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Abstract: Carbohydrate (CHO) ingestion during exercise lasting less than three hours improves
endurance exercise performance but there is still debate about the optimal dose. We utilised stable
isotopes and blood metabolite profiles to further examine metabolic responses to CHO (glucose only)
ingestion in the 20–64 g·h−1 range, and to determine the association with performance outcome. In a
double-blind, randomized cross-over design, male cyclists (n = 20, mean ± SD, age 34 ± 10 years,
mass 75.8 ± 9 kg, peak power output 394 ± 36 W, VO2max 62 ± 9 mL·kg−1·min−1) completed four
main experimental trials. Each trial involved a two-hour constant load ride (185 ± 25 W) followed
by a time trial, where one of three CHO beverages, or a control (water), were administered every
15 min, providing 0, 20, 39 or 64 g CHO·h−1. Dual glucose tracer techniques, indirect calorimetry
and blood analyses were used to determine glucose kinetics, exogenous CHO oxidation (EXO),
endogenous CHO and fat oxidation; and metabolite responses. Regression analysis revealed that
total exogenous CHO oxidised in the second hour of exercise, and suppression of serum NEFA
concentration provided the best prediction model of performance outcome. However, the model
could only explain ~19% of the variance in performance outcome. The present data demonstrate
that consuming ~40 g·h−1 of CHO appears to be the minimum ingestion rate required to induce
metabolic effects that are sufficient to impact upon performance outcome. These data highlight a lack
of performance benefit and few changes in metabolic outcomes beyond an ingestion rate of 39 g·h−1.
Further work is required to explore dose-response effects of CHO feeding and associations between
multiple metabolic parameters and subsequent performance outcome.

Keywords: glucose; fat oxidation; exogenous; fatty acids; hepatic glucose output

1. Introduction

During prolonged steady state exercise, endogenous glycogen stores and circulating plasma
glucose are key substrates for energy provision. Fatigue is often reported to coincide with the
depletion of endogenous carbohydrate (CHO) stores and the dysregulation of circulating plasma
glucose concentration [1–3]. Ingesting CHO improves performance and extends exercise duration
via a range of proposed mechanisms including: better maintenance of circulating plasma glucose [1],
higher rates of exogenous [4] and total CHO oxidation, and endogenous glycogen sparing [5]. These
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proposed mechanisms do not occur in isolation but occur together facilitating force production and
improving performance and exercise capacity.

Early research by Coyle et al. [1] reported that feeding CHO maintained blood glucose
concentration and CHO oxidation rates, and in turn, exercise capacity increased 33% (3.02 versus
4.02 h) significantly in comparison to a water control. In a follow-up study [2] participants exercised to
exhaustion and were then provided with either no CHO, ingested CHO, or infused CHO. Both CHO
provision conditions increased exercise duration on commencement of exercise in comparison to no
CHO. However, only the infusion condition maintained blood glucose concentration sufficiently to
subsequently extend exercise duration above that of the CHO ingestion trial. The authors concluded
that the maintenance of blood glucose concentration was the critical factor for maintaining sufficient
CHO oxidation rates to extend exercise capacity.

Further research has indicated that the maintenance of higher CHO oxidation can be primarily
explained by an increase in exogenous CHO oxidation rates [4]. An elevation in exogenous CHO
oxidation rate and enhanced endurance exercise performance are now believed to be directly associated,
despite little systematic evaluation to date. As a result, increasing exogenous CHO oxidation rate
is thought to be essential for the enhancement of endurance performance when ingesting CHO
throughout a range of 20–100 g·h−1. This relationship has led some researchers to hypothesise
that maximising exogenous CHO oxidation rate, through use of glucose: fructose combinations at
high feeding rates will result in further performance gains [6]. However, most studies examining
performance benefits of multiple transportable CHO ingestion have been conducted in comparison
to isocaloric single source CHO. The findings using this model are likely to be confounded by
gastrointestinal issues when ingesting single source CHO at high feeding rates. At lower feeding
rates, Smith et al. [4] demonstrated that the largest improvement in performance occurred when
ingesting 60 g·h−1 in comparison to 15 or 30 g·h−1. The 60 g·h−1 ingestion rate also resulted in the
highest exogenous CHO oxidation rate. These authors reported a non-significant but ‘likely’ 2.3%
improvement in performance when comparing 60 vs. 30 g·h−1 suggesting a dose-response effect of
CHO feeding rate. We recently reported that a 2.3% performance gain would not necessarily be ‘likely’
due to typical variance observed in performance outcome measures [7] when using a more suitably
powered design. In addition, there has yet to be an extensive exploration of the association between
multiple metabolic variables and subsequent exercise performance outcomes using a dose-response
investigation. Thus, more work remains to be done to determine the key factors driving performance
improvement in exercise lasting <3 h. In our previous work [7] a lack of any further improvement in
performance when feeding 64 g·h−1 in comparison to 39 g·h−1 suggests that the metabolic alterations
with feeding rates as low as 39 g·h−1 could be sufficient to maximise performance gains within this
feeding rate range. As such, peak exogenous carbohydrate oxidation rate may not be the sole, or key,
determining factor for performance enhancement during exercise lasting less than 3 h with the single
source CHO doses studied.

