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PATCHY, NOT PATCHY, OR HOW MUCH PATCHY?

CLASSIFICATION OF SPATIAL PATTERNS APPEARING IN A

MODEL OF BIOLOGICAL INVASION

N. Petrovskaya1, S. Petrovskii2 and W. Zhang1

Abstract. Good understanding of spatiotemporal patterns of species spread during biological invasion
is needed for efficient monitoring and control of harmful alien pests. Various growth-dispersal-type
models of population dynamics predict that invasive species spread can follow two qualitatively different
scenarios such as the propagation of a continuous population front and the “no-front” patchy invasion.
Distinguishing between these two patterns of spread is important, in particular because the patchy
invasion poses a much greater challenge for monitoring and control. However, a mathematical theory
of the patchy invasion is missing and it remains unclear what are the restrictions on parameter values
and how much different this dynamical regime is from the continuous front propagation. In this paper,
we address these issues in terms of a biologically meaningful mathematical model consisting of two
coupled integral-difference equations. We show that the relevant domain of the parameter space has a
complex intermittent structure. We also suggest a criterion that can be used to distinguish between
the patchy invasion and the continuous front propagation: the patchy-invasion spatial pattern is shown
to be much more sensitive to the cutoff at low densities.

1. Introduction

For a species in natural environment, the spatial distribution of its population density is rarely homogeneous.
The population spatial distribution often forms a complicated “patchy” multiscale pattern where areas with high
population density alternates with areas where the population density is low or the species is absent at all. This
phenomenon, often referred to as patchiness [15], is known to have a variety of implications for the population
dynamics as well as the population management, monitoring and control [16, 28, 34]. A number of theories have
been suggested to explain the patchiness [29]. Some of them link it to exogenous factors such as heterogeneity
of the environment [3, 7] while others relate it to endogenous biological interactions [8, 10, 23, 38, 41]; in a
general and/or more realistic case, both endogenous and exogenous factors are likely to contribute [12, 35, 39].
The appreciation of ecological patchiness is, however, relative rather than absolute and conclusions are often
made based on a rule of thumb. Mathematical approaches allowing for classification of the patterns (e.g. to
answer the questions whether a given pattern is actually patchy, not patchy or “how much patchy”) are largely
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absent, although attempts to address this issue using statistical measures were made in the contexts of plankton
dynamics [5] and landscape ecology [47].

Mechanisms resulting in the patchy dynamics, as well as the implications of the spatial patterning, can be
context-specific. In this paper, we focus on the pattern formation induced by biological invasion [10, 18, 41, 42].
Mathematically, the specifics of population dynamics during invasion is due to the choice of the initial conditions
belonging to a certain class (e.g. described by a function with a finite support). Our special attention is on the
“patchy invasion” [31, 32] which can be generically described as the spread of the alien population from the
place of its introduction without formation of a continuous population front. Propagation of a population front
was a paradigm of biological invasion for several decades [6, 13, 44]. In the realistic 2D case, such a front
forms a continuous boundary separating the invaded and non-invaded areas [2]. More recently, however, there
have been a growing understanding that the invading species can proliferate into space by creating isolated
patches or colonies but without forming any continuous population front [31, 43]. Patchy invasion, as this
invasion scenario was eventually named, is a phenomenon of considerable theoretical and practical importance;
it has been observed in several field studies [4, 19, 20, 22] and in a variety of different1 mathematical models
[17, 25, 43] including PDEs [9, 26] and, recently, integral-difference equations [37]. Despite the intense study of
patchy invasion in recent years, its full understanding and a consistent mathematical theory are still missing and
there are many open questions. Patchy invasion is known to occur inside a particular parameter domain (where
the corresponding non-spatial population invariably goes to extinction [23, 32]) but little is known about the
fine structure of the parameter domain [9, 30]. Identification of relevant parameters is, however, very important
for the purposes of monitoring and control. In this paper, our first goal is to make an insight into this issue
using a biologically meaningful system of integral-difference equations [14, 37].

Our second goal is to quantify the patchiness itself. One general problem in comparing predictions of a
mathematical-ecological model to empirical data is that they often operate with variables of different origin.
Mathematical models are routinely formulated in terms of the population density. Meanwhile, a direct estimation
of the population density in field studies is rarely possible. For instance, monitoring of insects is usually done
with traps; however, trap counts interpretation is challenging and can be ambiguous. The same trap count can
arise in a high density population of slowly moving insects and in a low density population of fast moving
insects [33, 34], cf. the so called “activity-density paradigm” [45]. Also, trap’s efficiency is limited: in case of
a low population density, i.e. below a certain detection threshold, after the time of its exposition the trap is
likely remain empty even if the monitored population is actually present. For this and other reasons, the data of
empirical studies are usually available as presence/absence maps rather than maps of the population density. In
mathematical terms, it means implementation of a certain threshold or cutoff: whenever the population density
is lower than a given value, it is regarded as zero. Immediate questions arising here are (a) how this cutoff may
change the properties of the pattern (e.g. turning a simply-connected domain to a multi-connected one) and
(b) what are the values of the cutoff when such a change happens and how these values may depend on the
population dynamics parameters. In this paper, we endeavor to provide an insight into the above issues.

