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Effects of compressive residual stress on short fatigue crack growth in  

a nickel-based superalloy 
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Abstract  

 The effects of compressive residual stress on short fatigue crack growth in Inconel 718 have 

been investigated. Using two different indentation procedures, controlled plane-strain compressive 

residual stress fields were applied to short through-thickness cracks, which had been generated by 

machining away wakes of long cracks that had been grown down to threshold levels at a stress ratio of 

0.1. Short fatigue crack growth tests were conducted at stress ratios of 0.1 and 0.7. At a stress ratio of 

0.1, the residual stress-free testpieces demonstrated typical short fatigue crack growth behaviour, 

indicated by a reduction of threshold value and increases in fatigue crack growth rates compared to 

those of long fatigue cracks. A significant decrease in short crack growth rates was observed within 

the compressive residual stress region of indented testpieces, together with an increase of threshold 

values. At a high stress ratio of 0.7, any similar decrease in rate is barely observable. This indicates 

that the effects of compressive residual stress on short fatigue crack growth are monotonic in sign and 

could perhaps be simulated by a crack closure approach similar to that applied for long fatigue cracks. 

However the superposition principle which incorporates the compressive residual stress as a negative 

stress intensity factor, despite many successful applications to long fatigue cracks, is found to be 

inappropriate here. Hence one should be cautious when extending such a methodology to short fatigue 

cracks as it may result in optimistic life estimations. 
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1. Introduction 

Residual stress can be generated unintentionally in engineering components by manufacturing 

and fabrication processes such as forging, rolling, machining or welding. There are also surface 

mechanical processes such as shot peening which are intentionally applied to introduce beneficial 

compressive residual stresses into the surface layers of components. Shot peening has been 

extensively used in some critical components such as aero-engine rotor discs. The beneficial effects of 

shot peening in prolonging fatigue life and increasing fatigue strength have long been recognised [1]. 

Due to the high magnitude of compressive residual stress produced in the surface layer, crack 

initiation from the surface of the component is impeded. It is possible for cracks to be initiated 

internally: these are more weakly affected by the surface residual stress. Another possibility is that 

small cracks initiate from the surface due to the increased roughness induced by shot peening and 

grow within the compressive layer, but at rates reduced by the presence of residual stress. Depending 

on the applied stress range and geometry, they may even arrest. Early small crack growth behaviour in 

the presence of a residual stress field is not fully understood, although a considerable amount of work 

has been dedicated both to the “small crack growth effect” (without residual stress) and to the effect 

of residual stress on long fatigue crack growth. Such early small crack growth behaviour may 

contribute to the majority of the total fatigue life and hence it can be of great importance to structural 

analysis and lifing of components [2]. 

The work to study the influence of residual stress on fatigue crack growth has been mainly 

conducted for long fatigue cracks in long-range, low-magnitude residual stress fields. A superposition 

principle is often adopted. In such an approach, the influence of residual stress is converted to a stress 

intensity factor (SIF), Kr, and added on to the stress intensity factor result from the applied loading, K, 

to yield an “effective stress intensity factor”, K and an “effective stress ratio”, R [3] 
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    KKKKKKKK rr  minmaxminmax                           (2) 

where Kmax, Kmin and Kr denote the values of SIF at the maximum applied load, the minimum applied 

load and that due to residual stress respectively. The growth rates are then interpreted using the crack 

growth laws generated with conventional laboratory testpieces free of residual stress [4] 
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where C and m are constants, and Kc is the critical K value of fracture. The role of residual stress is 

thus not to change the SIF range but to add to the mean stress and to alter the effective stress ratio. 

Compressive residual stress reduces the effective R ratio and hence may decrease the fatigue crack 

growth rate. 

 Another method is to use the “effective stress intensity factor range” concept first proposed 

by Elber [5]. This concept considers that crack closure occurs during part of the dynamic load range. 

If the effective stress intensity factor range is taken to represent the opening portion of SIF range, i.e. 

opeff KKK  max                                                            (4) 

where Kop is the measured crack opening stress intensity factor, then fatigue crack growth can be 

described by the equation, 

 meffKC
dN

da
                                                               (5) 

which is now independent of stress ratio and crack size. In this approach, the effects of a residual 

stress field are incorporated by a change in the crack opening stress intensity factor. The approach is 

attractive as (5) can be determined easily by conducting fatigue crack growth tests at high stress-ratio 

on stress-free samples, and crack-opening response can be measured experimentally. Indeed such 

research has attracted intensive experimental and numerical assessments without residual stress, 

effects of crack growth regime, R ratio and crack size have all been studied. Effects of residual stress 

on crack closure is less well studied but it is generally understood that tensile residual stress reduces 
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the amount of crack closure (increasing Keff) and compressive residual stress has the opposite effect. 