Feeding CHO during exercise influences the usage of endogenous glycogen stores. Several
studies have assessed endogenous glycogen utilisation using stable isotopes during 1–2 h of moderate
intensity exercise. McConnell et al. [8] provided participants with 100 g·h−1 of CHO during 2 h of
exercise at 69 ± 1% VO2peak. Hepatic glucose output was suppressed in comparison to a control
trial and remained close to baseline rates throughout the exercise bout. The authors calculated that
a 51% reduction in hepatic glucose production occurred as a result of consuming 100 g·h−1 CHO
in comparison to the control. Furthermore, Jeukendrup et al. [5] provided 30 and 180 g·h−1 of a
glucose based CHO beverage during a 2 h moderate intensity exercise bout. They reported reduced fat
oxidation rates, increased rate of appearance (Ra) and rate of disappearance (Rd) of glucose, and an
increase in the oxidation of exogenous CHO particularly with the higher glucose dose. Endogenous
muscle glycogen oxidation rates were not altered with either 30 or 180 g·h−1 of CHO in their study.
However, liver glycogen breakdown was reduced when consuming 30 g·h−1, and completely inhibited
when consuming 180 g·h−1 of CHO. These observations suggest that only when very high doses of
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glucose are ingested can hepatic glucose production be completely inhibited. Smith et al. [4] estimated
a stepped reduction in the contribution of liver glycogen to total CHO oxidation during the second
hour of their submaximal exercise bout whilst consuming 15, 30 and 60 g·h−1 of CHO. Interestingly,
all three studies indicate that muscle glycogen was not spared with any ingestion rate provided. These
data suggest that a focus on hepatic glycogen sparing is required when considering factors likely to
influence subsequent performance outcomes.

The amount of CHO to ingest for optimal endurance performance has been widely debated.
A consensus has been reached that the maximal exogenous CHO oxidation rate that can be achieved
with glucose (single source CHO) ingestion is around ~1 g·min−1. As previously mentioned,
Smith et al. [4] suggested the existence of a dose response relationship between CHO ingestion
rate and endurance exercise performance enhancement when feeding 0, 15, 30 and 60 g·h−1 of glucose.
However, their initial study was underpowered. Their study was followed up with a multicentre
investigation which presented evidence for a curvilinear dose response relationship with ingestion
rates of a multi-source CHO beverage spanning 0 to 120 g·h−1 with a statistically optimal ingestion
rate reported as 78 g·h−1. However, whether maximal exogenous oxidation rates driven by higher
CHO ingestion rates result in optimal performances during endurance tasks requires further metabolic
analysis. Until now our previously published work is the most suitably powered and most statistically
robust study design to indicate the lack of a clear dose response relationship with ingestion rates
between 20 and 64 g·h−1 [7]. However, from these data alone we are unable to determine what the
underlying physiological explanations were for the plateau in performance. We now present the
metabolic data to explore these performance changes more comprehensively.