The paper is organized as follows. In the next section, we formulate the mathematical model and briefly
outline the numerical method to solve it. In Section 3, we introduce a classification of spatial patterns and
reveal the corresponding structure of the parameter space by performing extensive numerical simulations. In
Section 4, we consider the sensitivity of the patterns to the cutoff. Section 5 provides a discussion and concluding
remarks.

2. Model and method

Consider a system of two species N and P that are engaged into an agonistic interaction such as prey-predator
or host-parasitoid. Let species N be the prey (host) and P be its predator (parasitoid). We consider the case
where the life cycle of both species exhibits two distinctly different stages (as often happens with plants and

1We mention here that the relevance of some of the models may be limited to a particular spatial scale, e.g. the stochastic
spread [17] is more relevant on the small spatial scale of individuals and individual movement whilst the coupled map lattices [25]
are more relevant to the large regional/landscape scale.



insects). The first one is the demographic stage which can include growth of juveniles, their maturation, mating
and reproduction. We assume that the timing of this stage is the same for both species and that during this
stage the species interact (i.e. as prey and predator or host and parasitoid). The second stage is dispersal2 and
we assume that the species disperse independently of each other.

The above biological settings are best taken into account by a time-discrete framework [14]. The species are
described by their population densities that evolve from generation t to generation t+ 1. Let Nt(r) and Pt(r) be
densities of the prey and the predator in generation t over continuous 2D space, r = (x, y). For convenience of
interpretation only (but see [21]), we assume that the species first go through the demographic stage and then
disperse. The prey-predator dynamics during the demographic stage is generically described by the following
equations:

Ñt(r) = f(Nt(r), Pt(r)), P̃t(r) = g(Nt(r), Pt(r)), (2.1)

whereNt and Pt are the species spatial distributions emerging after the dispersal stage in the previous generation.
Since most of the results of this study will be obtained in numerical simulations, we have to choose a specific

parametrization for the demographic functions f and g. Following [36, 37] we choose them as follows:

f (Nt, Pt) =
A (Nt)

2

1 +B2 (Nt)
2 · exp (−κPt) , (2.2)

g (Nt, Pt) = δNtPt , (2.3)

where A > 0 is the prey intrinsic growth rate, (1/B) > 0 is the prey density for which its per capita growth
rate reaches its maximum, κ > 0 is the predator efficiency and δ > 0 quantifies the predator growth rate. The
non-convex shape of the dependence of f on N means that the prey growth is affected by a strong Allee effect.
For a detailed discussion of the rationale behind the expressions (2.2)–(2.3) see [36].

It is convenient to introduce dimensionless densities N ′ and P ′ as

N ′t = δ/κNt and P ′t = κPt. (2.4)

The dimensionless functions f and g are then

f (Nt, Pt) =
a (Nt)

2

1 + b (Nt)
2 · exp (−Pt) , (2.5)

g (Nt, Pt) = NtPt , (2.6)

where the primes are omitted for the sake of simplicity. The demographic parameters a = Aκ/δ and b = (Bκ/δ)2

in (2.5)–(2.6) determine steady states of (2.1), i.e. the extinction state s1 = (0, 0), two prey-only states s2 =
(N∗1 , 0) and s3 = (N∗2 , 0), and the coexistence state s4 = (N∗, P ∗), where

N∗1 =
a−
√
a2 − 4b

2b
, N∗2 =

a+
√
a2 − 4b

2b
, (2.7)

(N∗, P ∗) =

(
1, ln

[
a

b+ 1

])
. (2.8)

2The part of the life cycle where the dispersal takes place depends on the species traits. For instance, many insect species disperse
as adults; on the contrary, the plant species usually disperse as offsprings (i.e. seeds).



Figure 1. The structure of the parameter plane for system (2.5)–(2.6); see details in the text.

While the extinction state s1 always exists, the boundary states s2 and s3 are only feasible for a > 2
√
b. Similarly,

the coexistence state s4 is only feasible for b+ 1 < a. The linear stability analysis reveals that s1 is always stable,
s2 is always unstable, and s3 is stable for

2 < a < b+ 1, (2.9)

so that condition b > 1 is required for stability [36]. The coexistence equilibrium s4 is stable for

a < acr = (b+ 1) exp

(
b− 1

b+ 1

)
. (2.10)

The structure of the parameter plane (b, a) is shown in Figure 1. The coexistence state s4 is feasible and
stable for parameters from Domain 1. The solid curve in Figure 1 corresponds to a = acr in equation (2.10)
where the coexistence state (N∗, P ∗) loses its stability through the Hopf bifurcation; on the line a = acr(b)
the determinant of the Jacobian matrix at the coexistence equilibrium is equal to one [1]. Inside Domain 2 the
local dynamics is oscillatory according to the (multipoint) limit cycle. When crossing the long-dashed curve
(obtained numerically), the limit cycle disappears so that in Domain 3 the only attractor is the extinction
state. The straight dotted line corresponds to a = b+ 1 in equation (2.9); therefore, for Domains 4, 5 and 6 the
coexistence state is not feasible. In particular, in Domain 5, the only steady state is (0, 0). The short-dashed
curve corresponds to a = 2

√
b in equation (2.7) and in Domains 4 and 6 the two “prey only” states exist. The

prey only equilibrium (N∗1 , 0) is never stable, while (N∗2 , 0) is stable for parameter values inside Domain 6. We
therefore observe that in Domains 1 and 6 the system exhibits bistability.

