Triaud et al. 2010).

The similarity between the three scenarios in Fig. 1(a)–(c) is that
the system’s orbital angular momentum is largely confined to the
outer orbit. The time-scale, amplitude and limits of K-L cycles do
vary between the different configurations, but for initially circular
orbits there is qualitatively not a radical departure from the original
work of Lidov (1962) and Kozai (1962).

In this Letter, we explore a different type of three-body system:
circumbinary planets (Fig. 1d). The discovery of eight transiting
systems by the Kepler mission (Doyle et al. 2011; Welsh et al.
2014) has given this class of planet widespread scientific exposure
and validity. The discoveries so far have been limited to coplanar
systems (within ∼4◦), so one might question the relevance of K-L
cycles in this scenario. However, Martin & Triaud (2014) argued
that this narrow distribution is the result of a strong detection bias
imposed by the requirement of a consecutive transit sequence.1

There are also theoretical arguments for the existence of misaligned
circumbinary planets, as a result of planet–planet scattering (e.g.
Chatterjee et al. 2008 in the context of single stars), a misaligned
disc (e.g. 99 Herculis, Kennedy et al. 2012; KH 15D, Winn et al.
2004) or an interaction with an outer tertiary star (Hamers, Perets
& Portegies Zwart 2015; Martin, Mazeh & Fabrycky 2015; Mũnoz
& Lai 2015).

In a circumbinary planetary system, the outer orbital angular
momentum becomes vanishingly insignificant with a decreasing
outer mass. This is qualitatively different to the other systems in
Fig. 1 and it means that the classic studies of Lidov (1962) and

1 Circumbinary planets that are misaligned by �10◦ frequently miss transits,
creating a sparse transit sequence which is harder to identify.
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Figure 1. Zoo of different three-body configurations, all with orbits misaligned by �I. The orbits are drawn with respect to the centre of mass of the inner
orbit. Case (d) is qualitatively different to cases (a)–(c) because in (d) the outer orbit no longer dominates the total angular momentum of the system.

Kozai (1962) are no longer entirely applicable. Furthermore, since
the K-L effect only modulates the eccentricity of the inner orbit,
not the outer, it is not possible for an inner binary to induce a K-L
cycle on a circumbinary planet. Naoz et al. (2013a) and Liu, Mũnoz
& Lai (2015) derived equations for the amplitude and limits of the
K-L effect for three arbitrary mass bodies, but did not apply them
to circumbinary planets. We are motivated to demonstrate the clear
and significant difference between circumbinary planets and other
three-body systems, and to clear up any possible misconceptions.

The plan of the Letter is as follows: in Section 2, we present
equations for the K-L theory, analyse the different limiting cases
and consider the competing secular effect of general relativistic pre-
cession, which may act to suppress K-L cycles. We then apply the
theory in Section 3 to determine what parameter space of circumbi-
nary planets may be able to induce K-L cycles before concluding
in Section 4.

2 TH E O RY

2.1 Equations for the induced eccentricity and critical
mutual inclination

Consider a hierarchical triple system like those shown in Fig. 1,
which we model as two Keplerian binary orbits. The three bodies
have masses M1 (navy blue in Fig. 1), M2 (blue) and M3 (light
blue). Both orbits are defined by osculating orbital elements for the
period, P, semimajor axis, a, eccentricity, e, argument of periapse,
ω, inclination I and longitude of the ascending node, �. We use the
subscripts ‘in’ and ‘out’ to denote each orbit. The mutual inclination
between the two orbits, �I, is calculated by

cos �I = sin Iin sin Iout cos �� + cos Iin cos Iout, (1)

where �� = �in − �out. The orbital angular momenta of the inner
binary and outer binaries are

Gin = Lin

√
1 − e2

in and Gout = Lout

√
1 − e2

out, (2)

where

Lin = M1M2

M1 + M2

√
G(M1 + M2)ain (3)

and

Lout = (M1 + M2)M3

M1 + M2 + M3

√
G(M1 + M2 + M3)aout, (4)

and G is the gravitational constant.
We analyse the three-body orbital evolution according to the

quadrupole approximation of the Hamiltonian. In this case is no

change to ain, aout or eout.2 Under certain conditions, there may be a
significant variation in the ein and �I: a K-L cycle. Outside of K-L
cycles ein is constant. Additionally, both orbits will experience an
apsidal and nodal precision (variations in ω and �, respectively).