As such, in the present manuscript we aimed to explore the metabolic responses to submaximal
endurance exercise with CHO ingestion rates between 0 and 64 g·h−1. We specifically aimed to:
examine glucose kinetics and quantify or estimate the total substrate usage from exogenous and
endogenous glycogen stores by utilising stable isotopic tracers; measure key circulating metabolites;
quantify the percentage contribution of key substrates throughout the exercise bout. We hypothesised
that during exercise lasting <3 h there would be a minimum effective dose of CHO required to result
in optimal metabolic responses, and endogenous CHO sparing, linked to improved performance
outcome. We also hypothesized that both exogenous CHO oxidation rate and reduction in hepatic
glucose production would be the key parameters most closely associated with performance outcomes.

2. Materials and Methods

2.1. Participants

Twenty trained male cyclists were recruited from regional cycling and triathlon clubs. The mean
(±SD) characteristics of the participants were: age 34.0 (±10.2) years, body mass 74.6 (±7.9) kg, stature
178.3 (±8.0) cm, peak power output (PPO) 393 (±36) W, power output (PO) at lactate threshold 206
(±30) W and VO2max 62 (±9) mL·kg−1·min−1. Participants were required to have been training
for >6 h/week for >3 years. Each individual had the procedures and associated risks explained
prior to providing written informed consent to participate in the study. The study was approved by
the University of Stirling, Research Ethics Committee (SSREC number 604) in accordance with the
Declaration of Helsinki. In some circumstances, not all participants were included in all datasets.
Unfortunately, 2 participants had to be removed from all stable isotope and substrate use data due
to measurement errors. Hence, the characteristics of participants included in the stable isotope
analyses were: body mass 76.9 (±8.4) kg, stature 178.7 (±8.1) cm, PPO 392 (±34) W, VO2max 61.2
(±8.2) mL·kg−1·min−1 and PO at lactate threshold 206 (±30) W.

2.2. Pretesting

Following pre-screening, on week one of six, after a ten hour overnight fast, participants
performed a two-part incremental cycle test (Lode Excalibur Sport, The Netherlands) to determine
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lactate threshold (LT), maximal oxygen uptake (VO2max), and peak power output as described
previously [7]. The mean ± SD lactate concentration at LT was 2.1 ± 0.4 mmol·L−1 corresponding to
an intensity of 52 ± 6% of PPO for LT which is typical of other studies utilising a similar protocol [9].
The test end time and power output of the final stage was used to calculate peak power output (PPO)
using the following Equation (1) [10]:

PPO = Wfinal + ([t/60] × PI) (1)

where, Wfinal = the power output of the final completed stage in (watts), t = the time spent in the final
uncompleted stage (seconds), 60 = the duration of each stage (seconds) and PI = the increase in power
output between each stage (W). Maximal oxygen uptake (VO2max) was assessed via an automated
online gas analyser (Oxycon Pro, Jaeger, Wuerzerberg, Germany). VO2max was determined as the
highest average VO2 captured over a 30 s period.

2.3. Design

In a double blind, placebo controlled, randomised cross-over study design participants visited the
laboratory for 5 experimental trials (1 preliminary and 4 intervention) over a five-week period. They
completed one visit per week commencing each trial on the same day of the week and at the same time
of day. On the first of these trial visits participants completed a full familiarisation. The familiarisation
trial and the four subsequent intervention trials consisted of a 120 min steady state submaximal cycle
ergometer ride at 95% lactate threshold (185 ± 25 W). Participants were asked to record their habitual
dietary intake for 48 h prior to visit one and replicate this dietary intake for the two days prior to each
subsequent visit. Additionally, participants were asked to arrive at the laboratory following a ~10 h
overnight fast. Water was ingested before and during the familiarisation trial and was consumed at a
rate of 1 L·h−1. Thereafter, participants consumed in a counterbalanced randomized cross-over design
either: 0%, 2%, 3.9% or 6.4% CHO solutions before and during exercise at a fluid ingestion rate of
1 L·h−1. The 0% trial was a water control trial. Blood samples, expired gas collection and subjective
measures were obtained every 15 min throughout the submaximal ride.

