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Integrating phenotype ontologies with
PhenomeNET
Miguel Ángel Rodríguez-García1,2, Georgios V. Gkoutos3,4,5, Paul N. Schofield6 and Robert Hoehndorf1,2*

Abstract

Background: Integration and analysis of phenotype data from humans and model organisms is a key challenge in
building our understanding of normal biology and pathophysiology. However, the range of phenotypes and
anatomical details being captured in clinical and model organism databases presents complex problems when
attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have
previously developed PhenomeNET, a system for disease gene prioritization that includes as one of its components an
ontology designed to integrate phenotype ontologies. While not applicable to matching arbitrary ontologies,
PhenomeNET can be used to identify related phenotypes in different species, including human, mouse, zebrafish,
nematode worm, fruit fly, and yeast.

Results: Here, we apply the PhenomeNET to identify related classes from two phenotype and two disease ontologies
using automated reasoning. We demonstrate that we can identify a large number of mappings, some of which
require automated reasoning and cannot easily be identified through lexical approaches alone. Combining
automated reasoning with lexical matching further improves results in aligning ontologies.

Conclusions: PhenomeNET can be used to align and integrate phenotype ontologies. The results can be utilized for
biomedical analyses in which phenomena observed in model organisms are used to identify causative genes and
mutations underlying human disease.

Keywords: Phenotype, PhenomeNET, Disease gene prioritization, OWL, Automated reasoning

Background
Understanding the functions of genes and gene prod-
ucts is vital for our understanding of normal biology and
pathophysiology. In recent years the amount of geno-
type and phenotype data available for species as distinct
as man and model organisms such as nematode worms
has increased dramatically and continues to accelerate.
Insights from non-human species have an important role
to play in our understanding of human biology [1] and the
challenge is to mobilise this data in a way in which it can
be used to give meaningful insights into human physiol-
ogy and disease. While much data is now being captured
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formally using ontologies, data integration and compari-
son across species presents a major informatics challenge
[2]. This task requires that related phenotypes which span
levels of granularity as well as domains of knowledge, for
example behaviour or neoplasia, in organisms as anatom-
ically distinct as zebrafish and man, can be matched and
compared so as to allow findings in one species to be
related to others.
In response to this challenge we developed Phe-

nomeNET. PhenomeNET [3] was built in 2011 as a
system for disease gene discovery and prioritization.
PhenomeNET consists of an ontology integrating species-
specific phenotype ontologies based on the PATO ontol-
ogy [4] and relations between anatomical structures and
physiological processes, a database of gene-to-phenotype
associations, and a measure of similarity between sets
of phenotypes. Within PhenomeNET, species-specific
phenotype ontologies are combined so that phenotypes
observed in different species can be compared directly.
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The main application of PhenomeNET is the prioritiza-
tion of candidate genes for human diseases by comparing
human disease phenotypes to existing gene-phenotype
associations derived from model organisms. In particular,
human phenotypes associated with a disease can be com-
pared to phenotypes observed in mouse or other model
organisms using the integrated PhenomeNET ontology,
and similarity between phenotypes can then be used to
indicate the genetic basis of a disease. PhenomeNET has
been successfully used to find candidate genes for diseases
[3, 5], identify novel pathways [6], and repurpose drugs
using mouse model phenotypes [7, 8].
The PhenomeNET ontology was originally built by

formally integrating species-specific phenotype ontolo-
gies, permitting the relationship between classes of dif-
ferent phenotype ontologies to be determined through
deductive inference. For this purpose, PhenomeNET
relies on the UBERON [9] ontology that identifies
equivalences between anatomy ontologies of different
species, the Gene Ontology (GO) [10] as a means
to identify equivalent or related processes and func-
tions, and the PATO ontology [11] to identify the qual-
ities associated with anatomical entities or biological
processes.
Here, we use the PhenomeNET ontology to identify

alignments between phenotypes in different species. We
present our results based on three versions of the Phe-
nomeNET ontology: the first version consists of the plain
ontology using only the axioms provided in the Human
Phenotype Ontology (HPO) [12] and the Mammalian
Phenotype Ontology (MP) [13]; in the second version, we
extend our original ontology by adding additional lexical
and structural mappings generated with the Agreement-
MakerLight [14] system and represent them as equiv-
alent class axioms in our ontology; and in the third
version, we further generate mappings between classes
in the PhenomeNET ontology, the Disease Ontology
(DO) [15] and the Orphanet Rare Disease Ontology
(ORDO) [16].
We find that our axiomatic approach can identify a