After the demographic stage of the given generation is complete, the species enter the dispersal stage which,
when finished, produces the species spatial distribution in the next generation:

Nt+1(r) =

∫
Ω

Ñt(r
′) kN (r, r′)dr′, Pt+1(r) =

∫
Ω

P̃t(r
′) kP (r, r′)dr′, (2.11)



where Ω is a dispersal domain whose definition is discussed later. The dispersal kernel ki, i = N,P in
equation (2.11) is the probability density function of the event that an individual moves from position r′ to
position r after dispersal. In this paper, we consider the Gaussian dispersal kernel given by

ki(r, r
′) ≡ ki(|r− r′|) =

1

2πα2
i

exp(−|r− r′|2

2α2
i

), i = N,P, (2.12)

where the standard deviation αi is the parameter quantifying the spatial scale of the dispersal.
Having substituted (2.1) into (2.11), we exclude the variables Ñt and P̃t and obtain the following system of

integro-difference equations:

Nt+1(r) =

∫
Ω

kN (|r− r′|) f (Nt (r′) , Pt (r′)) dr′, (2.13)

Pt+1(r) =

∫
Ω

kP (|r− r′|) g (Nt (r′) , Pt (r′)) dr′. (2.14)

System (2.13)–(2.14) is a generic model of the two-stage time-discrete spatiotemporal population dynamics.
In the below, it is used with the dispersal kernels defined as (2.12) and the demographic functions given by
(2.5)–(2.6).

Equations (2.13)–(2.14) are considered in the infinite domain Ω = {(x, y) : −∞ < x <∞, −∞ < y <∞} to
produce the solution for prey density Nt+1(r) and predator density Pt+1(r) subject to some initial conditions.
In our work we consider the two following types of the initial conditions.

– symmetrical initial conditions. The prey population is distributed in some sub-domain centered around
the origin and the predator is present in a smaller region also centered around the origin:

N0(x, y) = N∗2 for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1, (2.15)

and N0(x, y) = 0 otherwise,

P0(x, y) = P ∗ for − 0.1 ≤ x ≤ 0.1 and − 1 ≤ y ≤ 1, (2.16)

and P0(x, y) = 0 otherwise,

where N∗2 is the prey equilibrium density in the absence of the predator and P ∗ is the predator equilibrium
density in the predator-prey system; see equations (2.7)–(2.8).

The initial conditions (2.15)–(2.16) are obviously invariant with regards to the reflection x→ −x and
y → −y, and hence the mathematical problem as a whole, i.e. equations (2.13)–(2.14) with (2.15)–(2.16),
attains this reflectional symmetry as well. The emerging distributions of prey and predator are hence
expected to be symmetrical, too. While this special case can be conveniently exploited for validation of
the model, it is not entirely realistic. Correspondingly, in order to make the simulation results more general,
along with (2.15)–(2.16) we consider the initial population distribution without any apparent symmetry;

– asymmetrical initial conditions. The prey population is distributed in the same sub-domain as above, but
the predator population is now initially distributed in an acentric region:

N0(x, y) = N∗2 for − 1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1, (2.17)

and N0(x, y) = 0 otherwise,

P0(x, y) = P ∗ for − 1 ≤ x ≤ 0.2 and − 0.9 ≤ y ≤ 0.4, (2.18)

and P0(x, y) = 0 otherwise.



Having chosen the initial conditions, the solution to equations (2.13)–(2.14) cannot be obtained in closed
form and we seek an accurate numerical approximation to the analytical solution instead. The original infinite
domain is replaced with a finite domain Ω = {(x, y) : −L ≤ x ≤ L, −L ≤ y ≤ L} where a numerical solution
is considered. It is required that linear size L of domain Ω is large enough for accurate approximation of the
solution in the finite domain. For a sufficiently large L, the numerical solution should not be sensitive to the
conditions at the external boundary of domain Ω, should any boundary condition be required [37]. If L is chosen
to be insufficiently large then “boundary forcing” may occur and the population dynamics inside the domain
may be affected by the boundary conditions. We mention here that, unlike partial differential equations, the
integral-difference equations (2.13)–(2.14) do not necessarily require any boundary condition to ensure that the
problem is well-defined. For a detailed discussion of this issue see [37] where also recommendations have been
given on the choice of L required to keep the approximation error within desired accuracy. For the rest of this
paper we assume that L is large enough to provide a correct numerical solution, i.e. the inherent dynamics of
the system is not affected by the boundary conditions.

Once the original infinite domain has been replaced with a finite domain, we employ the Fast Fourier
Transform (FFT) method for numerical solution of equations (2.13)–(2.14) along with the initial conditions
(2.15)–(2.16) or (2.17)–(2.18). In our computation we choose the linear size of domain Ω as L = 20. In order to
apply the FFT, the continuous space was first discretized by introducing a numerical mesh. It was then checked
in numerical simulations that the mesh steps are chosen sufficiently small in order to exclude any significant
numerical artifacts. The parameters of the dispersal kernels are chosen as αN = 0.1 and αP = 0.125 and the
other parameters are varied according to the purpose of our study. Further details of the FFT implementation
for the system (2.13)–(2.14) (including the accuracy of the method) can be found in our previous work [37].