2.4. Experimental Trials

On arrival at the laboratory, participants emptied their bladder and bowel prior to nude body
mass measurement. Participants then changed into cycling clothing. Teflon catheters were placed into
an antecubital vein in each arm. One catheter was attached to a three way stop cock to enable stable
isotopic tracer infusion. The second was attached to a 10-cm extension line for multiple venous blood
sampling. The sampling line was kept patent with a sterile saline solution flush (2 mL) following
each sample collection. A baseline blood sample was drawn (10 mL) prior to commencing the primed
(18.54 µmol·kg−1) continuous (0.32 µmol·kg−1·min−1) infusion of 6,6,2H2 glucose via a calibrated
syringe pump (Asena GS Syringe Pump; Alaris Medical Systems, Basingstoke, UK) over 60 min at rest.
Further blood samples were drawn at 30 min prior to and at the start of exercise for later determination
of isotopic enrichments. The concentration of isotopic tracer in the infusate and the pre and post
syringe weights were both determined to confirm the actual infusion rate achieved.

2.5. Immediately Pre Exercise

Five minutes prior to the start of exercise, a resting breath sample was collected into an expired
gas-sampling bag (Quintron QT00892 GaSampler, Milwaukee, WI 53215, USA). 10 mL gas samples
were immediately drawn into a 10 mL syringe from the bag and secured with a three way stop cock.
Samples were then extracted with a 21G needle directly, and in duplicate, into evacuated exetainer
tubes (Labco, High Wycombe, UK) for the determination of the CO2 isotopic ratio of 13C/12C. Two
minutes prior to the start of exercise, a further blood sample was collected and the first bolus of CHO
test solution was provided (240 mL). The infusion rate of the deuterated glucose tracer was then
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doubled at the start of exercise (to 0.64 µmol·kg−1·min−1) to accommodate for the increased turnover
of glucose during exercise and to maintain plasma enrichment.

2.6. The 2 h Preload Ride and Performance Task

Participants then completed a 2 h submaximal ride at 95% LT (185 ± 25 W, 59 ± 7% of VO2max).
In the last 3 min of each 15 min time segment a breath by breath gas capture was obtained for the
determination of VO2 and VCO2 (Oxycon Pro, Mannheim, Germany). Immediately following the
expired gas collection participants removed the mouth piece and provided a single end-tidal breath
sample into a breath sample bag (Quintron QT00892 GasSampler, Milwaukee, WI 53215, USA) for the
determination of 13C/12C ratio as per the baseline sample. Following the breath sampling a 10 mL
blood sample (10 mL) was drawn and stored on ice prior to centrifugation. Finally, participants
were asked to rate their perceived exertion [11] before ingesting a volume of test drink (220 mL).
This was repeated every 15 min throughout the 2 h ride. Following this a performance task lasting
approximately 30 min was conducted and is reported elsewhere [7].

2.7. Carbohydrate Solutions

During the 2 h preload ride, each of four solutions were consumed in randomized double-blind
fashion: 0% water (control); 2.0%; 3.9%; or 6.4% glucose (single source CHO) based commercially
available solutions. All test solutions were maintained at 10 ◦C and were consumed at a rate of 1 L·h−1

providing 0, 20, 39 and 64 g·h−1 of CHO respectively. The 20 g·h−1 solution contained 37 mg of sodium
per 100 mL with the 39 and 64 g·h−1 solutions both containing 50 mg per 100 mL. Each solution was
initially provided two minutes prior to the start of exercise (240 mL) with subsequent volumes (220 mL)
consumed every 15 min. The final drink was provided at 120 min of exercise. All solutions except
for the 0% were enriched by adding 50 mg L−1 of U-13C6 glucose (Cambridge Isotopes, Cambridge,
UK) during preparation by the laboratory technician. The trial day experimental protocol is shown in
Figure 1.
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2.8. Analyses and Calculations

2.8.1. Blood

Blood samples were collected in EDTA-containing vacutainers and spun in a centrifuge at
3500 rpm for 10 min at 4 ◦C. Aliquots of plasma were then frozen and stored at −80 ◦C until further
analysis. Plasma glucose, non-esterified fatty acids (NEFA), and lactate were analysed using enzymatic
methods on an automated analyser (Ilab Aries, Instrumentation Laboratory, Warrington, UK). Plasma
insulin and adrenaline concentrations were analysed using commercially available ELISA kits (Dimedic
International, Hamburg, Germany and IBL International, Hamburg, Germany respectively). Both
ELISAs were carried out following the manufacturer’s instructions.