large number of relations between classes that are not
currently identified by other systems that do not uti-
lize similar formal methods. However, our evaluation also
shows that a large number of mappings can still be iden-
tified through lexical and structural approaches, and that
a purely axiomatic approach will miss many mappings
that cannot currently be identified axiomatically due to
incomplete and underspecified formalization of pheno-
type classes. We illustrate how a combination of formal,
lexical and structural approaches generates the most com-
plete and comprehensive mappings between (phenotype)
ontologies, and these mappings improve the application
of phenotype ontologies in data analysis and translational
research.

Methods
Data sources and ontologies
In our experiments, we use the Human Phenotype
Ontology (HPO) [12], Mammalian Phenotype Ontology
(MP) [13], Human Disease Ontology (DO) [15], and
Orphanet Rare Disease Ontology (ORDO) [17] provided
as part of the Ontology Alignment Evaluation Initiative
2016 competition.
The HPO is an ontology of human phenotypes and con-

sists of 11,787 classes that provide a standarized vocabu-
lary for describing phenotypic abnormalities which have
been commonly encountered in human monogenic dis-
eases [18]. The MP is mainly used to characterize mouse
phenotypes, but can also be applied to other organisms. It
consists of 11,720 classes that have been organized into a
directed acyclic graph (DAG) and can be used to describe
abnormal phenotypes of physiological and anatomical sys-
tems, behavior, and survival [19].
DO provides a classification of human diseases accord-

ing to multiple axes related to genetic disorders, infectious
diseases, metabolic disorders. It consists 9247 classes that
aim at unifying the representation of human diseases
defined across a variety of developed biomedical vocabu-
laries [20].
ORDO is derived from the Orphanet database of rare

and orphan diseases and used to represent and catego-
rize the diseases within Orphanet. It consists of 12,960
classes which provides a structured vocabulary to repre-
sent relationships between phenomes, diseases, genes and
relevant features such genetic inheritance for analyzing
rare diseases [17].

Lexical mappings
We use the AgreementMakerLight (AML) [21], released
on 5 April 2016, to generate lexical mappings between
ontologies. We used the automatic match mode of the
AML with the default settings to generate the lexical map-
pings that were used to extend the PhenomeNet ontology.
The default settings of AML include use of the UBERON
ontology, DO, and Wordnet as background knowledge,
a lexical matcher, a word-based matcher that evaluates
occurrence of the same words in class labels and syno-
myms, and a string similarity measure (ISub).
In addition to mappings generated by the AML, we also

incorporate mappings between the ontologies obtained
from BioPortal [22]. For each mapping between classes
from two ontologies, we add an equivalent class axiom to
the PhenomeNET ontology.

Semantic similarity and evaluation data
For additional external evaluation of our generated map-
pings, we apply the PhenomeNET ontology to the priori-
tization of candidate genes of human disease [3]. We use
the phenotypes associated with knockout mice available
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from theMouse Genome Informatics (MGI) database [23]
and the phenotypes associated with human diseases from
the Human Phenotype Ontology database [12]. We apply
Resnik’s semantic similarity measure [24] together with
the Best Matching Average strategy [25] to combine class
similarities.
We evaluate the results using a list of gene–disease

associations provided by the Human Phenotype Ontology
database [12] as well as a set of mouse models of human
disease provided by the MGI database [23].

Source code and experiments
Source code for the PhenomeNET matching system,
including parameter files, and the generated alignments,
are available at http://github.com/bio-ontology-research-
group/OAEI2016. Code to generate the PhenomeNET
ontology is available at https://github.com/bio-ontology-
research-group/phenomeblast/tree/master/fixphenotypes.