3. Results I: Pattern formation

The main goal of our study is to investigate how the scenario of species spread during biological invasion –
in particular, the spatial pattern of the density distribution emerging as a result of the spread – depends on the
demographic parameters a and b in equations (2.5)–(2.6). In doing this, we focus on the spatial distributions of
prey N(x, y); yet our conclusions readily apply to the spatial distribution of predator P (x, y) because it exhibits
similar properties.

3.1. Spatial patterns and their classification

In a prey-predator system where the prey is affected by the strong Allee effect, there are two baseline options
for the evolution of the compact initial conditions, i.e. the populations either go extinct or they proliferate into
space. This dichotomy is well studied in terms of reaction-diffusion models (cf. Chap. 12 in [23]) but other growth-
dispersal models exhibit qualitatively similar behavior; e.g. see [25, 37], also [18]. Since the extinction of prey
is a somewhat trivial result, and indeed our goal here is to understand the properties of the patterns generated
by the species spread, the parameters αN and αP , and the initial conditions (2.15)–(2.16) and (2.17)–(2.18) are
chosen in such a way so that to exclude this option.

In case the initial abundance of prey is large enough to ensure its survival, usually it starts spreading into
space (sometimes after a certain time lag that can be caused by a purely dynamical mechanisms, e.g. see
Sect. 3.5 in [18]). How this spread actually takes place (with or without pattern formation, with or without
continuous population front, etc.) is known to a large extent depend on the properties of the non-spatial system
(e.g. whether the positive steady state is stable or unstable) and hence depends on the demographic parameters
a and b. We mention here that, to the best of our knowledge, a dynamical switching between the patterns has
never been observed; whatever the spatial pattern emerging in the course of spread is, it will remain qualitatively
the same at any time (excluding only very early stage when the shape of the initial distribution can have an
effect). For this reason and for the sake of brevity, every scenario of species spread discussed below is represented
by a single snapshot.



Figure 2. Snapshots of the spatial density distribution at time t = 200 (obtained for initial conditions
(2.15)–(2.16) and different values of parameters a and b) representing different invasion scenarios.
White color corresponds to the zero population density. (a) Convex continuous front with a uniform
distribution in the wake obtained for parameters taken from Domain 1 (see Fig. 1) as a = 4.0 and
b = 2.8; (b) convex continuous front with pattern formation in the wake obtained for parameters taken
from Domain 2 as a = 4.0 and b = 1.8; (c) concave continuous front obtained for parameters taken
from Domain 3 as a = 4.0 and b = 0.716; (d) patchy spread (without any continuous front) obtained
for parameters a = 4.0 and b = 0.714 (also from Domain 3).

Consider the parametric plane shown in Figure 1. For any parameters from Domain 1, the temporal dynamics
is stable meaning that in the large-time limit the solution of the non-spatial counterpart of (2.13)–(2.14) con-
verges to the stable positive equilibrium (N∗, P ∗). As a result, the population density remains constant behind
the propagation front. An example of a spatial density distribution where parameters a and b are taken in
Domain 1 is shown in Figure 2a where symmetric initial conditions (2.15)–(2.16) have been used. In the figure,



the prey spatial density N(x, y) is shown at time t = 200 for parameters a = 4.0 and b = 2.8. We will label this
spatial pattern as a “convex continuous front”.

For any parameters from Domain 2, the temporal dynamics is oscillatory. An example of a spatial density
distribution where parameters a = 4.0 and b = 1.8 are taken in Domain 2 is shown in Figure 2b. Again, we
use the symmetric initial conditions and the prey density is shown at time t = 200. It can be seen from the
figure that the density N(x, y) exhibits strong spatial oscillations behind the front. (This phenomenon is well
known in relevant reaction-diffusion models, e.g. see [23, 40].) In the context of this study, however, we consider
the density pattern shown in Figure 2b to be the same type as the one shown in Figure 2a because from a
“topological” viewpoint it also exhibits a convex continuous front.

The population dynamics becomes different and more sophisticated when parameters a and b are taken from
Domain 3. The only attractor is then the extinction state. It means that in the corresponding non-spatial
system the species goes extinct. In the spatially explicit system (2.13)–(2.14), the species can survive and even
eventually spread over space. However, the pattern of spread depends on the sub-domain of Domain 3 where
the parameters are taken from. When parameters are close to the right-hand side boundary of Domain 3 (a
long-dashed curve in Fig. 1) we still have a convex continuous front (not shown here for the sake of brevity)
topologically similar to that observed for parameters from Domain 2. This pattern of spread changes when the
parameters move away from the domain boundary (e.g. by decreasing b). Successful invasion via the propagation
of the convex population front eventually changes to extinction. This transition occurs not abruptly but through
a few topological changes, cf. Figures 2c and 2d. The first of them is a shape that we label as a concave continuous
front. The example of such a spatial pattern is shown in Figure 2c where time is t = 200 and parameters are
a = 4.0 and b = 0.716 in Domain 3. Unlike a standard convex topology of continuous fronts in Figures 2a and
2b, for a straight line connecting any two points in the region behind the front, the whole of the line does not
necessarily belong entirely to that region. It is important to note, however, that we still deal with a continuous
front because a domain of the non-zero population density has a closed boundary.