Plasma samples were derivatised for the analysis of [2H2] glucose and [13C] glucose content.
Briefly, 150 µL of plasma and 150 µL of distilled water with added hydrochloric acid (pH 2) was added
to a glass vial and mixed vigorously for 10 s. 3 mL of methanol: chloroform (2.3:1) (500 mL = 348:152)
was then added and mixed on a plate shaker (300 rpm) for 3 min. Samples were then centrifuged at
4 ◦C at 3500 rpm for 15 min. The supernatant was then pipetted into a new glass vial. Here 2 mL of
chloroform and 1 mL of distilled water (pH 2) were added and mixed for 15 min on a plate shaker
at 300 rpm. Samples were then centrifuged at 4 ◦C for 15 min at 3500 rpm. The supernatant was
then pipetted into a new glass tube. The glass tubes were then transferred to a nitrogen drying rack
and incubated at 40 ◦C for ~2 h until the vials were dry. Once dried 150 µL of butaneboronic acid
(10 mg/1 mL pyridine) was added and mixed on a plate shaker for 15 min. Once mixed samples were
then incubated at 95 ◦C for 30 min before 150 µL of acetic anhydride was added and mixed at 300 rpm
for 90 min. Samples were then dried under nitrogen gas and incubated at 40 ◦C until dry. Samples
were prepared for the GC-MS and GC-C-IRMS by adding 150 µL of ethylacetate and mixing for 10 min.
[6,6,2H2] enrichment was determined by gas chromatography mass spectroscopy (GCMS) using
selected ion monitoring at molecular weights of 297 and 299 ([12C] and [2H2] respectively). Plasma
[13C] content was assessed using gas chromatography combustion isotope ratio mass spectroscopy
(GC-C-IRMS). Plasma 13C glucose enrichment was determined using the method of Pickert et al. [12],
modified for use with gas chromatography-combustion-IRMS (GC-C-IRMS). The glucose derivative
(1 µL) was injected into the GC (split ratio 1:15) and analysed by GC-C-IRMS (GC, Trace GC Ultra; C,
GC Combustion III; IRMS, Delta Plus XP; all Thermo Finnigan, Herts, UK).

2.8.2. 13C Breath Samples

Breath samples were analysed in duplicate for 13C/12C ratio by continuous-flow IRMS (GC, Trace
GC Ultra; IRMS, Delta Plus XP; both Thermo Finnigan, Herts, UK).

2.8.3. Substrate Oxidation

Expired gas analysis was used to estimate rates of substrate oxidation from VO2 and VCO2 every
15 min. These breath measures were averaged every 4 breaths and the mean of these were taken from
the last 60 s of a 3-min sampling period. Whole body substrate oxidation calculations were based on
those proposed by Jeukendrup and Wallis [13]:

CHO oxidation rate (g·min−1) = 4.210 VCO2 − 2.962 VO2 (2)

Fat oxidation rate (g·min−1) = 1.695 VO2 − 1.701 VCO2 (3)

where VCO2 and VO2 are measured in litres per minute. Once the rate of substrate usage was
determined during each 15-min breath by breath capture, the rates calculated in grams per minute
were multiplied by 15 and summed from each time point to provide an estimate of the total substrate
use during the whole exercise bout. Protein oxidation was considered as negligible.
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2.8.4. Tracer Calculations

The isotopic enrichment in the expired breath samples was expressed as mean difference between
the 13C/12C ratio of the sample and a known laboratory reference standard using the following formula
to enable calculation of exogenous carbohydrate oxidation:

Exogenous CHO oxidation (g·min−1) = VCO2 [(Rexp − Rref)/(Rexo − Rref)]/k (4)

where VCO2 is in litres per minute, Rexp is the observed isotopic composition of expired CO2, Rref is the
isotopic composition of expired CO2 with the ingestion of the placebo, Rexo is the isotopic composition
of exogenous glucose ingested in the drink and k (0.747 L·g−1) is the volume of CO2 produced by the
complete oxidation of glucose.