A simple treatment of this approach is to assume that cracks open at a zero SIF under the combined 

influence of applied and residual stress. For (Kmin + Kr) > 0 

    KKKKKKKK rreff  minmaxminmax                             (6)     

and now influence of residual stress on fatigue crack growth is minimal or absent. Whereas for (Kmin + 

Kr) < 0 (usually for the cases of compressive residual stresses) 

  rreff KKKKKK  maxmaxmax 00                                   (7) 

The influence of residual stress now can be represented with “Kr”. Indeed this has been confirmed to 

be the case for long fatigue cracks growing through a compressive residual stress field introduced by 

indentation [6]. 

 It seems that  quantifying the influence of residual stress can be dealt with largely by 

calculation of  SIF generated by the residual stress field. The most convenient way to make such a 

calculation employs a weight function [7], which requires only the knowledge of the original crack-

free residual stress distribution. Such approaches have been adopted extensively and are found to 

provide a reasonable estimation for long fatigue crack growth in a long range existing residual stress 

field of low magnitude which does not change sign. Despite the simplicity of the superposition 

methodology, it has been suggested for example, by Knott [8] that its applicability needs to be 

checked experimentally. There are complications which may invalidate such an approach.  such as 

partial closure (crack surfaces closing at some distance behind the tip). Partial closure can occur 

typically for a crack immersed in a stress field where the sign changes, with the tip located in the 

tensile zone [9]. It is anticipated that such effects could be much more significant for the case of short 

fatigue crack growth within residual stress fields of high magnitude and large gradient, and it is not 

clear whether the methodology can be extended to short fatigue cracks. Here, the SIFs due to residual 

stress are of similar magnitude to those resulting from the applied stress, but change rapidly over short 

distances, and could possibly induce transient closure. 

Only a few work have been reported relating to such subject. Lacarac et al. [10] studied fatigue crack 

growth from cold expanded holes in aluminium plates where a decrease in fatigue crack growth rates 
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in cold-expanded specimens was confirmed to be associated with increased stress required for crack 

opening due to the presence of compressive residual stress, compared to a similar hole not subjected 

to cold-expansion. However, the residual stress distributions and resultant SIFs were not provided. By 

using a 3D weight function method, Gao and Wu [11] calculated the SIFs for a shot peening residual 

stress distribution acting on small cracks located at the root of a notch surface. When added to the 

SIFs of the applied stress, again calculated using a weight function, normal small crack growth 

behaviour was observed. Their study supports the extension of the superposition principle into the 

small crack growth regime and suggests solving the SIFs of residual stress is the key for predicting 

fatigue crack growth rates of small cracks within shot peened residual stress field. However it is 

important that more evidence needs to be gathered from different materials and residual stress 

profiles.  

 In the current study, we have devised a simplified system, in which compressive residual stress 

fields are induced by indentation procedures in which the depth of compressive residual stress layer 

can be controlled by the indenting load. In addition a simplified through-thickness short fatigue crack 

(2D) geometry has been adopted, to enable SIFs for both applied stress and residual stress field to be 

calculated with precision. The aims of this study are to provide fundamental understanding of the 

effect of a residual stress distribution on short crack growth behaviour and to assess the applicability 

of conventional superposition methodology to short crack growth.  

2. Material and experimental procedure 

The material used in this study is wrought Inconel 718, a widely used nickel-based superalloy. 

The nominal chemical composition in wt% for the alloy is given in Table 1. Specimens were extracted 

with their longitudinal direction along the radial direction from a disc forging supplied by Rolls-

Royce plc. The material had received a heat-treatment procedure of solution heat treating at 1050C 

for 1 hour, followed by air-cooling to 720C, ageing for 8 hours, furnace cooling (1C /min) to 620C, 

ageing for 8 hours and finally air-cooling to room temperature. This heat treatment resulted in a 

coarse-grained structure with most of the grains in the size range 40-60 m although large grains up 
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to 90 m were occasionally observed. Room temperature tensile properties of the material 

investigated are given in Table 2. The stress-strain relationship measured was adopted for simulations 

of the residual stress fields generated by two indentation procedures using finite element (FE) 

modelling. 

Fatigue crack propagation and threshold tests were carried out at room temperature using 

Single Edge Notch Bending (SENB) specimens of dimensions 20 (W) 15 (B) 100 (L) mm
3
 

containing a notch of depth 2 mm. A computer-controlled Amsler Vibrophore was utilised to achieve 

automatic load reduction with the extension of the fatigue crack, while running at a frequency of 

approximately 80 Hz. The tests were performed at load ratios, R (R = Pmin/Pmax, where Pmin and Pmax 

are the minimum and maximum load applied over the fatigue cycle respectively), of 0.1 and 0.7 

respectively. A constant-R and decreasing-K procedure [12] was followed until a growth rate, da/dN, 

of 210
-8

 mm/cycle was achieved. The closure stress intensity, Kcl, was approximated as the point of 

first deviation from linearity in the elastic compliance curve upon unloading [13]. An effective stress 

intensity range at threshold was estimated as (Kth)eff = Kmax-Kcl. 