Let us further decrease the value of b to obtain a spatial pattern shown in Figure 2d for a = 4.0, b = 0.714
and t = 200. This spatial pattern is very different from the density distributions discussed above as it presents
a collection of separate patches of the non-zero density. The population density is high inside the patches
and is very close to zero between the patches. Apparently, there is no continuous boundary separating the
areas with zero and non-zero density and the population spreads over the space as an agglomeration of several
different patches. Propagation of such spatial distributions over the physical domain with time was called
“patchy invasion” in [25, 26, 31, 32] (as the prey was considered as an invasive species in the original work [31]).
Correspondingly, we label this spatial structure as “patchy density distribution”. We want to emphasize that
the patchy distribution shown in Figure 2d is not at all unique as a similar patchy spread (i.e. not preceded by
the propagation of a continuous population front) can be observed for other parameter values taken in Domain
3 of the (b, a) parametric plane.

In conclusion to this section, we have checked whether the patchy pattern arising as a result of the population
spread (e.g. see the middle of the domain in Figs. 2c and 2d) is a self-sustained dynamics or just a slow, long
transient extinction. Recall that for those parameter values the extinction is the only issue in the corresponding
non-spatial system. Since an analytical theory of the patchy dynamics is not available, we checked its persistence
in long term computer simulations. We observed that the patchy dynamics persists at least until t = 2000 (a
longer simulation is not practically possible as it requires huge computer time). Taken together with similar
results available for the patchy dynamics in reaction-diffusion systems (where the persistence was demonstrated
up to t = 105), it indicates that the patchy spatiotemporal pattern is a sustainable dynamics of the system
(2.13)–(2.14).

3.2. Structure of the parametric plane

In the previous section, we have identified three topologically different patterns of the population spread
during biological invasion, cf. Figures 2b–2d, arising as solutions of system (2.13)–(2.14) with compact initial
conditions given by (2.15)–(2.16). Interestingly, all three different patterns can be observed for parameters taken



Figure 3. The fine structure of Domain 3. Parameter resulting in different spatial patterns are
color-coded as follows: blue for the extinction, orange for a concave continuous front, grey for a convex
continuous front, green for the patchy invasion (no continuous front).

from the same domain of the parameter plane, i.e. Domain 3. (Note that parameter Domains 1 and 2 define
the pattern of spread in a unique way.) Obviously, it means that, in the case that the positive steady state
(N∗, P ∗) is unstable, the properties of the spatial system cannot be predicted based on the properties of its
non-spatial reduction. The question therefore arises as to what is the “fine structure” of Domain 3, e.g. how often
each pattern of spread appears when we vary parameters a and b in Domain 3. We are especially interested in
parameter values that result in a patchy spread. Indeed, any information about conditions required for formation
of patchy spatial patterns is of particular value as their ecological monitoring and control can be very different
from the monitoring protocol for continuous front population density distributions.

In order to make an insight into the fine structure of Domain 3, we perform intense numerical simulations.
Both parameters a and b are varied inside Domain 3 with a small increment. In order to make the simulation
results obtained for different parameter values consistent and comparable, for any pair (b, a) we pick up the
solution obtained at the particular time t = 200; having analyzed the numerical solutions at different times and
different parameters, this time was deemed to be sufficient for the dynamical regime to establish. For all values
of a and b used in the simulations, the spatial pattern obtained at t = 200 is then labeled according to the
classification suggested in the previous section. We mention it here that, having chosen the specific moment
t = 200 to reveal the solution properties and performing the simulations in the spatial domain of a fixed size
L = 20, for technical reasons we have to limit our study to a certain parameter range. In particular, as the rate
of spread depends on a and b, values a > 6.5 are not feasible as, for those values, by t = 200 the solution has
already approached the boundary of the spatial domain and it is not possible to robustly identify the pattern.

The results of our simulations performed for b ∈ [0.686, 0.766] and a ∈ [3.9, 6.5] are summarized in Figure 3
where a color-coding is used to represent different patterns of spread. Blue-colored regions show the parameter
range for which the populations go to extinction. Green-colored regions present the parameter range where the
patchy spread is observed. Orange-colored regions show the parameter range for which a concave continuous
front has been formed. Finally, grey-colored regions show the parameter range where the population spread takes
place via the propagation of a convex continuous front. For parameter values outside this range, we observe
extinction for any value of b when a < 3.9.

The results of Figure 3 demonstrate that, in a certain sub-domain of Domain 3, the evolution of initial
conditions (2.15)–(2.16) results in a wealth of invasion patterns; the population spread can occur either by the
propagation of a continuous population front, convex or concave, or by the dynamics of separate population
patches. When changing parameters (e.g. to increase b), the “standard” propagation pattern of convex con-
tinuous front first turns into a concave front before completely breaking down into agglomeration of separate



Figure 4. Asymmetric spatial patterns appearing from initial conditions (2.17)–(2.18) at time t = 200.
(a) A convex population front obtained for a = 4.0 and b = 0.76. (b) A concave population front
obtained for a = 4.0 and b = 0.71. In both cases, parameter values belong to Domain 3.

patches. The results shown in Figure 3 also demonstrate a complicated dependence of the spatial pattern on
parameters a and b. For example, choosing a = 5.1 and decreasing b from b = 0.704 down to b = 0.686 will
result in formation of a concave front for b ∈ [0.7, 0.704] which will be replaced by patchy density distributions
for b ∈ [0.696, 0.7] followed by the extinction at b ∈ [0.694, 0.696]. We can then see formation of the concave
front again for b ∈ [0.690, 0.694] before the extinction occurs at b ∈ [0.686, 0.690]. To summarize, the concave
continuous front topology prevails in Domain 3 of parametric plane (b, a) whilst the patchy invasion is relatively
hard to generate as it only exist for b ∈ [0.69, 0.73].

