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The development of gasoline direct injection 
(GDI) engines has provided a strong alternative to 
port fuel injection engines as they offer increased 
power output and better fuel economy and carbon 
dioxide emissions. However, particulate matter 
(PM) emission reduction from GDI still remains 
a challenge that needs to be addressed in order 
to fulfil the increasingly stricter environmental 
regulations. A large number of the total 
particulate emissions during driving cycles are 
produced during the engine cold-start. Therefore, 
controlling PM during cold-start events will 
significantly reduce the final PM output.
This research work provides an understanding 

of PM characterisation from a 2 l four-cylinder 
GDI engine during cold-start. Gaseous emissions 
including hydrocarbon (HC) speciation studies are 
also carried out pre- and post- a Euro 6 compliant 
three-way catalyst (TWC). In addition, particulate 
size distribution and total particulate number 
were recorded for the first 280 seconds after the 

engine cold-start. Large concentrations of carbon 
monoxide, propane, acetaldehyde, formaldehyde, 
ethanol, toluene and ethylene were emitted 
during the first 70–90 seconds from the engine 
start. Gaseous emissions were reduced on the 
catalyst at temperatures higher than 290°C, 
with the catalyst reaching almost 100% removal 
efficiency at 350°C. The effect of the TWC on PM 
emissions has been analysed for the different PM 
diameter ranges. A reduction of particles smaller 
than 20 nm was observed as well as a reduction 
in the accumulation mode. In order to understand 
the nature of the particles emitted during  
cold-start, transmission electron microscope 
(TEM) grids were used for particulate collection 
at the engine start and after 80 seconds and 
140 seconds of engine operation. A peak of  
1.4 × 108 particles was produced at the engine 
start and this steadily reduced to 3 × 107 in  
50 seconds. The TEM micrographs showed solid 
particles with similar fractal-like shapes. 

1. Introduction

The fleet of GDI engines will continuously 
increase for years to come due to their significant 
advantages in terms of fuel consumption and 
CO2 reduction when compared to older port fuel 
injection engines, and the negative publicity 
diesel vehicles are receiving (1–3). However, GDI 
engines have been associated with an increase 
in PM levels when compared to earlier gasoline 
powertrains. Euro 6c emission legislation limits 
the number to 6 × 1011 particles km–1 and  
came into force in September 2017 (4). The 
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main contributor to the total particulate number is 
small particles (i.e. those formed in the nucleation 
mode), which are more hazardous to human 
health than larger particles as they are able to 
penetrate deeper into the human respiratory 
system (5). Due to the difficulties when measuring 
the nucleation mode, the Particle Measurement 
Programme (PMP) established the cut-off to be 23 
nm particles in order to assure the repeatability 
of the results (6). However, sub-23 nm particles 
have been reported during GDI normal operation 
(7, 8) and particles around 6 nm diameter have 
been found using TEM (9). The high variability of 
cold-start events, as well as the low temperature 
in the exhaust and TWC, hinders the measurement 
of PM. In addition, during the engine cold-start 
a large amount of fuel is being injected and this 
increases the emission of larger particles (10). 
During urban journeys, the engine is subjected to 
several cold-starts. Although the engine can be 
warmed, the low exhaust temperature reduces the 
effectiveness of the aftertreatment system as well 
as increasing the likelihood of nucleation and the 
formation of small particles in the exhaust. Engine  
cold-starts represent 50% of urban driving emissions 
and contribute to 80% of the total emissions for 
some species such as volatile organic compounds 
(11). The emission of unburnt HC during engine  
cold-start is also an area of concern. Amongst the 
species found during the engine start is methane, 
a potent greenhouse gas with radiation trapping 
efficiency of approximately 25 times higher than 
CO2 (12), while polyaromatic HC such as benzene 
and toluene are carcinogenic to humans (13). This 
is particularly worrying as in urban areas human 
exposure is high. Cold-starts are estimated to last 
for 120 seconds, which is equivalent to a one-mile 
journey (11). Although the TWC is an efficient 
way of removing CO, unburned HCs and nitrogen 
oxides (NOx) from the exhaust, during cold-starts 
its temperature is far from the ideal operating 
conditions, reducing the TWC’s efficiency. In 
addition, as PM control is not the main objective of 
the TWC, its effect on PM during cold-starts is not 
yet well documented. 
Peckham et al. (14) studied the legislated 