Results
Combining knowledge-based and lexical approaches for
ontology integration
We developed and extended the PhenomeNET ontology
to integrate several species-specific phenotype ontolo-
gies and identify mappings between phenotype classes.
Here, we consider a mapping between two classes (in
two ontologies) a formal relation between them, i.e., an
axiomatic relation such as equivalence, sub- or super-
class, or disjointness. An alignment between two ontolo-
gies is created by a set of mappings. Ontology matching
is the process of finding mappings between classes in two
ontologies. Ontology integration goes beyond identifica-
tion of an ontology alignment in that two or more ontolo-
gies are merged into a single ontology that encompasses
all classes in the original ontologies [14].
Phenotype classes in the HP and MP ontologies

are formally defined using the Entity-Quality (EQ)
pattern [4, 26]. Based on the EQ patterns, a phe-
notype is decomposed into an affected entity and
a quality that specifies how the entity is affected.
The Entity will usually be a class taken either from an
anatomy ontology or a physiology ontology. For exam-
ple, the phenotype class macroglossia (HP:0000158)
describes an anatomical abnormality and is defined as
equivalent to ‘has part’ some (‘increased
size’ and (‘inheres in’ some tongue)and
(‘has modifier’ some abnormal)), relying on
the entity tongue (from the UBERON anatomy ontol-
ogy [9]) and the quality increased size (from PATO)
in its definition. The class abnormality of salivation
(HP:0100755) is a physiological abnormality and is
defined as equivalent to ‘has part’ some (quality
and (‘inheres in’ some ‘saliva secretion’)
and (‘has modifier’ some abnormal)), where

saliva secretion is a class from the biological process
branch of the Gene Ontology (GO) [10].
The general pattern for defining a phenotype class in

both the HP and MP ontologies, given Entity E and Qual-
ity Q, is to declare them equivalent to ‘has part’
some (Q and ‘inheres in’ some E). In some
cases, the Entity E is further constrained, e.g., by a loca-
tion in which a certain process may happen. The “E”
classes are generally taken either from the UBERON
cross-species anatomy ontology [9] or from the GO. As
the use of anatomy and physiology ontologies (UBERON
and GO) is shared between MP and HP, it is possible to
integrate both ontologies directly, based on the axiom pat-
terns used to constrain their classes. However, the type of
axiom pattern used in both ontologies results in a clas-
sification that is primarily based on the PATO ontology,
as the Quality Q is the main feature that distinguishes
different classes.
In the PhenomeNET ontology, we rewrite all axioms in

HP andMP using a pattern-based approach that allows us
to utilize axioms from anatomy and physiology ontologies
and enrich the classification of phenotype classes [11, 27].
In general, we declare phenotype classes defined using an
Entity E and Quality Q as equivalent to ‘has part’
some (E and has-quality some Q) and we fur-
ther add grouping classes that are defined as equivalent
to ‘has part’ some ((‘part of’ some E)and
has-quality some Quality). For example, based
on the axiom that defines macroglossia (HP:0000158)
as equivalent to ‘has part’ some (‘increased
size’ and (‘inheres in’ some tongue) and
(‘has modifier’ some abnormal)), we gener-
ate two new axioms: macroglossia Equivalent
To: ‘has part’ some (tongue and has-quality
some ‘increased size’) as well as ‘tongue
abnormality’ EquivalentTo: ‘has part’some
((‘part of’ some tongue) and has-quality
some Quality). These two axioms, together with the
transitivity and reflexivity of the part of’ relation,
ensure that macroglossia becomes a subclass of tongue
abnormality, and that all phenotypes affecting the tongue
or a part of the tongue also become a subclass of tongue
abnormality. The aim of rewriting the axioms is to
base the classification of phenotype classes primarily on
anatomical or physiological entities instead of the quality,
and to utilize the axioms involving parthood in anatomy
and physiology ontologies [11, 28]. Crucially, all axioms
we generate fall in the OWL 2 EL profile [29, 30] and allow
efficient automated reasoning using optimized OWL 2 EL
reasoners such as ELK [31]. The first version of the Phe-
nomeNET ontology (PhenomeNET-Plain) consists only of
these axioms and no additional mappings.
In addition to this knowledge-based approach to linking

the HP and MP ontologies, we also add lexical mappings,

http://github.com/bio-ontology-research-group/OAEI2016
http://github.com/bio-ontology-research-group/OAEI2016
https://github.com/bio-ontology-research-group/phenomeblast/tree/master/fixphenotypes
https://github.com/bio-ontology-research-group/phenomeblast/tree/master/fixphenotypes
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mappings derived from cross-references in the ontologies
[5], mappings between HP and MP from BioPortal [22],
and mappings generated by the AgreementMaker Light
(AML) [14] in its default settings with a score greater than
0.7. Each mapping is added as a single equivalent classes
axiom to the PhenomeNET ontology (PhenomeNET-
Plain) to generate a version of the PhenomeNET ontology
with lexical mappings (PhenomeNET-Map).
Neither HP nor MP contain mappings to the DO or