2.8.5. Percentage Contribution of Substrates (Second Hour of Exercise)

Once the total amount of exogenous carbohydrate oxidation had been determined, this rate was
extrapolated over the previous 15 min period to determine total grams of exogenous carbohydrate
oxidised in each time period from 60 min of exercise onwards. Only the second hour of exercise was
considered as exogenous carbohydrate oxidation rates are stable. The total exogenous carbohydrate
oxidised was subtracted from the total carbohydrate oxidised over the same time period to give
an estimate of endogenous carbohydrate oxidation. The endogenous and exogenous carbohydrate
oxidised totals were then multiplied by 4.07 to provide total carbohydrate energy expenditure in
kcal for each carbohydrate source. The total fat oxidised was multiplied by 9.75 to give total energy
expenditure (kcal) for fat oxidation [13]. The total energy expenditure from all three substrates was
then summed and each component was expressed as a percentage of the total energy expenditure over
the second hour of exercise.

2.8.6. Glucose Kinetics

From the 6,6,2H2 tracer infusion the Ra and Rd of glucose were calculated with the single pool
non-steady state equations of Steele, as modified for use with stable isotopes [14]. Total Ra represents
the total splanchnic glucose from ingested CHO and liver derived glucose:

Ra total = F − (pV × (C1 + C2)/2 × (E2 − E1)/(t2 − t1))/(E2 + E1)/2) (5)

Rd total = Ra total − V × (C1 + C2/t2 − t1) (6)

where F is the infusion rate (mg·kg−1·min−1); El and E2 are the [2H2] glucose enrichments (MPE) in
plasma at time points t1 and t2 (min), respectively; C1 and C2 are glucose concentrations (mg·mL−1) at
t1 and t2, respectively; and pV is volume of distribution which was set at 40 mL·kg−1 to coincide with
the findings of Wolfe et al. [15].

2.8.7. Estimation of Liver Glucose Contribution

Liver glucose contribution has been estimated from the following calculation:

Whole body glucose Ra (Rabody) g·min−1 = Ra × body mass × 1000 (7)

Estimation of liver glucose contribution to glucose Ra (%) = 100 − ((EXO/Rabody) × 100) (8)

where Ra is the total Ra previously calculated (mg·kg−1·min−1), and the body mass is the pre-trial
body mass measure taken before each trial (kg). The factor of 1000 is to convert from mg to grams.
EXO is the exogenous CHO oxidation rate (g·min−1) calculated previously. These calculations serve as
an estimation of hepatic glucose contribution during the second hour of exercise [5].
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2.9. Data Presentation and Statistical Analysis

All data are presented as mean (±SD) unless otherwise stated. Unfortunately, two participants
had to be removed from all stable isotope and substrate use data due to measurement errors making
these data n = 18. Specific reference to how many participants are included in each dataset is made for
each variable considered. Three factor repeated measures analysis of variance was used to determine
treatment, time, period (order) main effects and treatment x time interaction effects. Where a significant
period effect was observed then period was used as a covariate and the analysis re-run. Significant
main and interaction effects were explored using post hoc Tukey’s comparisons to indicate where these
differences occurred. Pearson correlation analysis was performed to examine associations between
individual metabolic parameters and the performance outcome differences on 20, 39 and 64 g·h−1

trials compared to 0 g·h−1. Stepwise linear regression analysis was used to find the best prediction
model for performance outcome using multiple metabolic parameters. An alpha value of 0.15 was
used for inclusion and exclusion of variables from the model at any given step. An alpha value of 0.15
was chosen to ensure variables were not included or excluded too easily from the model. In addition,
a best subsets regression analysis was performed on all metabolic variables. In all cases statistical
significance was accepted at p < 0.05.

3. Results

3.1. Participants

Twenty male competitive cyclists completed all trials in this study. All treatments were tolerated
well by participants. Tremendous effort was made to ensure all data points were collected, though
some data sets had to be removed due to technical problems. As such, all data for substrate oxidation
are for n = 18 due to the absence of 13C tracer on one CHO trial for one participant, and expired gas
analysis analytical problems during exercise with one other participant. All other data are for n = 20.

3.2. Performance Task Outcomes

Performance task data (n = 20) has been reported elsewhere [7]. Briefly, endurance cycling
performance was equally improved with carbohydrate provision when ingested at a rate of 39 or
64 g·h−1 in comparison to water placebo (0 g·h−1). No significant difference in performance task time
was noted between 20 g·h−1 and 0 g h−1 treatments, or between 39 and 64 g·h−1 treatments (Table 1).

Table 1. Performance task outcome data on trials where 0, 20, 39 and 64 g·h−1 of carbohydrate
was ingested.