emissions using fast-response analysers during 
the first 100 seconds of the engine cold-start. 
Approximately 0.31 g of HC, 0.08 g of NOx 
and almost 2 g of CO were emitted during this 
period. The main contribution to the cumulative 
tailpipe emissions were the first 20 seconds of the  
cold-start, during which several particulate number 
spikes were emitted. The TWC was reported to 

reduce the aggressive spikes of the HCs and 
NOx produced during the cold-start even if the 
catalyst temperature was still low, although the CO 
reduction was less noticeable. The TWC reached 
300°C after 21 seconds of operation. The same 
authors in a different study compared the raw 
engine emissions during cold-start with the results 
obtained using a PMP compliant dilution tunnel 
(cut-off of 23 nm) (15). The difference between 
raw and PMP results are more than one order of 
magnitude. Rich conditions during cold-start led 
to several peaks in PM number. The presence of 
two differentiated PM modes, nucleation and 
accumulation, during the cold-start suggested the 
coexistence of particles formed under different 
conditions in the combustion chamber. Samuel et 
al. (16) analysed the performance of the TWC on 
PM reduction during cold-start. According to their 
results, particles between 5 to 25 nm represented 
99% of the total emissions until the engine was 
warmed-up. The TWC was capable of reducing 
the number of particles emitted, especially those 
ranging between 5–25 nm and 50–100 nm. The 
effect of the TWC on particulate size distribution 
at steady-state condition has been analysed (17). 
A reduction in the particle concentration around 
5–50 nm after the catalytic converter was reported. 
However, particles above 100 nm were increased. 
The authors claim that the TWC is able to remove 
and oxidise some of the PM, but particles may 
coagulate in the catalyst increasing the diameter 
of particles post-TWC. Soot oxidation behaviour, 
nanostructure and Raman analysis during  
cold-start was analysed (18). The authors 
reported higher reactivity of the particles collected 
during the engine cold-start with respect to hot  
steady-state soot samples. This effect was attributed 
to the high percentage of unburned ash precursors 
found in cold-start soot samples. The nanostructure 
and Raman analysis also showed that during cold-
start the soot had an ordered structure similar to 
warm steady-state conditions meaning that the 
carbon crystalline structures during cold-start are 
similar to those during steady-state operation. 
In this research, gaseous emissions including HC 

speciation and PM characterisation during engine 
cold-start have been measured on an air-guided 
2 l four-cylinder GDI engine equipped with a  
Euro 6 compliant TWC. In addition, total particulate 
number was recorded in the first 280 seconds of 
the engine cold-start. The particle size distribution 
and the fraction of particles per diameter have been 
analysed at different stages during the engine start 
(cold-start and after 80 and 140 seconds of engine 
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operation). Additional PM characterisation studies 
were carried out using TEM. PM was collected from 
the engine exhaust gas at different time intervals 
using copper grids and analysed by TEM in order to 
understand qualitatively their morphology.