In the above simulations we used the symmetrical initial conditions (2.15)–(2.16). Now we are going to check
the sensitivity of our results to the choice of the initial conditions. Obviously, the symmetry of the spatial
patterns shown in Figure 2 is an artifact of the symmetric initial conditions; from the point of real ecological
systems the symmetric patterns are somewhat artificial. The asymmetric initial conditions (2.17)–(2.18) result
in more realistic asymmetric spatial patterns, see Figure 4 where the snapshots of the population density are
shown at time t = 200. We immediately observe that the two baseline patterns of spread such as the convex
front and concave front are present; however, they emerge for different parameter values. Hence our next goal
is to check how the fine structure of Domain 3 may change if the initial conditions are chosen as given by
(2.17)–(2.18).

Comparison between the results obtained for symmetric and asymmetric initial conditions is shown in Figure 5
where we use the same color coding as above; see Figure 3. As well as above, all the snapshots are analyzed at
time t = 200. As generation of the maps in the parameter space is a computationally very expensive and time-
consuming task, for the purpose of the comparison we select a small sub-domain b ∈ [0.700, 0.712], a ∈ [3.9, 4.9].
The fine structure of the domain resulting from the symmetric initial conditions is shown in Figure 5a (which
is a fragment of the larger map shown in Fig. 3), while the fine structure of the domain resulting from the
asymmetric initial conditions is presented in Figure 5b. One immediate observation from Figure 5 is that there
is little correspondence between Figures 5a and 5b (apart from the generic complexity of intermittent structure).
We therefore conclude that, whether the population invades via the propagation of a concave continuous front or
by the patchy spread (without a continuous front) depends not only on the value of the demographic parameters
but also on the initial conditions. We also observe that breaking symmetry in the initial density distribution
decreases the parameter range where the population goes to extinction. Also, the patchy spread occurs in a



Figure 5. The structure of sub-domain D1 (b ∈ [0.700, 0.712], a ∈ [3.9, 4.9]) of parameter plane
(b, a) is shown for (a) symmetric initial conditions (2.15)–(2.16) and (b) asymmetric initial conditions
(2.17)–(2.18). As well as in Figure 3, the topology of spatial density distributions is analyzed at time
t = 200. See Figure 3 for the explanation of the colour coding.

somewhat wider range of parameters a and b when asymmetric initial conditions are implemented. Meanwhile
a concave continuous front remains a dominant pattern of spread.

4. Results II: Sensitivity of spatial patterns to the cutoff

Now we are going to analyze the spatial patterns in more detail. As a starting point, we mention one particular
feature of all snapshots of the population distribution shown in Figures 2 and 4. In the areas marked by white
color, the population density is said to be zero. A question may arise here as to how that may be possible
since the dispersal kernels (2.12) apparently make the population density positive everywhere in any generation
starting from t = 1. A closer look into this apparent inconsistency immediately reveals that zero density is a
result of visualization rather than a true property of the solution as any computer visualization program treats
sufficiently small values as zeros. Hence a question may arise how much different the pattern shown by the
“modified” solution with a cutoff at low densities can be from the pattern shown by the true solution.

The above issue is directly related to the accuracy of real-life ecological data. The matter is that very
small values of the population density are often impossible to detect due to limitations of sampling/monitoring
techniques, the minimum detectable density being called the “detection threshold”. Hence, another reason to
introduce the cut-off threshold density, say C, is to make our model consistent with a real-life monitoring
routine.

Correspondingly, in this section we investigate the sensitivity of the spatial pattern to the cut-off parameter
C. Moreover, since field data are often available not in the form of the population density distribution over space
but as binary presence/absence maps (see the introduction for details), we consider the modified population
distribution N̂ as follows:

N̂(x, y) = 1 for N > C, N̂(x, y) = 0 for N ≤ C. (4.1)

The specific question that we are going to consider is how the number of disconnected patches depends on
the cutoff threshold C for different patterns of spread such as the concave front propagation and the patchy
invasion.