Variable Performance Time (min) Percentage Change from 0 g·h−1 (%) Cohen’s Size Effect from 0 g·h−1

0 g·h−1 37:01.9 ± 05:35.0 - -
20 g·h−1 35:17.6 ± 04:16.3 3.7 (95% CI −1.5–8.8; p = 0.13) 0.6 (95% CI −0.1–1.4)
39 g·h−1 34:19.5 ± 03:07.1 6.1 (95% CI 1–11.3; p = 0.02) 1.0 (95% CI 0.2–1.7)
64 g·h−1 34:11.3 ± 03:08.5 7.0 (95% CI 1–12, p = 0.01) 1.0 (95% CI 0.3–1.8)

3.3. Substrate Oxidation

3.3.1. Respiratory Exchange Ratio

RER data analysis (n = 18) revealed a significant main effect of time (p < 0.01), treatment (p < 0.01),
and period (p < 0.01) but no interaction (p = 0.39). Period was subsequently treated as a covariate for
all further analyses. Pairwise comparisons of time indicated that RER values declined with exercise
duration. Comparisons of treatment indicated the 0 g·h−1 treatment RER was significantly (p < 0.01)
lower in comparison to 20, 39 and 64 g·h−1 (Figure 2A). Mean (SD) RER on the trials was 0.90 (0.03),
0.91 (0.03), 0.92 (0.03) and 0.92 (0.03) for 0, 20, 39 and 64 g·h−1 respectively.
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Figure 2. Mean (SD) (A) respiratory exchange ratio; (B) estimated rate of carbohydrate oxidation and
(C) estimated rate of fat oxidation during submaximal exercise when consuming 0, 20, 39 and 64 g·h−1

of CHO. RER values are significantly (* p < 0.01) lower from time point 60 min onwards in comparison
to 15 min values, with the 0 g·h−1 treatment eliciting a significantly (p < 0.01) lower mean RER over the
two hours in comparison to 20, 39 and 64 g·h−1. A comparison of time indicated CHO oxidation rates
at 90 min onwards were significantly lower than 15 min with the 0 g·h−1 treatment being significantly
lower than 20, 39 and 64 g·h−1. Post hoc comparisons indicated the mean rate of fat oxidation was
significantly lower when consuming 39 and 64 g·h−1 of CHO compared to 0 g·h−1. Additionally, time
comparisons indicated an increase in fat oxidation from 45 min onwards in comparison to rates at
15 min.

3.3.2. Whole Body Substrate Oxidation

Analysis of the carbohydrate oxidation data (n = 18) indicated a significant effect of time (p < 0.01),
treatment (p < 0.01), and period (p < 0.01) but no interaction effect (p < 0.58). Period was treated as a
covariate for all subsequent analysis. Pairwise comparisons over time indicated that estimated rate
of CHO oxidation was declining over time with measures from 90 min onwards being significantly
lower than 15 min values. Treatment pairwise comparisons revealed that the lowest CHO oxidation
rate occurred when consuming the 0 g·h−1 treatment with significant increases in oxidation when
consuming 20 and further increases when consuming 39 and 64 g·h−1 in comparison to 20 g·h−1

(Figure 2B). Total CHO oxidation on the trials was 279 (58), 298 (52), 302 (47) and 312 (56) g for 0, 20, 39
and 64 g·h−1 respectively of which 0 was significantly different (p < 0.01) from 64 g·h−1.

Results for estimated rate of fat oxidation (n = 18) indicated a significant effect of time, treatment
and period (all p < 0.01) but no interaction effect (p = 0.82). Period was treated as a covariate with all
further comparisons. Pairwise comparisons of time indicated an increase in fat oxidation rates with
increase in exercise duration. Fat oxidation was higher from 45 min onwards compared with 15 min
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values. Additional pairwise comparisons revealed that consuming the 0 g·h−1 treatment resulted in the
significantly higher mean fat oxidation rates in comparison to 39 and 64 g·h−1 (Figure 2C). Estimated
total fat oxidation was 51 (15), 45 (15), 43 (15) and 42 (15) g for 0, 20, 39 and 64 g·h−1 respectively of
which no total oxidation was significantly different from another.