2. Experimental Setup and Method

2.1 Experimental Setup

The engine used for this study was a 2 l,  
four-cylinder, air-guided stoichiometric GDI. The 
details of the engine specification can be found in 
Table I. Standard EN228 gasoline with 5% (v/v) 
ethanol content provided by Shell was used for 
this research. Fuel properties are presented in 
Table II. 5W30 fully synthetic lubricating oil was 
employed.
Gaseous emissions were measured using a 

Fourier-transform infrared spectroscopy (FTIR) 
2100 MKS. Legislated emissions (CO, CO2, NOx 
and total HC (THC)) as well as HC speciation were 
sampled before and after the TWC during the  
cold-start. The sample was filtered to avoid any 
damage of the optical part by PM and pumped at 
a rate of 1 l min–1 through the equipment. The 
heating lines and the pump were maintained at 
191°C to eliminate any condensation of HCs and 
water in the pipes.
Total particulate number and size distributions 

were obtained using a Dekati Electrical Low 
Pressure Impactor (ELPI®+). An ejector diluter 
system was used to precondition the sample. The 
dilution ratio (DR) was set at 10 and recorded 
throughout the test based on nitric oxide (NO) 
and CO2 concentration on the exhaust and diluted 
streams, Equation (i), using the FTIR. The air 
dilution temperature was ambient. 

DR =  ≈
ppmNOraw exhaust %CO2 raw exhaust

ppmNOdilute sample %CO2 dilute sample

 (i)

2.2 Test Procedure and Method

All the experiments were carried out at cold-start 
conditions. At least 24 hours were left between 
tests to soak the engine. The engine warm-up 
process was established by the test control system 
(CADET) following standard vehicle operation, 
the torque and speed trace during this process 
is provided in Figure 1. In addition, to further 
understand the behaviour of gaseous and PM 
emissions, the lambda trace during this period 
is also shown in Figure 2. The engine starts at 
20 seconds, a sudden increase to 1200 rpm and  
5 Nm is produced and the overall lambda is rich at 
this point to start the combustion. High fluctuations 
in lambda are produced to stabilise the engine. 
From this point, different changes in speed and 
torque are programmed to warm-up the engine 
leading to changes in lambda that affect gaseous 
and PM emissions. At the end of the sequence, 
lambda tends to one.
Gaseous and PM emissions were measured during 

the first 280 seconds after the engine start pre- and 
post-TWC. The location of the ELPI®+ and the FTIR 
sampling point pre- and post-TWC was swapped 
in each test until a total of five measurements 

Table I Engine Specifications

Compression ratio 10:1

Bore × stroke 87.5 × 83.1 mm

Turbocharger Borg Warner K03

Rated power 149 kW at 6000 rpm

Rated torque 300 Nm at 1750–4500 rpm

Engine 
management

Bosch Me17

Table II Gasoline Properties

Analysis (test method) Result

Density at 15°C, kg m–3 743.9

Initial boiling point, °C 34.6

20% v/v, °C 55.8

50% v/v, °C 94.0

Final boiling point, °C 186.3

C m/m, % 84.16

H m/m, % 13.48

O m/m, % 2.36

Paraffins, vol% 43.9

Olefins, vol% 11.7

Naphthenes, vol% 7.8

Aromatics, vol% 26.9

Oxygenates, vol% 7.7

Sulfur, ppm 6

Calorific values, MJ kg–1 42.22

Motor octane number 85.3

Research octane number 96.5
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before and after TWC were obtained for statistical 
analysis. For morphology analysis 3.05 mm, TAAB 
Formvar coated copper grids were loaded directly 
from the exhaust pipe at the engine start and after 
80 seconds and 140 seconds of engine operation. 
A schematic of the experimental setup is provided 
in Figure 3.

3. Results and Discussion

3.1 Gaseous Emissions

3.1.1 Regulated Emissions

The regulated gaseous emissions measured in 
the engine exhaust before and after the TWC in 
the first 280 seconds are presented in Figure 4. 
No apparent changes in the gas composition pre- 
and post-catalyst can be observed in the first  
150 seconds. A peak of CO of 10,000 ppm is 
produced just after the engine start, corresponding 
to overall rich lambda conditions and this is rapidly 
decreased to around 1300 ppm. At 235 seconds, 
engine acceleration leads to an increase in CO. 
On the other hand, HC emissions remained 
stable at 4000 ppm during this cold-start period, 
therefore HC emissions are not influenced by the 
engine conditions. No oxidation of CO and THC 
was observed during the first 120 seconds of 
the engine operation. At this point the exhaust  
pre-TWC reached temperatures higher than 
300°C and the oxidation of HC and CO started. NO 
reduction did not start until the TWC temperature 
exceeded 300°C.
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3.1.2 Hydrocarbon Speciation