The presence or absence of K-L cycles has significant impli-
cations for the stability of a three-body system. For circular and
coplanar triple systems there exists a rule of thumb that aout � 3ain

for stable orbits (Dvorak 1986; Holman & Wiegert 1999; Mardling
& Aarseth 2001). Around circular binaries, the stability limit gener-
ally moves inwards as �I increases and is only a weak function of
the stellar mass ratio (Doolin & Blundell 2011). If the inner binary
is eccentric, for example during a K-L cycle, then this stability limit
is pushed outwards. An eccentric binary also makes the stability
limit a more complex function of �I and the mass ratio (Doolin &
Blundell 2011; Li et al. 2014). Seven of the known eight circumbi-
nary systems have ein ≤ 0.2, with Kepler-34 being the only highly
eccentric case (ein = 0.5; Welsh et al. 2012).

Naoz et al. (2013a) and Liu et al. (2015) derived a relation for
the maximum inner eccentricity obtained, ein,max, as a function of
the starting mutual inclination, �I0, the ratio of orbital angular
momenta and the outer eccentricity,

5 cos2 �I0 − 3 + Lin

Lout

cos �I0√
1 − e2

out

+
(

Lin

Lout

)2 e4
in,max

1 − e2
out

+ e2
in,max

[
3 + 4

Lin

Lout

cos �I0√
1 − e2

out

+
(

Lin

2Lout

)2 1

1 − e2
out

]
= 0,

(5)

where it is assumed that the inner binary is initially circular. Solu-
tions for ein,max only exist in a ‘K-L active’ region, which is bounded
by lower and upper limits on the initial �I, which we call �Ilower

and �Iupper.
The limiting mutual inclination for K-L cycles to occur is calcu-

lated by setting ein,max = 0 in equation (5), leaving a quadratic

5 cos2 �Ilower,upper − 3 + Lin

Lout

cos �Ilower,upper√
1 − e2

out

= 0. (6)

From solving the quadratic, the lower limit of �I0 is defined as

cos �Ilower = 1

10

⎡
⎣− Lin

Lout

1√
1−e2

out

+
√(

Lin

Lout

)2 1

1−e2
out

+ 60

⎤
⎦ .

(7)

2 In the octupole level Hamiltonian there may be some variation in eout but
generally this is small. An interesting exception, however, was found by Li,
Zhou & Zhang (2014), who showed that an eccentric inner binary (ein �0.4)
may induce moderate eccentricity variations (up to eout ∼ 0.3) on a massless
outer body if it has a near-polar orbit.
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The upper limit is simply the other solution to the quadratic,

cos �Iupper = 1

10

⎡
⎣− Lin

Lout

1√
1 − e2

out

−
√(

Lin

Lout

)2 1

1 − e2
out

+60

⎤
⎦

for
Lin

Lout

1√
1 − e2

out

< 2, (8)

but with the caveat that it is only defined when the outer orbit
contains the majority of the angular momentum. Otherwise one
must invoke a different upper limit, taken from Lidov & Ziglin
(1976):

cos �Iupper = −1

2

Lout

Lin

√
1−e2

out

for
Lin

Lout

1√
1 − e2

out

≥ 2. (9)

This second upper limit is not inherently respected by equation (5)
when calculating ein,max so it must be imposed manually.

Liu et al. (2015) compared numerical simulations with the ana-
lytic calculations using equation (5), showing a very close match,
but they only used equation (8) as an upper limit on �I0, not equation
(9). However, in their tests the outer orbit always had a significant
portion of the angular momentum, and hence equation (9) was never
applicable.