ORDO ontologies, despite a significant overlap between
the four ontologies. Moreover, since neither DO nor
ORDO contain axioms that follow a similar pattern to
the axioms in HP and MP, we have to rely exclusively on
lexical mappings in order to integrate DO and ORDO.
To achieve this, we use the AML [14] in its default set-
tings to generate mappings between HP and DO, HP and
ORDO, MP and DO, MP and ORDO, and DO and ORDO
(see Table 1). We then add an equivalent class axiom for
each mapping AML identifies with a score greater than
0.7. The resulting ontology (PhenomeNET-Full) contains
HP, MP, ORDO, and DO, and can be used to generate
further mappings between these ontologies. Figure 1 pro-
vides an overview of the different data sources we used
to generate the mappings for the three PhenomeNET
ontologies.
All versions of the PhenomeNET ontology contain

the classes from the HP and MP ontologies as well as
the subclass axioms between named classes asserted in
these ontologies. Furthermore, the PhenomeNET ontol-
ogy imports the ChEBI [32] and Mouse Pathology [33]
ontologies using an OWL import statement. Additionally,
PhenomeNET includes all classes from the UBERON, the
GO, the BioSpatial Ontology [34], the Zebrafish Anatomy
ontology [35], the PATO ontology [4], the Cell Ontol-
ogy [36], and the Neuro-Behavior Ontology [37]. How-
ever, these ontologies are not directly imported but rather
pre-processed so that all disjointness axioms from these
ontologies are excluded while all other axioms contained

within them are included in the PhenomeNET ontology.
The aim of this pre-processing step is to avoid unsatisfi-
able classes due to different conceptualizations between
anatomy and phenotype ontologies, or within anatomy
ontologies (Zebrafish Anatomy and UBERON) [3].
Mappings between ontologies included in Phe-

nomeNET are generated using the ELK reasoner [31].
We use ELK to classify the PhenomeNET ontology
and identify pairs of equivalent classes C1 and C2 that
belong to the ontologies to be aligned. These constitute
equivalent class mappings. Furthermore, we also use
ELK to identify pairs of classes C1 and C2 such that C1
is a proper sub- or super-class of C2 to generate sub-
and super-class mappings. A reasoner such as ELK is
also required to explore and visualize the PhenomeNET
ontology structures, and the PhenomeNET-Map ontology
can be explored and visualized in the AberOWL ontology
repository [38].

Evaluation of mappings: HP andMP
We employ the PhenomeNET ontology primarily for inte-
grating the HP and MP ontologies. Using the axioms in
the ontology alone (PhenomeNET-Plain), we identify 745
equivalent classes between the HP and MP ontologies
(see Table 2). Additionally, a large number of sub- and
super-class mappings can be identified based on query-
ing the ontology using the ELK reasoner [31] for sub- or
super-classes in the two ontologies.
The number of pairs of equivalent classes identified

increases to 1536 when adding explicit mappings derived
from AML. Of these, 370 are generated by automated rea-
soning and are also included in AML, 791 are generated
from the AML-derived equivalent classes axioms, and
375 could only be derived through the automated rea-
soning. For example, using the PhenomeNET ontology,
we infer an equivalence class mapping between Copper
accumulation in brain HP:0012676) and Increased
brain copper level (MP:0011214) based on their

Table 1 Number of classes, axioms and mappings in the PhenomeNET and AML ontologies

System Ontology Number of classes Number of axioms Mappings added

PhenomeNet-Plain HP-MP 219,423 1,399,411 0

PhenomeNet-Map HP-MP+mappings 219,423 1,400,570 1,160(AML), 639(BioPortal)