 Short through-thickness crack specimens were obtained by machining away the wake of long 

crack specimens, in which the cracks had propagated to the threshold at a stress ratio of 0.1, as shown 

schematically in Fig. 1. The depth of the short cracks was controlled to between 0.2 and 0.5 mm. Both 

sides of the specimens were also machined away and the thickness of the specimens was reduced to 

10.0 mm, in order to obtain a straight crack front. These specimens were then stress relieved for 2 hrs 

at 700C in a vacuum furnace to minimise any residual stress possibly caused by prior loading history 

and machining. Different preparation procedures were subsequently applied in order to prepare the 

samples with different stress fields. One set of samples were indented twice on the top surface with a 

spacing of 4 mm using a carbide cylinder of 8 mm diameter. The indentations are parallel to and have 

an equal distance from the crack. These specimens are denoted here by the term “2-indents”. An 

indentation load of 20 kN was selected to give an appropriate magnitude and size of residual stress 

field. The 4 mm spacing was selected because this is larger than the lateral extent of the plastic zone 

produced by the indentation. Hence residual stress is generated without strain hardening along the 
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crack plane. A second set of samples were indented once only on the top of the crack using the same 

indenter and load, as illustrated in (Fig.1b). These specimens are denoted here by the term “1-indent”. 

In this case, both residual stress and pre-strain were introduced along the crack plane. A third set of 

specimens was left as stress-relieved which provides a baseline of short crack growth rates. They are 

denoted here by the term “0-indent”. An ABAQUS package was used for the associated FE 

modelling.  

Short fatigue crack growth tests were performed at room temperature for such “0-indent”, “1-

indent” and “2-indents” specimens under constant amplitude loading in a four-point-bending 

configuration using an Instron 1273 servo-hydraulic test machine with load capacity of 10 kN. R 

ratios of 0.1 and 0.7, a frequency of 10 Hz and a sinusoidal waveform were used. During the test, the 

crack opening levels at different crack lengths, in all three sets of specimens were measured using the 

back-face strain compliance method as described previously [14].  

Crack lengths were monitored by a d.c.p.d. (direct current potential drop) technique using in-

house experimental calibrations and verified individually against the measurements of initial and final 

crack length. Note that the SIFs of all tests were calculated using the equations given by Tada et al 

[15] which applies to all values of a/W for four-point bending specimens. 

Following the fatigue crack growth tests, the fracture surfaces that corresponded to short 

crack growth, and the near-threshold, Paris and high K regimes of the long fatigue crack growth 

were examined using an Hitachi S-4000 FEG-SEM operating in secondary electron mode with 0° tilt. 

3. Results and discussion 

3.1 Fatigue crack growth and threshold of long cracks 

Fatigue crack growth rates, da/dN, versus nominal stress intensity factor range, K, obtained 

for long cracks are shown in Fig.2.  Both curves (R=0.1 and 0.7) show regimes of near-threshold and 

stable crack growth. As expected, the long crack growth rates for a stress ratio of 0.7 are much higher 

than those for a stress ratio of 0.1 at a given SIF range value, K. The threshold SIF ranges were 

measured as 10.2 and 5.8 MPam at R=0.1 and R=0.7, respectively. The data are in good agreement 
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with the results obtained from other studies of similar alloys [16]. The macroscopic fracture surfaces 

for these two R ratios are shown in Fig. 3. 

The observed effect of load ratio on near threshold fatigue crack growth is commonly 

attributed to the role of crack closure. In addition to any plasticity induced crack closure, a significant 

contribution also comes from roughness-induced closure. The fracture surface in the near threshold 

region features large, angular crystallographic facets, and is significantly rougher than the smooth 

transgranular morphology in the Paris region. The fracture surface appearance is dictated by  

underlying deformation mechanisms. Comparisons of fracture surface morphology are given in Fig. 4 

for both R ratios and suggest a less pronounced tendency for crystallographic growth at a R ratio of 

0.7. The crack opening stress intensity factor, Kcl, was measured to be approximately 4.3MPam at 

R=0.1, from which it is deduced that the crack was closed for 42% of the total SIF range at threshold. 

It is desirable from a lifing point of view to derive an intrinsic fatigue crack growth resistance curve 

which is free of the effect of crack closure. Such intrinsic data are attempted in this study with the 

application of a high stress ratio of 0.7. Indeed no detectable closure (from back-face strain gauges) 

was observed even at threshold. The threshold value obtained (10.2 - 4.3 = 5.9 MPam) is closely 

similar to the effective stress intensity factor range, (Kth)eff (after deducting the closure portion), at R 

ratio of 0.1 (5.9 MPam). This suggests strongly that the fatigue crack growth da/dN versus K curve 

obtained at a R ratio of 0.7 is representative of an intrinsic K versus da/dN relationship. 