In order to handle patchy spatial patterns, we use the Image Processing Toolbox (IPT) in MATLAB [24]
to count number n of separate patches for a given value of C. Using the IPT software requires us to convert
the original density distribution to a binary image as is described by equation (4.1). Two such binary images
obtained at the cut-off value C0 = 0.05 are shown in Figure 6 where we have a concave-front density pattern in
Figure 6a and a patchy-invasion density pattern in Figure 6b. For the purpose of our study we ignore a complex



Figure 6. Binary “presence/absence” images, see equations (4.1), of spatial density distributions
with a different topological structure. Both images are generated using the same cut-off threshold
C0 = 0.05. (a) A concave-front pattern obtained for parameters a = 4.1 and b = 0.71. (b) A patchy
invasion pattern (with no continuous front) obtained for parameters a = 4.0 and b = 0.73. In both
cases the parameters belong to Domain 3, the solution is shown at t = 200.

topological structure of the spatial density distribution within any sub-domain of the non-zero density with a
closed boundary (e.g. density patterns behind a continuous front) as we are only interested in the number of
separate patches. Thus, from a visual inspection we conclude that there is only one “object” (i.e. a region of
the non-zero density with a closed external boundary) in the pattern shown in Figure 6a, but there are three
separate objects in Figure 6b (note two small disconnected patches at the top and bottom of the pattern). This
conclusion about the number of objects is confirmed by analyzing the images in the figure with help of the IPT
MATLAB software.

Let us consider the concave-front pattern shown in Figure 6a. Because the pattern has a complicated structure,
in particular contains many holes, it can be intuitively expected that a sufficiently large increase in the cut-off
C should break the single object into a collection of multiple objects. Such a transformation indeed occurs and
is shown in Figure 7a where the original concave density distribution is transformed to the binary image with
C = 0.840. The spatial pattern that has originally been classified as a concave continuous front now turns into
a patchy distribution consisting of five separate objects. Moreover, the number of objects will increase as the
cut-off value is getting bigger. Transition from five to six objects as the cut-off is increased from C = 0.840
to C = 0.865 is shown in Figures 7a and 7b. Similarly, the number of separate patches is increased when we
increase the cut-off for a patchy-invasion density distribution shown in Figure 6b. An increase in the cutoff
value to C = 0.08 increases the number of disconnected objects to five (against three in the original pattern),
see Figure 7c. A further increase to C = 0.130 increases this number to nine, see Figure 7d.

The above consideration apparently leads to a conclusion that the classification of spatial patterns made
in the previous section (e.g. convex front vs “no-front” patchy invasion) does not make much sense because
a concave-front spatial distribution can become a patchy-invasion-type distribution depending on the cut-off
value. However, such a conclusion would be premature and, in fact, erroneous as the increase in the number of
separate objects (patches) with an increase in the cutoff density C occurs in a significantly different manner for
the concave-front and patchy invasion patterns, as is shown below.

Consider the concave-front pattern first. Let us gradually increase the cut-off density starting from the original
value C0 = 0.05 with an increment δC = 0.001 and count number n of separate objects when a concave density



Figure 7. Decomposition of the spatial patterns shown in Figure 6 as a response to an increase in
the cut-off threshold C. (a) C = 0.840; a concave continuous front pattern (see Fig. 6a) is transformed
into a patchy distribution consisting of five disconnected patches. (b) C = 0.865; transition from five
to six separate patches. (c) C = 0.08; a patchy-invasion density distribution (see Fig. 7b) has got five
separate patches (compared to three in the original solution). (d) C = 0.130; transition from five to
nine separate patches.

distribution in Figure 6a is considered. The results are presented in Table 1 where we notice that the concave
distribution appears as a continuous front – i.e. one object, n = 1 – until the cut-off value is increased up to a
rather high value C = 0.826 where a single object finally breaks into five disconnected patches.

Concave spatial patterns do appear as a single object for a wide range of cut-off values and we have observed
this basic feature of concave density distributions in a number of numerical experiments. As an example, we
show the results of our study for two other concave distributions obtained (at t = 200) for parameters a = 6.0,



Table 1. Transition from a continuous front distribution to a patchy distribution for the concave-
front pattern when cut-off value C is varied with an increment of 0.001; n is the number of disconnected
objects. Other parameters are a = 4.1, b = 0.71 and t = 200. Only those values of C are shown where
the number of objects change.

C 0.05 · · · 0.826 · · · 0.858 · · · 0.879 ... 0.905 ... 0.956

n 1 1 5 5 6 6 10 10 14 14 18

Figure 8. The number of objects as a function of the cut-off value C for two concave-front
distributions. Parameters are (a) a = 6.0, b = 0.710 and (b) a = 5.7, b = 0.711.

b = 0.710 and a = 5.7, b = 0.711. Graphs n(C) are presented for those distributions in Figures 8a and 8b
respectively. In both cases we have a broad range of cutoff values (C ∈ [0.05, 0.32] in Fig. 8a and C ∈ [0.05, 0.47]
in Fig. 8b) where n = 1. Therefore, the concave continuous front is not broken until C becomes large. Meanwhile
it is worth noticing that the details of the dependence n(C) can be somewhat different: the number of patches
increases gradually in Figure 8a, but there is a very sharp increase in the number of patches (from 1 to about
60) for the convex spatial pattern in Figure 8b. Another interesting observation is that function n(C) is not
necessary monotone as the number of objects can occasionally decrease for a higher cut-off value. This may
happen when the maximum population density in small separate patches appears to be smaller than the value
of the cutoff. One example is given by the peak in Figure 8a where a very slight increase in the cut-off value
from C = 0.511 to C = 0.512 removes four objects from the spatial pattern and reduces the total number of
objects from nineteen to fifteen. The further increase in the cut-off value results in a higher number of objects
as can be seen in the figure.