PhenomeNet-Full HP-MP+DO-ORDO 241,817 1,631,543 1,489(AML), 1,018(BioPortal)

HP-MP: 1,160 (AML),

639(BioPortal);

DO-MP: 423 (AML);

DO-HP: 1,074 (AML);

ORDO-MP: 151 (AML);

ORDO-HP: 531 (AML);

AML HP-MP mappings 32,509 229,337 1,160(AML)
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Fig. 1 An overview of the data sources and strategies used to generate the PhenomeNET ontologies. On one side, we use mappings between HP,
MP, DO, and ORDO, generated using the AML ontology matching system; on the other side, we use the axioms used to define classes in HP and MP
together with the background knowledge in other ontologies to generate mappings formally. Using the ELK reasoner, we generate a hierarchical
ontology structure (i.e., a taxonomy) from which we derive equivalent class, sub-class, and super-class mappings. The PhenomeNET-Full ontology is
based on a combination of all these mapping approaches, while PhenomeNET-Map uses only the AML-generated mappings between HP and MP.
PhenomeNET-Plain does not use any of the AML-generated mappings but solely relies on the axioms and background knowledge

shared definition ‘has part’ some (‘increased
amount’ and (‘inheres in’ some (‘copper
atom’ and (‘part of’ some brain))) and
(‘has modifier’ some abnormal)). Such map-
pings are not easily identified by methods that do not
consider the axioms constraining the ontology classes.
Additionally, we observe an increase in the number

of equivalent class mappings when adding the ORDO
and DO ontologies to the PhenomeNET ontology. The
increase in mappings (from 1536 to 1582 classes) is a

result of additional inferences obtained from adding the
mappings from HP and MP to ORDO and DO, and
combining them with the axioms in the PhenomeNET
ontology. For example, we infer a new mapping between
decreased IgG level (MP:0001805) and agammaglob-
ulinemia (HP:0004432) based on the equivalence
axioms between both classes and agammaglobulinemia
(DOID:2583) generated by AML (based on the asserted
synonym “hypogammaglobulinemia” shared between the
classes in DO and MP). Table 2 summarizes our results.

Table 2 Equivalent and sub-equivalent classes identified. Numbers in parentheses represent inferred (subclass) mappings

System Ontology HP-MP (≡) HP-MP (�) DO-ORDO (≡) DO-ORDO (�)

PhenomeNET-Plain HP-MP 745 2707 (96,278) 0 0

PhenomeNET-Map HP-MP+mappings 1536 3999 (107,268) 0 0

PhenomeNET-Full HP-MP+DO-ORDO 1582 4144 (112,366) 1527 4576 (16,838)
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Evaluation of mappings: ORDO and DO
PhenomeNET is primarily designed for ontologies that
follow the Entity-Quality definition pattern based on the
PATO ontology. Neither ORDO nor DO follow this pat-
tern, and ORDO and DO are primarily included in the
PhenomeNET ontology through equivalent class axioms
based on lexical mappings generated by AML. Notably,
the mappings we generate are increased by including HP
and MP. For example, we identify a mapping between
mandibulofacial dysostosis (ORPHANET:155899) and
Treacher Collins syndrome (DOID:2908), based on com-
mon AML-generated mappings tomandibulofacial dysos-
tosis (HP:0005321).

OAEI evaluation
PhenomeNET participated in the Ontology Alignment
Evaluation Initiative (OAEI) 2016 challenge where several
ontology alignment systems where evaluated according to
the following criteria:

• precision and recall with respect to a silver standard
generated by voting (using either two or three votes)
the outputs of the participating systems,

• recall with respect to manually generated mappings,
• and a manual assessment of the mappings that were

unique to a particular system.