3.2 Fatigue crack growth of short cracks 

 Fig. 5 shows short crack growth resistance curves for 0-indent specimens at stress ratios of 0.1 

and 0.7. The long crack growth data obtained for this material at both stress ratios are also shown for 

comparison. At a stress ratio of 0.1, "typical" short crack growth behaviour is observed for short 

cracks free of residual stresses. With an initial applied K value of 7 MPam which is lower than the 

threshold value of long cracks at this stress ratio (~10 MPam), the short crack initially grew from a 

growth rate indicated by the intrinsic (long-crack R = 0.7) da/dN versus K curve, and gradually 

deviated away and merged into the long crack growth curve (R=0.1) as the crack length and applied 

K increase. This implies the crack opening behaviour goes through a transient from “fully open” to a 
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steady-state which is similar to that obtained for long cracks. Such behaviour reflects an extrinsic 

effect in reducing the driving force at the local crack tip. Another test started with a larger initial K 

value of ~10 MPam (R=0.1) also demonstrated a similar transition from the intrinsic crack growth 

curve to the long crack growth curve, however the fatigue crack growth rates are now much faster in 

general. It is not surprising to find that the short crack growth at R=0.7 followed exactly the crack 

growth law of long cracks as the extrinsic contribution to fatigue crack growth resistance is absent in 

both cases. 

3.3 Effects of residual stress on short fatigue crack growth 

3.3.1 Residual stress distributions caused by indentation 

 Due to very low X-ray diffraction intensity from the major phase in Inconel 718, it was 

impossible to use conventional X-ray diffraction to measure subsurface residual stresses. However 

elastic-plastic FE modelling was performed using the ABAQUS finite element package, to obtain the 

size of the plastic zone and the residual stress distribution resulting from the two indentation 

procedures. Due to the symmetry of the contacts, only half of the structure needs to be modelled. Note 

here that strain and stress distributions were only considered using 2-Dimensional plane-strain 

analysis only. The FE model was validated by measurements of the displacement of the indenter after 

indentation.   

  Fig. 6 demonstrates FE predictions of plastic zones after applying a 20 kN load for both “2-

indents” and “1-indent” conditions. It can be seen that the plastic zone is approximately 2.5 mm in 

width and 2.1 mm in depth, and is fully contained by surrounding elastic material.  With a 4 mm 

spacing between two indentations, referred as “2-indents”, the mode I crack plane is still within an 

elastic zone between the two plastic zones. On the crack path of the “1-indent” case together with the 

residual stress field generated, pre-straining also occurs within the plastic zone along the crack path. 

Fig. 7 gives a comparison of the residual stress profiles (mode I direction normal to the crack plane) 

along the depth direction (crack growth direction) for both cases as calculated by FEM and as a result 

of the proximity of the plastic zone achieved by the indentation. The plot shows that the maximum 

compressive stress occurs at the surface of the specimens that had been subjected to two indentations 
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and has a magnitude of approximately -300 MPa. The depth of the compressive layer is 

approximately 1.5 mm. For the “1-indent” case, the maximum compressive stress occurs sub-surface 

and has a magnitude of -636 MPa. The depth of the compressive zone is approximately 2.1 mm. It is 

expected that such variation in residual stress fields, although different in magnitude and depth, 

provide simplified models for cases that could occur for a shot peened surface where coverage of the 

surface is incomplete. 

3.3.2  Short fatigue crack growth in 2-indents specimens 

 In Fig. 8, the short fatigue crack growth curves obtained for the indented specimens show 

different forms compared to those without indentation shown in Fig.5. At a stress ratio of 0.1, two 

tests were conducted with different initial K values. One test was started with an initial K of ~9 

MPam (“2-indents_1”). Under such an applied driving force the crack grew. However, crack growth 

rates were reduced, compared to the both “0-indent_1” (initial K = ~7 MPam) and “0-indent_2” 

(initial K = ~10 MPam) in Fig. 5. The slow growth region is found to correspond roughly to the 

depth of the compressive residual stress zone. When the crack length was longer than 1.5 mm (the 

point at which the residual stress is considered to become zero – see Fig. 7), crack growth rates 

accelerate and start to merge into crack growth rates for long fatigue cracks (R = 0.1).  Another 

indented specimen (“2-indents_2”) was started with a much reduced initial K of 6 MPam, which is 

close to the intrinsic threshold for this material. No crack extension was recorded after 510
5
 cycles. 

Then a load increasing procedure was applied until the crack started to propagate. Eventually at a K 

value of 9 MPam crack growth occurs. From both experiments and in comparison to results from “0-

indent” samples it can be concluded that a compressive residual stress can both reduce crack growth 

rates as well as to increase the “fatigue threshold” for short fatigue crack growth (from approximately 

6 to 9 MPam. 

 At a high stress ratio of 0.7, any such effects of compressive residual stresses on short crack 

growth rates were not observed. The crack growth curve is found to be consistent with those of “0-

indent” (short crack in the absence of residual stress), and long fatigue cracks (R=0.7). This implies 

that the intrinsic fatigue crack growth resistance relationship obtained from growing long fatigue 
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cracks applies also for short thorough thickness fatigue cracks. The effect of residual stress can thus 

be described as an extrinsic closure factor. Note that the short fatigue cracks studied here are two-

dimensional through-thickness cracks, in which the crack front covers a large number of grains 

(~150). This may not necessarily apply for the case of naturally self-initiated small surface cracks 

which tend to initiate at inclusion particles or voids, in regions of intense slip within large grains, or at 

weak interfaces. In these cases, metallurgical similitude will be expected to break down and local 

growth rates may no longer reflect an average taken over many grains.  