The different HC species measured by the FTIR are 
divided in three groups: 
(a) linear HC species (Figure 5(a)) 
(b) oxygenated HCs (Figure 5(b))
(c) unsaturated HCs (Figure 5(c)).
The reactivity of individual HC species is affected by 

the exhaust composition. In addition, CO oxidation 
and NO reduction are affected by the different 
HC present in the exhaust and the intermediate 
species formed on the catalyst during HC oxidation, 
such as ethoxide, acetate, formate and benzoate 
(19). For instance the higher reactivity of the HC 
will lead to an increased inhibition of CO oxidation 
due to the competition for active sites (20). On the 

other hand, unsaturated species are beneficial for 
NO reduction (19). During the cold-start analysed 
in this work, the most abundant species are light 
HC such as propane, acetaldehyde, formaldehyde, 
acetylene and ethylene. The TWC is not able to 
effectively remove these species during the first 
200 seconds due to the low temperature. From 
this point, the catalyst is closer to its light-off 
temperature, reducing all HC species, and reached 
100% conversion at approximately 230 seconds 
after engine start. The HC reactivity follows 
the order reported in the literature: alcohols > 
aldehydes > aromatics > alkenes > alkanes (21). 
Linear HCs: more than 600 ppm of propane were 

observed pre-TWC, Figure 5(a). The concentration 
after TWC fluctuated before the catalyst temperature 
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reached 300°C. At this point the propane 
concentration decreased steadily until reaching 
negligible engine-out concentration at 420°C, 
250 seconds after the engine start. The second 
highest engine output emission concentration 
was methane: 220 ppm were produced just after 

the engine start but as the engine warmed up 
the engine output concentration was then rapidly 
reduced and stabilised at around 50 ppm. The pre- 
and post-TWC methane concentration was similar 
for the entire study and no oxidation activity was 
observed. Methane emissions are a major concern 
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due to its global warming potential, its link with 
ozone formation (12) and the difficulty of oxidising 
methane in the TWC (22). The oxidation of the 
approximately 20 ppm of dodecane was observed 
earlier than propane. The longer the alkane chain, 
the lower the light-off temperature required (19). 
Oxygenated HCs: the largest concentration 

of measured oxygenated species emitted was 
acetaldehyde, followed by ethanol and then 
formaldehyde, Figure 5(b). The formation of 
acetaldehyde and formaldehyde, unregulated 
compounds classified as carcinogenic to humans, 
has been reported during the incomplete 
combustion of ethanol blends (23, 24). More 
than 100 ppm of acetaldehyde were produced 
during the engine start, and the start of oxidation 
was observed at a temperature of 280°C, earlier 
than NO, CO and the rest of the HC species. The 
maximum concentration of formaldehyde emissions 
during the first 70 seconds of the engine operation 
was around 60 ppm. The TWC seemed to store 
part of the acetaldehyde and formaldehyde until 
the catalyst was close to its light-off temperature 
(350°C). The condensation of HC on the TWC 
during cold-start due to the cold catalyst surface 
is linked with a delay in CO conversion (20). The 
light-off activity for formaldehyde is similar to that 
of acetaldehyde. Aldehydes have been reported 
to be more reactive than aromatics and alkanes 
(21). However, ethanol emissions reached 80 ppm 
and started decreasing at 300°C. Ethanol light-
off temperature has been reported to be lower 
than that of CO, despite the higher C–H bonding 
energy when compared to propane or toluene. The  
dipole-dipole interaction of the polar ethanol 