2.2 Limiting cases

K-L cycles were originally derived in the limit of the inner restricted
three-body problem, in which case M2 → 0 and hence Lin/Lout →
0. In this case cos �Ilower → √

3/5, and for the upper limit we
use equation (8) to obtain cos �Iupper → −√

3/5. This recovers
the classic limiting mutual inclinations for K-L cycles: �Ilower =
39.◦23 and �Iupper = 140.◦79. The calculation for ein,max reduces from
equation (5) to the simple well-known formula

ein,max

∣∣
Lin/Lout=0

=
√

1 − 5

3
cos2 �I0, (10)

which is symmetric around �I0 = 90◦.
The opposite limiting case is the outer restricted three-body

problem, where M3 → 0, and hence Lin/Lout → ∞. In this limit
cos �Ilower → 0 and hence �Ilower → 90◦. This means that the
prograde K-L active region disappears. For the upper limit, we use
equation (9) to see that cos �Iupper → 0 and hence �Iupper → 90◦, so
the retrograde region disappears too. We recover the trivial limit of
the outer restricted three-body problem, where there can be no K-L
cycles since the binary feels no influence from the orbiting body,
matching the work of Pilat-Lohinger et al. (2003), Farago & Laskar
(2010) and Doolin & Blundell (2011). The only dynamical effect on
the circumbinary planet’s orbit is an apsidal and nodal precession,
at a rate calculated by Farago & Laskar (2010).

2.3 Competing secular time-scales

Even if a circumbinary system is said to be in a K-L active regime
according to Section 2, it is still possible that K-L cycles will not
occur. This is because general relativity (GR) induces a competing

precession on the inner binary, and out of the two effects the slower
one will be suppressed.3 The K-L time-scale is

τK-L = 4

3

(
a2

out

ain

)3/2
√

M1 + M2

GM2
3

, (11)

which is taken from Fabrycky & Tremaine (2007) but has been
converted to be a function of semimajor axes. The GR time-scale
is

τGR = 2π

3

a5/2
in c2

G3/2(M1 + M2)3/2
, (12)

where c is the speed of light (Fabrycky 2010).
An approximate limit for the suppression of K-L cycles is

τK-L

τGR

∣∣∣∣
lim

∼ 1. (13)

This criterion assumes a sharp cut-off of K-L cycles, whereas in
reality there is likely a smooth transition between a K-L-dominated
regime and a GR-dominated regime. We are also ignoring the pos-
sibility of resonances between the two secular effects, which may in
fact boost the modulation of ein (Naoz et al. 2013b). Nevertheless,
this criterion is deemed sufficient for the purposes of the simple
analysis presented in this Letter. Evaluating equation (13) using
equations (11) and (12) yields

aout

ain

∣∣∣∣
lim

∼
[
ain

M3

(M1 + M2)2

c2π

2G

]1/3

. (14)

This provides an upper limit on the tightness of circumbinary sys-
tems for which K-L cycles may be excited, lest they be quenched
by general relativistic precession.

3 PA R A M E T E R S PAC E E X P L O R AT I O N

We explore how the K-L effect behaves in an example triple system
consisting of an inner stellar binary with M1 = 1 M
 and M2 =
0.5 M
 and an outer body with M3 ranging from a star down to a
planet. Different values of M1 and M2 would change the limits and
amplitude of the K-L effect, but in our example we use the mean
stellar masses of the known circumbinary systems from Kepler, in
order to make it as representative as possible. From Section 2.1,
the amplitude and limits of K-L cycles are functions of the ratio of
angular momentum, and consequently in our tests we only need to
probe different values of the ratio aout/ain, not the individual values.
We start ein and eout at 0, but ein may rise significantly during a K-L
cycle.

In Fig. 2, we calculate ein,max from equation (5) as a function
of aout/ain and �I0, for six different outer body masses: 1 M
,
0.1 M
, 0.05 M
, 0.01 M
, 0.005 M
 and 0.001 M
. The small-
est value of aout/ain was 3, corresponding to the rough stability limit.
The lower limit (left-hand limit) of the K-L active region is demar-
cated in a white dashed curve (equation 7). The two different upper
limits (right-hand limits), chosen according to the value of M3 and
aout/ain, are depicted as green (equation 8) and pink (equation 9)
dashed curves.