 From the results shown above, the propagation of short through-cracks in the presence of a 

compressive residual stress field can be summarised by the following points: (1) in the presence of 

compressive residual stress, short crack growth rates were reduced compared to those of the residual 

stress free specimens, at the same initial K value; (2) an additional driving force was needed to start 

short crack growth in a compressive residual stress field; (3) short crack growth tends to accelerate 

when the cracks grow out of the compressive residual stress zone; (4) the effects of a compressive 

residual stress field on short crack growth become less significant with increase of stress ratio. At a 

high stress ratio of 0.7, any beneficial effect of compressive residual stress is much reduced or absent. 

3.3.3 Short fatigue crack growth under a conjoint effect of residual stress field and pre-strain 

 According to FE modelling, one indentation on top of the crack produces a higher and deeper 

compressive residual stress than that in the case of two indentations, one on either side of the crack, 

under the same indentation force 20kN. In addition strain hardening is expected within the plastic 

deformation zone beneath the indent, which is approximately 2 mm in depth (Fig. 7). 

 Fig. 9 shows a comparison between a “1-indent” and a “2-indents” specimen with a similar 

initial short crack length. Under an initial K of ~9 MPam, “2-indents” grew, but an initial K of 10 

MPam had to be applied for the “1-indent” to grow. Even with the increased initial K, the crack 

growth rates within the compressive stress and plastic deformation field were very low (most of the 

values are less than 110
-6

 mm/cycle, and some of them are less than 510
-7

mm/cycle). After a crack 

length of 2 mm (the depth of compressive residual stress and plastic zone induced by indentation), the 

crack growth rates increased sharply. Clearly the fatigue crack growth resistance was significantly 
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increased in the “1-indent” condition, presumably due to deeper and larger compressive residual 

stress. It is difficult to judge whether pre-strain has contributed to the increased resistance. However, 

it is likely that residual stress is the primary factor. Indeed a negligible influence of pre-strain on near 

threshold fatigue crack growth is confirmed, for example, by Al-Rubaie et al for a 7475–T7351 

aluminum alloy [17].  

3.4 Effects of residual stress on crack closure 

 Early investigation of plasticity-induced crack closure by Elber [18] has led to a general 

acceptance of the concept that there is a unique, intrinsic fatigue crack growth law, but the applied 

mechanical driving force can be reduced through various mechanisms, which give rise to different 

fatigue crack growth phenomena, e.g. fatigue crack growth of short cracks, effect of overload and 

effects of residual stress. Although the original concept of crack closure relates to physical contact of 

crack faces behind of the crack tip during unloading from peak load before reaching minimum load, it 

has been extended to include other factors that shield and reduce the effectiveness of the external 

mechanical driving force [19]. As a result Kcl has become a broad term. Measurement of crack closure 

is relatively straightforward but accurate estimation is often difficult as it is highly sensitive to the 

method applied. Here, from the observed fatigue crack growth resistance curves, Kcl values can be 

estimated for short cracks assuming the same growth rates result from the same effective stress 

intensity factor range. Results are given in Fig. 10. The SIF values resulting from the compressive 

residual stress are also provided for comparison. Note that the Kr values are calculated using a weight 

function method [20]. 

 From Fig.10, it is found that the Kcl values of residual stress free short cracks (“0-indent”) 

increase from the Kmin values and gradually stabilise at a level of approximately 5-6 MPam with the 

advance of the cracks.  It is noted that these short cracks are obtained by machining away the wake of 

long cracks which had grown to the threshold under R ratio of 0.1, and therefore had the smallest 

possible plastic zone size. They were also further stress relieved at 700°C for 2 hrs to minimise the 

residual stress ahead of, and in the wake of, the crack tip. Thus, at the beginning of the crack 

extension, no crack closure is expected and is deduced. The gradual build-up and eventual stabilising 
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of Kcl is likely to be mainly plasticity- induced, perhaps being attributed more to “compressive 

residual stress” ahead of the crack tip, (induced by unloading followed by reloading and plastically 

deforming the crack tip region, rather than to actual contact in the crack wake – noting its limited 

length here of 0.2 – 0.5 mm. This transient crack closure behaviour is commonly observed and is 

believed to contribute to abnormal short crack growth behaviour. For the “2-indents” samples, Kcl 

values of approximately 4 MPam are present at the very beginning of crack propagation, presumably 

caused by the additional compressive residual stress (induced by indentation) acting both ahead of the 

crack tip and on the crack wake. The Kcl values increase more rapidly than those in “0-indent” 

specimens with an increase in crack length. After reaching a peak value of approximately 9-11 

MPam, the Kcl values reduce rapidly to those of “0-indent” specimens. This happens at a crack 

length corresponding roughly to the depth of the compressive residual stress layer. However, the Kcl 

values are always found to be below the magnitude of the absolute Kr values. Also, Kr seems to have 

no effect at all on Kcl when the cracks grow out of the compressive residual stress layer. 