molecule’s functional group with the surface of 
the catalyst is the reason for the higher oxidation 
activity of ethanol (19).
Unsaturated HCs: toluene and ethylene are the 

two main unsaturated HC species emitted from 
the engine, Figure 5(c). At the engine start, a 
peak of 160 ppm of ethylene was produced. After 
100 seconds of engine operation the ethylene 
concentration started declining steadily, reaching 
close to 0 ppm after 230 seconds. Ethylene and 
propylene are more reactive than alkane species 
and adsorb more easily on the catalyst surface 
leading to earlier light-off (20). The toluene peak 
was delayed with respect to the other species 
and a maximum concentration of 250 ppm was 
observed after 70 seconds from the engine 
start. At this point and similarly to ethylene’s 
behaviour, the concentration decreased almost 
linearly. Acetylene peaked at 125 ppm at the  
cold-start and showed stronger adsorption 
behaviour than ethylene or propylene; this can 
lead to CO oxidation inhibition (20). 

3.2 Particulate Matter

3.2.1 Particle Number During Cold-
start

The evolution of PM during the first few seconds 
of the engine cold-start is presented in Figure 6, 
note that scales pre- and post-TWC are different. 
A significant peak of particles, 1.3 × 108 particles 
cm–3, was initially recorded before its rapid 
reduction during the first 70 seconds. These high 
PM levels correspond to overall rich lambdas. As 
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in the case of CO engine output emissions, at this 
stage PM levels are highly influenced by lambda 
fluctuations. The TWC is able to considerably reduce 
the amount of PM emitted even though at this early 
stage it is far from its light-off temperature. Particle 
losses in catalysts have been mainly attributed to 
particle diffusion and thermophoresis (25). Particle 
removal by diffusion is significant for particles 
below 100 nm. At 10 nm 75% of the particles 
have been reported to be reduced in a catalyst by 
diffusion (25). In addition thermophoretic losses 
during transient operation can be around 20% 
(26). These results suggest that PM formed by 
heavy HCs are condensed in the TWC on account 
of the temperature conditions and can either (a) 
be oxidised or (b) blow-off the TWC when the 
temperature reaches the light-off conditions. In 
addition, FTIR is only able to measure some light 
HC species in the gas-phase suggesting that PM are 
composed by a soot core and heavier polyaromatic 
HCs. The need for enrichment to assure the 
engine cold-start, worsened by piston and wall-
impingement of the fuel, leads to the formation of 
fuel-rich areas promoting PM formation (27).

3.2.2 Particulate Size Distributions 
and Diameter Fractions During Cold-
Start

The particulate size distributions before and after 
the TWC at the engine start and after 80 seconds 
and 140 seconds of engine operation are presented 
in Figures 7–9, note that scales pre- and post-
TWC are different. TEM images before the TWC 
have been included as well for qualitative analysis 
of soot pre-TWC. All the distributions showed a 
bimodal shape with nucleation particles smaller than  
20 nm and an accumulation mode centred between 
50–100 nm. At the engine start the accumulation 
mode measured pre-TWC was centred at 70 nm. 
The catalyst was capable of storing and trapping 
small particles and HC droplets as well as reducing 
the accumulation mode, leading to a shift in the 
peak to 30 nm. On the other hand, after 80 and 
140 seconds of engine operation, the TWC was 
capable of eliminating particles smaller than 20 nm 
and larger than 50 nm without affecting particles 
in the range 20–50 nm. This lack of effect between  
20–50 nm has been previously reported in the 
literature (16). Larger particles (accumulation 
peak centred in 120 nm) were observed pre-TWC.
At first glance, the TEM grids corresponding to the 

first stage of the cold-start were heavily loaded, 
(Figure 7(b)) and had a fractal-like appearance 