The relative time-scales of K-L cycles and GR precession set an
upper limit in aout/ain on the K-L active region, as a function of ain

(equation 14). In Fig. 2, two light blue horizontal lines denote the
limiting ratio aout/ain for ain = 0.0655 au (Pin = 5 d, lower line)

3 Tidal and rotational bulges also induce a precession on the binary’s orbit
but these effects are generally only significant for very tight binaries.

MNRASL 455, L46–L50 (2016)
Downloaded from https://academic.oup.com/mnrasl/article-abstract/455/1/L46/2589537
by University of Birmingham user
on 23 January 2018



K-L cycles towards circumbinary planets L49

Figure 2. Maximum inner eccentricity obtained during K-L cycles according to equation (5), as a function of aout/ain and �I0, for six different values of the
outer mass M3. The inner masses are set at M1 = 1 M
 and M2 = 0.5 M
. The initial eccentricities are both zero (and eout is constant). The black regions
correspond to where K-L cycles do not occur. These are separated from the K-L active regimes by a lower limit of �I0 (white dashed line on the left-hand limit
from equation 7) and an upper limit of �I0 (green and/or pink dashed lines on the right-hand limit from equation (8) and/or equation (9), respectively). The
light blue horizontal lines are upper limits on aout/ain for K-L cycles to occur without being quenched by GR precession, for ain = 0.0655 au (Pin = 5 d) as the
lower line and ain = 0.3041 au (Pin = 50 d) as the upper line. The light blue star symbol in the top right subplot corresponds to the set of N-body simulations
in Fig. 3.

and ain = 0.3041 au (Pin = 50 d, upper line). These two example
values of ain are not completely arbitrary as they cover the range of
binaries known to host circumbinary planets (Welsh et al. 2014).

For M3 = 1 M
 we have a triple star system like in Fig. 1(a),
which is well modelled by a classic K-L regime with limits at 39◦

and 141◦. Here ein,max is solely a function of �I0 and is well approx-
imated by equation (10). The GR time-scale only impinges upon
the widest systems within this parameter space. As M3 decreases to
0.1 M
, an M-dwarf, the K-L active regime is relatively unchanged
for wide systems but shifts towards the retrograde region for tight
systems. This asymmetry was noted by Liu et al. (2015).

Within the brown-dwarf regime (M3 = 0.05 M
), there is a sig-
nificant change in the K-L behaviour for tight triple systems (aout/ain

< 15). The high-amplitude eccentricity modulations (ein,max � 0.9)
are confined to retrograde orbits. Also the second upper limit (equa-
tion 9) becomes applicable, causing the upper limit of the K-L active
region to ‘turn around’ and move back towards 90◦.

Within the planetary regime between roughly 1 and 10 MJup, we
see that K-L cycles become restricted to a narrow slither of angles
either side of a polar �I0 = 90◦ orbit. The amplitude also decreases
as the outer body becomes smaller. Furthermore, the K-L time-
scale is also so slow that GR precession suppresses it in all but the
closest systems. For reference, the observed circumbinary planets
have been found predominantly near critical stability limit (aout ∼
3ain), with low eccentricities (eout < 0.2), have mass M3 < 1MJup

and are nearly coplanar (�I � 4◦; Welsh et al. 2014).
One interesting property is that the upper limit of K-L cycles

calculated by equation (9) (pink dashed curve in Fig. 2) imposes
a sharp transition between K-L active and inactive regions. As an
example, for M3 = 0.05 M
 and aout/ain = 10 there is a sharp
transition at �I0 = 159◦ (marked with a light blue star symbol
in the top right subplot in Fig. 2). We demonstrate this with an

N-body numerical solution of the exact equations of motion4 in Fig.
3, showing the time-evolution of the osculating orbital elements �I,
ein and eout for three different values of �I0: 157◦ (light blue), 158◦

(blue) and 159◦ (navy blue). The N-body code does not include GR,
which is reasonable since the K-L time-scale is significantly faster
in this example. There is a sharp transition between K-L active and
inactive regions at �I0 = 159◦. The maximum numerical value ein

matches the analytic prediction to within 0.04 per cent error.
Fig. 3 shows that eout remains close to zero but not exactly. For

binaries undergoing a K-L cycle, the outer eccentricity experiences
low-amplitude periodic rises, in phase with the K-L cycle of the
inner binary. This is not a K-L cycle being induced on the outer
body itself, but rather a response to the high-amplitude eccentricity
modulation of the orbited binary.