 From the results shown above, it is evident that an additional "clamping force" is induced by 

the pre-existing compressive residual stress field. It may be inferred that both the residual stress along 

the plastic wake of the crack and in the plastic zone ahead of the crack contribute to the increase of Kcl 

values as contact of fracture surface can now be confirmed from the observation of a dark band on the 

fracture surface within the compressive residual stress layer (Fig. 11 ). A similar band is also observed 

at the near threshold area with the long crack growth specimens at a stress ratio of 0.1(Fig. 3a). These 

dark bands have been confirmed to be associated with formation of an oxide film due to contact and 

rubbing of the fracture surfaces, as demonstrated by SEM micrograph of the oxide film on top of the 

fracture surface (Fig.12) and qualitative EDX analysis. The Kcl values reduce to the level of that of the 

residual stress free specimens immediately after penetrating through the compressive residual stress 

layer, which suggests that the stress state ahead of the crack tip is important. Here it is deduced that 

closure in the crack wake alone cannot affect the effective driving force. Similar observations were 

also made by Kang et al [21] and other researchers [22], where they imply “partial crack opening” 

(the crack tip opens while the wake of the crack still remains in contact) occurs when fatigue cracks 
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grows through a transition region from residual compression to residual tension. The K value 

associated with opening at the crack tip, Kpart.op, is far below that at the crack wake, the conventional 

Kop. They found that growth behaviour is well explained by using Kpart.op rather than Kop, in a Keff 

approach. 

3.5 The applicability of Kr in evaluating short crack propagation in a compressive residual 

stress field 

 Typical approaches to take account of the influence of residual stress on fatigue crack growth 

always seem to involve the calculation of a stress intensity factor associated with a pre-existing 

residual stress field, Kr. This is then superimposed onto the stress intensity factor resulting from the 

applied load which could either be rationalised by an “effective stress ratio”, or different levels of  

crack closure. Using Kr and its superposition offers a simple approach which has found success 

especially for long fatigue crack growth and for a residual stress field distributed over a long distance 

[23] or through a compressive residual stress field [24]. However there are indeed complications. One 

particular situation noted here is when a crack is immersed in a stress field where the sign changes, 

and with the tip located in the tensile zone. The investigation of short fatigue crack growth within a 

short range compressive residual stress imposes challenges from both experiment and analysis points 

of view. On one hand the absolute Kr is comparable to, or even higher than, the external peak applied 

stress, and on the other hand the magnitude of residual stress changes sharply. Indeed Kr can be shown 

to fail to describe the observed crack growth behaviour in the current study by considering, for 

example the “2-indents” condition when the crack grew under an initial K of ~9 MPam (R=0.1) 

and the corresponding Kr value is ~10 MPam. Based on the superposition principle there is no tensile 

component within the full load range and crack growth should not occur. Further, when cracks grow 

out of the compressive residual stress field, no effect of Kr is found on fatigue crack growth rates here, 

whereas rather large negative values of Kr are still obtained from weight function calculations. 

Therefore it can be concluded that the influence of a compressive residual stress field would be 

overestimated using Kr and the superposition methodology. This is in accordance with the observation 

of Wilks [25] who demonstrated that the stress intensity factor of residual stress may be overestimated 
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when a sharp gradient exists in the residual stress field and partial crack opening occurs. A calculation 

using a dislocation density method instead of the traditional weight function method showed that the 

Kr value for such a case was close to zero. Kang [21] also found partial crack opening for long crack 

growth in the transition zone from residual compression to residual tension in a welding induced 

residual stress field. A Kr based analysis, where the Kr value was derived from weight function 

calculations, was also found to be unacceptable in his study also. In practice, the residual stresses due 

to shot peening and other mechanical surface treatments have both very high magnitude and sharp 

gradients. Partial opening of a crack may occur. In addition, due to the high amplitude of the residual 

stress, relaxation of residual stress may happen due to the service loading even before a crack starts, 

and such changes need to be accounted for in the analysis. 

 The crack closure approach is certainly of merit here. The quantification of residual stress on 

crack closure, Kcl, however, is complicated and cannot be estimated by an effective stress ratio. 

Further investigations both through numerical analyses and experiments are necessary. 

4. Conclusions 

Short fatigue crack growth through compressive residual stress fields induced by indentation 

procedures was investigated in the present study with a focus on near threshold crack growth. The 

applicability of traditional superposition of stress intensity factors of residual stress and external 

applied stress range was examined. The following conclusions can be made: 

The fatigue threshold for long cracks was found to be 5.9 and 10.1 MPam under the stress ratios of 

0.7 and 0.1 respectively for the alloy investigated. This difference has been deduced to be due to 

significant crack closure present at the stress ratio of 0.1, deriving from potential additional crack 

closure mechanisms. A stress ratio of 0.7 is sufficient to fully open the fatigue crack throughout the 

fatigue crack growth regimes.  