similar to GDI engine steady-state operation or 
even similar to diesel. The majority of the particles 
collected in the grid pre-TWC for the TEM analysis 
were solid, a result that has previously been 
observed (15). Different types of particles were 
found pre-TWC, fractal-like agglomerates similar 
to diesel particles (Figure 8(b) or Figures 7(b) 
and 7(c)) and slurry-like particles (Figure 8(c)). 
Furthermore, the presence of small spherules 
(Figure 7(c)) was also observed. The presence of 
different types of PM has been previously reported 
in the literature (9, 28). After 80 seconds, the 
concentration of particles found in the grid 
dropped significantly. At this point the engine 
decelerated, leading to an increase in the air 
fraction. Lambda was still rich but approximating 
to stoichiometric conditions; still the four 
types of PM aforementioned were observed. At  
140 seconds after the engine start, only a few 
solid particles were found under the TEM beam. 
Although the engine accelerated, the air-fuel 
mixture may be already homogeneous reducing 
the overall formation of particles. It is well-known 
that the main contributor to PM emissions in GDI 
engines is cold-start and transient operation. It 
has been suggested that the nature of this PM was 
volatile HC; however, the images clearly show the 
presence of soot at this early stage of the engine 
operation in agreement with where solid particles 
have previously been found (18).
Figure 10 presents the percentage of particles in 

each of the measured diameter ranges before and 
after the TWC. Sub-23 nm particles account for up 
to 67% of total PM emitted. The TWC considerably 
reduced the amount of particles between 5–10 nm, 
however, up to 40% of sub-23 nm particles were 
observed at 140 seconds after engine start  
(Figure 10(b)). The origin of sub-23 nm particles 
in GDI engines is thought to be metals from the 
lubricant oil or from the fuel additives. The percentage 
of solid sub-23 nm is typically below 60%, similar to 
the results obtained in this work, slightly exceeding 
the sub-23 nm fraction reported for diesel engines 
(29). The results show that the TWC itself can have 
a reducing effect on the PM, but that an additional 
catalyst system will be required for full PM control; 
this will be in the form of a particulate filter.

4. Conclusions

Gaseous emissions, HC species and PM have 
been analysed during cold-start engine conditions 
for the first 280 seconds after engine start. The 
performance of a Euro 6c compliant TWC in gaseous 



337 © 2017 Johnson Matthey

http://dx.doi.org/10.1595/205651317X696315 Johnson Matthey Technol. Rev., 2017, 61, (4)

Fig. 7. Engine start: (a) particulate size distribution (PSD); (b) TEM micrograph; (c) TEM micrograph showing 
particles with a different nature. Note that scales pre- and post-TWC are different 
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Fig. 9. 140 seconds of engine operation: (a) PSD; (b) TEM micrograph; (c) TEM micrograph showing particles 
with a different nature. Note that scales pre- and post-TWC are different
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Fig. 10. Percentage fraction of particles per diameter: (a) pre-TWC; (b) post-TWC
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emissions removal during this period has been 
assessed as well as its effect on PM emissions.
The TWC effectively reduced NO, CO and THC 

for temperatures above 300°C. However, before 
the catalyst light-off, large quantities of methane, 
propane, toluene, ethanol, acetaldehyde and 
formaldehyde were emitted. The HC reactivity 
followed the order: alcohols > aldehydes > 
aromatics > alkenes > alkanes during the period 
analysed. 
Total particle number emissions peaked at  

1.4 × 108 particles cm–3 at the engine start and 
dropped an order of magnitude after 140 seconds of 
the engine warming up. A significant concentration of 
sub-23 nm was observed pre-TWC. HC and particle 
deposition on the TWC have been observed during 
the cold-start which can delay CO oxidation. Particle 
size distributions showed a bimodal distribution 
along the 280 seconds of the analysis. The TWC 
was able to reduce the number of particles between  
5–10 nm, but still a significant concentration of 
particles between 10–23 nm was observed. The 
particles observed during the engine cold-start are 
solid and fractal-like similar to diesel PM.
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