Relaxing the requirement of a circular outer orbit moves the sharp
upper limit towards 90◦. In Fig. 3 example with eout = 0.5 there is a
shift in �Iupper from 159◦ to 144◦, according to equation (9), which
we verified in an N-body simulation. Like before, the simulation
showed little variation in eout over time.

4 C O N C L U S I O N

The near-complete absence of potentially destabilizing K-L cycles
in the context of circumbinary planets has positive ramifications
for the existence of misaligned systems. It frees us from the narrow
confines of coplanarity and broadens the parameter space for poten-
tial discoveries. Based on studies of the abundance of circumbinary
planets, if a presently hidden population of misaligned systems were

4 REBOUND (Rein & Liu 2012, http://github.com/hannorein/rebound),
with a 14th–15th-order adaptive time step integrator (Rein & Spiegel 2015).

MNRASL 455, L46–L50 (2016)
Downloaded from https://academic.oup.com/mnrasl/article-abstract/455/1/L46/2589537
by University of Birmingham user
on 23 January 2018

http://github.com/hannorein/rebound


L50 D. V. Martin and H. M. J. Triaud

Figure 3. Numerical simulations of K-L cycles, showing the evolution of
�I (top panel), ein (middle) and eout (bottom). The parameters are ain = 0.5
au, aout = 5 au, M1 = 1 M
, M2 = 0.5 M
, M3 = 0.05 M
 and eout and
ein initially set at zero. Three different values of �I0 were tested: 157◦ (light
blue), 158◦ (blue) and 159◦ (navy blue). All other orbital angles were set
to zero. The top panel includes a zoomed inset to show the small difference
in starting conditions. The numerical values of ein,max are 0.9894 (�I0 =
157◦), 0.9899 (�I0 = 158◦) and 1.63 × 10−4 (�I0 = 159◦), and hence there
in the last case there is no K-L cycle. The analytic predictions for ein,max are
correct to within 0.04 per cent error.

to exist, this would imply that planets are surprisingly more abun-
dant around two stars than one (Armstrong et al. 2014; Martin &
Triaud 2014).

There are also theoretical implications in the context of close
binary formation by a combination of K-L cycles and tidal friction.
Circumbinary planets cannot activate this mechanism. Circumbi-
nary brown dwarfs may but only in close, retrograde orbits.

Observational evidence of such misaligned systems is presently
lacking, but fortunately there exists several methods for their dis-
covery: eclipse timing variations (Borkovits et al. 2011), astrome-
try (Sahlmann, Triaud & Martin 2015) and sparse transits on both
eclipsing and non-eclipsing binaries (Martin & Triaud 2014, 2015).
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Stéphane Udry. Our Letter was aided by the helpful comments
of an anonymous referee. We finally thank the teams behind ADS
and arXiv.

R E F E R E N C E S

Armstrong D. J., Osborn H., Brown D., Faedi F., Gomez Maqueo Chew Y.,
Mardin D. V., Pollacco D., Udry S., 2014, MNRAS, 444, 1873

Borkovits T., Csizmadia S., Forgacs-Dajka E., Hegedus T., 2011, A&A, 528,
A53

Chatterjee S., Ford E. B., Matsumura S., Rasio F. A., 2008, ApJ, 686, 580
Doolin S., Blundell K. M., 2011, MNRAS, 418, 2656
Doyle L. R. et al., 2011, Science, 333, 1602
Dvorak R., 1986, A&A, 167, 379
Eggleton P. P., Kisseleva-Eggleton L., 2006, AP&SS, 304, 75
Fabrycky D. C., 2010, in Seager S., ed., Exoplanets. Univ. Arizona Press,

Tuscan, AZ
Fabrycky D. C., Tremaine S., 2007, ApJ, 669, 1298
Farago F., Laskar J., 2010, MNRAS, 401, 1189
Hamers A. S., Perets H. B., Portegies Zwart S. F., 2015, preprint

(arXiv:1506.02039)
Harrington R. S., 1968, ApJ, 73, 190
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