In the first dataset, a silver standard reference alignment
was generated from the systems participating in the OAEI
challenge, using a vote of two of the participating sys-
tems. PhenomeNET-Full reached an F-measure of 0.829
in the HP-MP task and 0.886 in the DO-ORDO task.
The LogMap system [39] achieved the highest F-measure
in this evaluation of 0.925 for the HP-MP task, and the
FCA_Map system [40] achieved the an F-measure of 0.962
in the DO-ORDO task. Results are similar when evaluat-
ing with a silver standard reference alignment generated
by three votes of systems participating in the challenge.
In particular in the DO-ORDO evaluation, PhenomeNET-
Full achieved the second-highest F-score of 0.935,
while the LogMap system [39] achieved an F-measure
of 0.937.
When evaluating against manually created mappings,

PhenomeNET-Full achieved the highest recall of 0.897
in the HP-MP task but could not generate any of the
manually created mappings between DO and ORDO. Fur-
thermore, when evaluating mappings that were uniquely
identified by individual systems, 89 mappings between
HP and MP as well as 3 mappings between ORDO and
DO were generated only by the PhenomeNET ontologies
and no other participating system. These were manually
assessed, and PhenomeNET obtained a precision of 1.0
both for the 89 unique mappings generated between HP
and MP as well as for the 3 mappings generated between

DO and ORDO. We provide full evaluation for the OAEI
as Additional file 1; results are also available at http://oaei.
ontologymatching.org/2016/results/phenotype/.
As PhenomeNET relies on generating a taxonomic

structure in which classes fromHP andMP are combined,
PhenomeNET also generated a large number of subclass
and superclass mappings. While these were not explicitly
evaluated, PhenomeNET was the only system explicitly
focusing on these kind of mappings, while other partici-
pating systems primarily focused on identifying mappings
represented class equivalence.

Predicting gene–disease associations
To determine the impact of the different mapping
approaches in biomedical data analysis, we also apply the
three ontologies in the task for which PhenomeNET was
originally designed, predicting gene–disease associations
based on semantic similarity between mouse model phe-
notypes and human phenotypes [3, 5]. For this purpose,
we use the PhenomeNET ontology as an integrated ver-
sion of both HP andMP so that semantic similarity can be
computed simultaneously over both ontologies. Seman-
tic similarity establishes a measure of relatedness between
classes, or sets of classes, within an ontology (or, in some
cases, between classes from multiple ontologies) [25].
To evaluate the success of the three ontologies in dis-

ease gene prioritization, we obtain mouse model pheno-
types associated with loss-of-function mutations in single
genes from the MGI database [23] as well as human dis-
ease phenotypes associated with Mendelian diseases from
the HPO database [12], and apply a semantic similar-
ity measure [24, 41] to compare the phenotypic similar-
ity between phenotypes associated with mouse mutants
and human disease. We systematically compute phe-
notypic similarity between 9131 loss-of-function mouse
mutants and 7066 diseases. We perform this experiment
three times, once for each version of the PhenomeNET
ontology (PhenomeNET-Plain, PhenomeNET-Map, and
PhenomeNET-Full). Additionally, to determine the effect
of PhenomeNET’s knowledge-based approach, we also
generate an integrated ontology based only on an align-
ment between HP and MP generated by AML.
We test how well this approach recovers known gene–

disease associations. We use two sets for this evaluation:
human gene–disease associations observed in a clinical
context and presented in the Online Mendelian Inheri-
tance in Man (OMIM) database [42], and mutant mice
identified by curators as models of a human disease rep-
resented in the MGI database [23]. The receiver operating
characteristic (ROC) curves [43] for this evaluation are
shown in Fig. 2. We find that the PhenomeNET-Map ver-
sion, which focuses specifically on generating mappings
betweenMP and HP, performs best among our ontologies
in this evaluation (AUROC 0.794 for human gene–disease

http://oaei.ontologymatching.org/2016/results/phenotype/
http://oaei.ontologymatching.org/2016/results/phenotype/
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Fig. 2 ROC curves for predicting gene–disease associations using the three different ontologies

associations and 0.930 for mouse associations), followed
by PhenomeNET-Full (AUROC 0.791 for human 0.929
for mouse gene–disease associations) and PhenomeNET-
Plain (AUROC 0.790 and 0.920 for human and mouse,
respectively). An ontology generated only by mappings
from AML, however, performs better than any of the
PhenomeNET ontologies despite producing a fewer num-
ber of mappings. Using an ontology based only on the
AML-derived mappings we achieve a AUROC of 0.795
and 0.934 for the human and mouse evaluation sets,
respectively. However, none of the differences between
the ontologies is statistically significant (p > 0.05 for
all 12 comparisons, Wilcoxon rank sum test, Bonferroni
correction).