In the absence of residual stress, at a given stress ratio, short fatigue cracks start to grow at a growth 

rate suggested by the intrinsic fatigue crack growth resistance  curve. As the short crack grows, its 

growth rates eventually merge with the long crack growth curve for the given stress ratio. Different 
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transient growth behaviour may be exhibited according to the initial K value. The intrinsic threshold 

value obtained for the long fatigue cracks was observed to be applicable to that for the through-

thickness short cracks of depth 0.2-0.4 mm.  

An imposed compressive residual stress has a profound influence on the growth of short fatigue 

cracks when they are contained in the compressive residual stress field. Both increase of fatigue 

threshold and decrease in fatigue crack growth rates are observed, comparing to those of short cracks 

free of residual stress. Immediately after the short cracks grow out of compressive residual stress 

layer, their crack growth rates return to normal despite negative SIFs calculated from the residual 

stress field.   

The influence of compressive residual stress field on the growth of short cracks reduces with an 

increase of stress ratio. At a stress ratio of 0.7, little effect of residual stress was observed. 

When using an "effective stress intensity range" concept to explain the growth behaviour of the short 

fatigue crack in the compressive residual stress field, the applied weight function solution yields 

conservative values of stress intensity factor of the residual stress field, Kr, suggesting this common 

approach used for long fatigue cracks may not be appropriate for short fatigue cracks.  

Acknowledgements: 

The authors are thankful for the support of Rolls-Royce plc. in providing of the materials. The 

assistance by Dr. KH Wang, previously a Ph.D student in School of Mechanical Engineering at 

Birmingham University, in the FE analysis is acknowledged. 



  

 

 17 

References: 

[1] Torres MAS, Voorwald HJC. An evaluation of shot peening, residual stress and stress 

relaxation on the fatigue life of AISI4340 steel. Int J of Fatigue 2002;24:877-886. 

[2] Rios de Los ER, Walley A, Milan MT, Hammersley G. Fatigue crack initiation and 

propagation on shot-peened surface in A316 stainless steel. Int J Fatigue  1995;17:493-9. 

[3] Parker AP. Stress intensity factors, crack profiles, and fatigue crack growth rates in residual 

stress fields.  Throop J, Reemsnyder H, editors. Residual stress effects in fatigue, ASTM STP 

776, Pennsylvania ASTM International; 1982, p. 13-31. 

[4] Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 

7075-T6 aluminum. Rosenfeld M editor. Effects of Environment and Complex Load History 

for Fatigue Life, ASTM STP 462, Pennsylvania ASTM International; 1970, p. 1-14. 

[5] Elber W. The significance of fatigue crack closure, damage tolerance in aircraft structures. 

Rosenfeld M, editor.  Damage Tolerance in Aircraft Structures, ASTM STP486-EB, 

Pennsylvania ASTM International; 1971, p. 230-42. 

[6] Braid JEM. Fatigue Crack Propagation in Residual Stress Field, Thesis of the University of 

Cambridge; 1982. 

[7] Wu XR, Carlsson AJ. Weight Functions and Stress Intensity Factors Solutions, Pergamon 

Press; 1991 

[8] Knott JF, in Proceedings of the 4
th

 International Conference on Numerical Methods in 

Fracture Mechanics, 1987, p.607-625. 

[9] Beghini M, Bertini L. Fatigue crack propagation through residual stress fields with closure 

phenomena, Eng Fract Mech 1990;36:379-387. 

[10] Lacarac V, Smith DJ, Pavier MJ, Priest M. Fatigue crack growth from plain and cold 

expanded holes in aluminium alloys. Int J Fatigue 2000;22:189-203 

[11] Gao YK, Wu XR. Experimental investigation and fatigue life prediction for 7475-T7351 

aluminum alloy with and without shot peening-induced residual stresses. Acta Mat 2011;59: 

3737-47. 



  

 

 18 

[12]  British standard DD 186:1991  

[13] Suresh S. Fatigue of Materials. Cambridge University Press; 1991 

[14] Ray SK, Grandt Jr AF. Comparison of methods for measuring fatigue crack closure in a thick 

specimen. Newman Jr JC, Elber W, editors. Mechanics of Fatigue Crack Closure, ASTM STP 

982, Philadelphia ASTM International; 1988, p.197-213. 

[15] Tada H, Paris PC, Irwin GR. Stress analysis of cracks handbook, 2
nd

 ed. ASME Press; 1985, 

p.2.2 and 2.14. 

[16] Mercer C, Soboyejo ABO, Soboyejo WO. Micromechanisms of fatigue crack growth in a 

forged Inconel 718 nickel-based superalloy. Mater Sci Eng 1999;A270:308-322. 

[17] Al-Rubaie KS, Barroso EKL, Godefroid LB. Fatigue crack growth analysis of pre-strained 

7475-T7351 aluminum alloy. Int J Fatigue 2006;28:934-42. 

[18] Elber W. Fatigue crack closure under cyclic tension. Eng Fract Mech 1970;2:37-44. 