We now analyze how the number of separate/disconnected objects depends on cut-off parameter C for
the binary image shown in Figure 6b, i.e. in case of the patchy-invasion pattern. The results of the spatial
pattern transformation when the cut-off value is increased are presented in Table 2. It is readily seen that the
pattern transformation occurs in an essentially different way in comparison to a concave density distribution as
already a small value of the cut-off results in a sharp increase in number n of separate patches. Whilst cut-off
C = 0.5 (approximately 10% of the steady-state density) still retains a single object for the concave-front density
distribution (see Tab. 1), the “no-front” patchy-invasion density distribution is already decomposed into fifteen
separate objects (Tab. 2).



Table 2. Transitions of a patchy distribution in Figure 6b when the cut-off value C is varied; n is
the number of disconnected objects. Only those values of C are shown where the number of objects
change.

C 0.05 · · · 0.065 · · · 0.108 · · · 0.157 · · · 0.540 · · · 0.584

n 3 3 5 5 9 9 13 13 15 15 19

Rapid changes in the topology of patchy spatial patterns are further confirmed by graphs n(C) shown in
Figure 9 that were obtained for three other patchy-invasion spatial patterns. It is readily seen that patchy
distributions generated with various values of parameters a and b exhibit a similar response to an increase in
the cut-off density. A relatively small number of patches observed at the original cut-off C = 0.05 is eventually
transformed into a collection of a larger number of patches when C is getting larger. Importantly, the sharp
increase in the number of patches consistently occurs for the values of the cutoff density several times smaller
than it was observed for the concave-front patterns.

5. Discussion and concluding remarks

Understanding the properties of the spatiotemporal patterns of alien species spread during biological invasion
is a problem of considerable theoretical and practical importance as it has implications for the invasive species
management and control [18, 34]. The traditional view of the problem dating back to the seminal works by
Fisher [6], Kolmogorov et al. [13] and Skellam [44] was based on the theoretical prediction of a circular front
(in a 2D space) propagating away from the place of the species introduction [42, 46]. In a realistic non-uniform
environment, the otherwise perfect circular shape may become distorted, e.g. see [2], but the existence of a
continuous population front separating invaded area behind the front from non-invaded area in front of the
front was thought to be a general property of the invasive spread. This view was eventually challenged by the
discovery that the same growth-dispersal population models predict also an alternative scenario of “patchy
invasion” where no continuous front exists and the alien species spread occurs through the formation and
dynamics of patches of high population density [25, 26, 31, 32, 37].

Identification of the factors affecting the pattern of spread, e.g. continuous-front or patchy, and the knowledge
of the structure of the corresponding parameter space is needed in the context of the invasive species monitoring
as observing separate parches apparently requires a larger effort, more resources and, altogether, a significantly
different monitoring strategy [34]. Meanwhile, such knowledge has been insufficient so far and mostly limited to
the reaction-diffusion models [9, 30, 32]. In this paper, our goal was to address these issues in terms of the integral-
difference modelling framework which is thought to be biologically more realistic than PDEs [14]. For this
purpose, we considered a time-discrete space-continuous prey-predator/host-parasitoid system. Mathematically,
the system is described by two coupled nonlinear integral-difference equations. We revealed three qualitatively
different scenarios of spread, i.e., by the propagation of a convex (continuous) front, propagation of a concave
(continuous) front, and patchy spread. Having performed extensive computer simulations, we showed that the
corresponding parameter space have a complicated “intermittent” structure, see Figures 3 and 5.

We mention here that species spread through the propagation of a continuous concave-shaped population
front was earlier observed in a reaction-diffusion model of biological invasion [9] where it was branded as a
“transitional” pattern between the convex front and the patchy spread. However, it remained unclear how this
transition actually takes place. Here we addressed this issue (partially motivated by the widespread tendency to
present empirical results as presence/absence data) by considering the sensitivity of the pattern’s properties to
the cutoff at low densities. We have shown that the spatial patterns resulting from the concave front propagation
and from the patchy invasion respond differently to the value of the threshold density. In both cases, the number
of disconnected patches increases along with an increase in the threshold density, such an increase starts when
the threshold exceeds a certain critical value. However, the critical value of the threshold is consistently several
times larger for the concave-front pattern than for the patchy-invasion pattern, even when visually the patterns



Figure 9. The number of objects as a function of the cut-off value for patchy distributions.
Parameters are: (a) a = 5.2, b = 0.71, (b) a = 6.4, b = 0.71 and (c) a = 5.9 and b = 0.71.



may have similar properties. For this reason, the concave front propagation should be considered as a separate
pattern rather than just a transition between the convex front propagation and the patchy invasion.

The much higher sensitivity of the patchy spread to the cutoff sends an important practical message to invasion
managers about the type of field data needed for reliable monitoring and efficient control of invading species.
Whilst the less expensive presence/absence data may provide an accurate representation of the spatial pattern
emerging in case of the continuous front propagation, they are likely to give grossly distorted information in case
of the patchy invasion. In the latter case, presence/absence data must be replaced by more expensive population
density maps. Thus, a careful pre-assessment of the invasion scenario, which should include mathematical and
statistical modelling, is required before deciding on an efficient monitoring protocol and control measures.

Acknowledgements. The first author (NBP) thanks Tilo Burghardt for drawing her attention to the MATLAB image
processing package.
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