Discussion
Related work
A large number of ontology matching and alignment
systems have been developed [44]. Several of these
approaches have been applied to the same ontologies
we use here. Most ontology matching systems combine
methods based on lexical matching of class labels and
synonyms, structural matches based on graph represen-
tations of ontologies, and background knowledge coming
from a variety of sources. We make use of the AML
system [14] since AML is one of the leading ontology
alignment systems. AML implements a modular ontol-
ogy matching framework based on lexical and structural
matching methods. AML can further make use of exter-
nal resources such as DO, UBERON,MeSH andWordnet,

which provide background knowledge to improve the gen-
eration of mappings, and AML further provides methods
for identifying and repairing incoherent matches between
two ontologies. Similarly, LogMap [39] utilizes multi-
ple sources of background knowledge, including related
ontologies from BioPortal, and utilizes lexical match-
ing together with background knowledge to generate
alignments. LogMap further uses a reasoner to identify
and repair inconsistent or incoherent mappings. Similar
ontology mapping systems include XMap [45] and the
cross-lingual ontology matching system LYAM++ [46].
A distinct approach is FCA-Map [40], based on Formal
Concept Analysis (FCA) [47], which constructs formal
contexts of classes from its properties and relations, gen-
erates lattice structures andmatches these concept lattices
at a lexical and structural level.
One of the key features of the PhenomeNET system

is its ability to identify subclass mapping in additional
to equivalent class mappings. While PhenomeNET uses
a reasoner for this purpose and relies on axioms that
have specifically been developed for phenotype ontolo-
gies [4], alternative approaches can also identify sub-
class mappings based on matching sub-structures in
ontology hierarchies or based on supervised machine
learning [48, 49].
Due to the importance of integrating species-specific

phenotype ontologies for biomedical research [50], sev-
eral methods have been developed that specifically focus
on the integration of phenotype ontologies. For example,
PhenoHM [51] uses the UnifiedMedical Language System
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(UMLS) MetaMap service [52] to map classes from MP
to UMLS concepts describing disorders and phenotypes.
The Uberpheno ontology [53] as well as the Monarch
knowledge graph [54] use a combination of lexical map-
pings and ontology axioms to generate mappings between
MP and HPO. The main difference to our work lies in the
representation patterns that are used to represent pheno-
type classes and the way in which lexical mappings are
generated.
An alternative approach to finding relations between

biomedical ontologies is to identify mappings between
classes from different ontologies not based on the seman-
tics of a class itself but rather based on shared annotations
of the classes. For example, orthologous gene annota-
tions can be used to identify orthologous phenotypes and
thereby establish orthology relations between phenotypes.
This approach has been used previously to identify yeast
models formammalian vasculature formation [55], a strik-
ing discovery since yeast has no blood vessels. To the best
of our knowledge, these approaches have not yet been
combined with mappings based entirely on the seman-
tics of ontology classes and may provide a complementary
source for future work on creating ontology mappings.

Knowledge-based, structural, and lexical mappings
PhenomeNET is one of very few systems that are pri-
marily based on automated reasoning to generate map-
pings and does not rely on identifying similarity between
class labels, synonyms, or other associated meta-data.
PhenomeNET is a system intended to match pheno-
types and as such, it is not a framework that can be
applied to match ontologies in general. The axiom-based
approach in PhenomeNET can be applied to any ontolo-
gies that utilize PATO and the Entity-Quality definition
patterns [4, 11]. In particular, PhenomeNET can not only
be used to integrate MP and HPO, but also has been
used to further integrate yeast, fly, worm, slime mold,
and fish phenotypes [3, 56]. Furthermore, the combina-
tion of semantic matching (using automated reasoning)
and lexical matching in PhenomeNET mitigates some of
the limitations of using lexical approaches alone, and we
demonstrate this by inferring severa; mappings between
HP and MP that cannot be inferred by other ontology
matching systems.
However, relying on manually-created axioms also has

several limitations. In particular, the axioms are created
by domain experts, and only about half the classes in
MP and HP are constrained by an Entity-Quality based
axiom. Furthermore, the quality of the axioms is diffi-
cult to assess, and there are distinct differences between
HP and MP in how the classes are constrained. A pos-
sible solution to these challenges could be to generate
phenotype ontologies fully automatically using anatomy
and physiology ontologies as templates and applying the