[19] Ritchie RO. Mechanisms of fatigue crack propagation in ductile and brittle solids. Int J Fract 

1999;100:55-83. 

[20] Tada H, Paris PC. The stress intensity factor for a crack perpendicular to the welding bead. Int 

J Fract 1983;21:279-84. 

[21] Kang KJ, Song JH, Earmme YY. Fatigue crack growth and closure behaviour through a 

compressive residual stress. Fatigue Fract Eng Mater Struct 1990;13:1-13. 

[22] Beghini M, Bertini L. Fatigue crack propagation through residual stress fields with closure 

phenomena. Eng Fract Mech 1990;36:379-384. 

[23] Ohta A, McEvily AJ, Suzuki N. Fatigue crack propagation in a tensile residual stress field 

under a two-step programmed test. Int J Fatigue 1993;15:9-12. 

[24] Kang KJ, Song JH, Earmme YY. Fatigue crack growth and closure through a tensile residual 

stress field under compressive applied load. Fatigue Fract Eng Mater Struct 1989;12:363-376. 

[25] Wilks MDB, Nowell D, Hills DA. The evaluation of stress intensity factors for plane cracks 

in residual stress field. J Strain Analysis 1993;28:145-52. 



  

 

 19 

Figure Captions: 

Figure 1.  Schematic of indentation to induce compressive residual stress. (a) Two indents at 

both sides of the crack and (b) one indent on top of the crack. 

Figure 2.  Long fatigue crack growth resistance curves, obtained under two stress ratios 

(R=0.1, R=0.7) 

Figure 3.  Typical fracture surface appearance (long crack) after fatigue threshold and fatigue 

crack propagation testing. (a) R=0.1 and (b) R=0.7 

Figure 4.  SEM micrographs showing the fracture surface morphology observed at a stress 

ratio of 0.1 (a) near threshold region and (b) K  23.2 MPam; and at a stress ratio of 0.7 

(c) near threshold region and (d) K  15.8 MPam. Note that the crack propagation 

direction is from left to right in all cases. 

Figure 5.  Fatigue crack growth resistance curves of the short fatigue cracks without residual 

stress field at stress ratios of 0.1 and 0.7. Note that the long crack data are also shown as solid 

line (R=0.1) and dashed line (R=0.7) for comparison. 

Figure 6.  Contours of equivalent plastic strain after unloading from “2-indents” (a), and “1-

indent” indentation with an applied load of 20 kN. 

Figure 7.  FEM predicted residual stress distributions along the crack plane resulting from the 

different indentation procedures. 

Figure 8.  Fatigue crack growth resistance curves of the short fatigue cracks within a residual 

stress field induced by two indentations away from the crack. 

Figure 9.  Fatigue crack growth resistance curves of the short fatigue cracks within a residual 

stress field induced by one indentation only on top of the crack, compared with two indents 

parallel to the crack (but at 4 mm distance apart – see text). 

Figure 10.  Comparison of crack closure, Kcl between 0-indent and 2-indents tests. The 

Residual stress intensity values, Kr, for the 2-indents samples are shown in reversed values 

for comparison.  

Figure 11.  Comparison of the fracture surface appearance between a residual stress free 

specimen (left) and a indented specimen (right). A dark band formed inside the compressive 

residual stress layer. 

Figure 12.  SEM micrograph showing cracked oxide film in the dark bands of both indented 

and long crack specimens (R=0.1). 



  

 

 20 

 

 

 

 

 

 

Fe Cr Co Nb Mo Ti Al C 

20 19 0.5 5.3 3 1 0.6 0.045 

 

Table 1.  Composition (weight percent) of Inconel 718, Balance Ni 

 

 

 

 

 

 

 

E (GPa) 0.2 (MPa) UTS (MPa) Elongation (%) 

198 1097 1303 21.7 

 

Table 2. Tensile properties of Inconel 718 at room temperature 
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Fig. 1.   
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Fig. 2   
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Fig. 3   
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Fig. 4   
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Fig. 6   
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Fig. 7   

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 8   
 

1.0E-08

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

2 20

d
a
/d

N
  
(m

m
/c

y
c
le

)

K (MPam)

R=0.7, 2-indents 

R=0.1, 2-indents_1 

R=0.1, 2-indents_2 

 
 

 

 

 



  

 

 26 

 

Fig. 9  
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Fig. 10 
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Fig. 11   
 

 

 

 

 

 

 

 

Fig.12  
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Highlights: 

Fatigue crack growth behaviour of short through-thickness cracks (0.2-0.4 mm) in a nickel-

based superalloy was investigated at room temperature. 

By varying load, location and number of indentations, different residual stress fields can be 

conveniently introduced onto short cracks. 

Fatigue crack growth behaviour of short through-thickness fatigue cracks can be described 

fully by a closure concept. 

The influence of compressive residual stress field on short through-thickness cracks cannot 

be appropriately estimated by residual stress intensity factor, Kr, using a weight function 

method. 

 
 