axiom patterns we use in the PhenomeNET [57] or that
are used elsewhere [26].
Another limitation of PhenomeNET is the reliance

on OWL 2 EL which limits the expressivity of axiom
patterns. The choice is mainly due to the size of the
PhenomeNET ontology and the complexity of reason-
ing. However, more complex axiom patterns would enable
more comprehensive classification of phenotypes involv-
ing absences and abnormalities [27]; experiments with an
updated ontology will likely require improvement in OWL
reasoning technologies.
Relying on automated reasoning over integrated phe-

notype ontologies can result in incoherencies due to dif-
ferent conceptualizations in the integrated ontologies. We
avoid the incoherencies by removing disjointness axioms
when including ontologies in PhenomeNET; however, this
approach does not remove but only hide the underlying
problems. Generic ontology matching systems have faced
similar issues for a long time, and several methods have
been proposed to automatically repair incoherent ontol-
ogy mappings [58–60]. However, aligning incompatible
conceptualizations across multiple ontologies is not triv-
ial and automated methods still have limitations [61] that
may require human intervention. In the future, we plan to
investigate whether these methods can be applied to auto-
matically repair some of the incoherencies we identified.
Finally, one limitation of most mapping approaches is

their failure to consider subtle differences in ontologi-
cal categories that may be obvious to ontology devel-
opers and users but are not always reflected in the
labels. This issue is particularly prevalent in the domains
of phenotypes and diseases where the same label may
be used to specify different ontological categories. A
phenotype such as ‘agammaglobulinemia’ is an observa-
tional phenomenon related to levels of gamma-globulin
in blood, while the disease ‘agammaglobulinemia’ is a
more complex entity that may involve a particular eti-
ology and several signs and symptoms (of which the
phenotype ‘agammaglobulinemia’ may be one). Inspec-
tion of the written definition of ‘agammaglubulinemia’
(HP:0004432) in HPO indicates that the class refers to a
deficiency or absence of immunoglobulins in serum.How-
ever, the DO defines a class with this label as an immun-
odeficiency syndrome that includes agammaglobulinemia
as part of its phenotype, and ORDO similarly implies
that this is a disease but only because of its position
as a child of ‘Immunodeficiency predominantly affecting
antibody production’ (as there is no textual or formal defi-
nition of the class in ORDO). In MedGen (UID:168), the
UMLS code C0001768 references both to HP:0004432
and Orphanet (ORPHANET:183669), but classifies both
under ‘Disease or Syndrome’.
There are similar issues with, for example, hypogly-

caemia which occurs in DO as a child of glucose
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metabolism disease (DOID:9993), therefore as a
disease, and in HPO (HP:0001943) as a phenotype
defined as ‘A decreased concentration of glucose in the
blood’. HPO cross-references the UMLS (C0020615)
which uses this concept in the phenomenological sense
yet again classifies it under ‘Disease or Syndrome’. The
ambiguity of whether two classes are equivalent, even if
they use the same label, is therefore deeply embedded in
the ontologies, their structure and general domain, and
there is no clear way to disambiguate these types of classes
without manual expert inspection or, indirectly, by their
different uses for annotation and analysis of data [62]. The
semantic ambiguity reflected in these examples is partly
a consequence of clinical usage of language where differ-
ent entities (such as a disease and phenotype) are referred
to by the same name. Resolving these issues is a problem
that can likely only be addressed through expert curation
across a very wide range of ontologies. The impact of these
issues is likely not severe for human ontology users, but it
remains a problem for any semantic approach to knowl-
edge capture, analysis, and integration, and not least in the
area of ontology matching.

Conclusions
We have developed an ontology matching system for
disease and phenotype ontologies. We generated three
different version of the PhenomeNet ontology, each
with different information and ontologies included.
PhenomeNET is primarily based on deductive infer-
ence and automated reasoning, and while it can utilize
lexically-derived mappings in the ontology generation
process, it does not on its own include any lexical match-
ing algorithms. Our results demonstrate that a combi-
nation of lexical and semantic approaches may improve
upon mappings between ontologies generated using only
one of these methods.
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