3.3.3. Exogenous Carbohydrate Oxidation and Whole-Body Substrate Contribution to Total Energy
Expenditure

Data for exogenous carbohydrate oxidation (n = 18) indicated significant main effects of treatment
(p < 0.01), time (p < 0.01), period (p < 0.01) and an interaction effect between treatment and time
(p < 0.01). Period was included as a covariate for all further comparisons. Pairwise comparisons
indicated that exogenous CHO oxidation rates were significantly different between all treatments
from the 60-min time point until the end of exercise. Specifically, exogenous CHO oxidation rates
were higher in comparison to the 20 g·h−1 treatment by 0.13 (95% CI: 0.10 to 0.15) and 0.29 (95% CI:
0.27–0.31) g·min−1 on the 39 and 64 g·h−1 treatments. Additionally, the 64 g·h−1 treatment increased
exogenous oxidation rates at 75, 90, 105 and 120 min above the 60 min rates highlighting that exogenous
CHO oxidation was still rising from 60 min onwards on this trial. Similarly, when consuming 39 g·h−1

the values at 90, 105 and 120 min also were significantly increased above the 60 min values, and at 105
and 120 min in comparison to 60 min for the 20 g·h−1 treatment (Figure 3A).
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Figure 3. Mean (SD) exogenous carbohydrate (CHO) oxidation rates during submaximal exercise
(A) while consuming 0, 20, 39 and 64 g·h−1 of CHO. ˆ indicates time point values significantly
(p < 0.01) different in comparison to 60 min values; # indicates that all trials are significantly (p < 0.01)
different from each other at the indicated time point; (B) Percentage contribution of total carbohydrate
oxidation rates from endogenous and exogenous sources during the second hour of exercise; 1 Indicates
significantly different from 0 g·h−1; 2 indicates significantly different from 20 g·h−1; and 3 indicates
significantly different from 39 g·h−1.
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Percentage contribution of fat oxidised in the second hour of exercise (n = 18) revealed significant
effects of treatment (p < 0.01) and period (p < 0.01). Following inclusion of period as a covariate,
pairwise comparisons of treatment indicated the percentage contribution of fat oxidation was
significantly lower when consuming 39 (−7.5, 95% CI: −1.6 to −13.4%) and 64 (−8.9, 95% CI: −3.1
to −14.8%) g·h−1 in comparisons to consuming 0 g·h−1. Endogenous carbohydrate percentage
contribution highlighted significant effects of treatment (p < 0.01) but not period (p = 0.39). Pairwise
comparisons of treatment indicated that endogenous carbohydrate percentage contribution was
significantly suppressed in the 39 and 64 g·h−1 trials (−7.3, 95% CI: −1.6 to −13.1 and −11.2, 95% CI:
−5.5 to −16.9 respectively) compared to the 0 g·h−1 treatment, respectively. Additionally, consuming
carbohydrate at 64 g·h−1 suppressed endogenous carbohydrate percentage contribution by −7.2%
(95% CI: −1.5–13.0%) in comparison to the 20 g·h−1 treatment. Exogenous carbohydrate oxidation
percentage contribution demonstrated a significant effect of treatment (p < 0.01). Pairwise comparisons
indicated that for exogenous carbohydrate oxidation all treatments were significantly different from
one another (Figure 3B).

Glucose Ra values (n = 18) were mirrored by that of the Rd values, and as such statistical analysis
outcomes for both data sets were almost identical. Analysis of the glucose Ra and Rd indicated
significant effects of treatment (p < 0.01), time (p < 0.01), period (p < 0.01) and an interaction of
treatment by time (p < 0.01). Period was treated as a covariate for all subsequent analysis. Post hoc
comparisons revealed that consuming CHO resulted in a significantly higher glucose Ra of 1.98 (95%
CI: 1.37–2.58), 2.12 (95% CI: 1.52–2.72), and 3.65 (95% CI: 3.05–4.25) mg·kg−1·min−1 for the 20, 39
and 64 g·h−1 treatments respectively, when compared to the 0 g·h−1 condition. Post hoc interaction
comparisons indicated a significant increase in glucose Ra when consuming 39 and 64 g·h−1 compared
to 0 g·h−1 at time points from 75 min onwards. Additionally, during the 20 g·h−1 trial glucose Ra was
significantly increased over the control condition at time points from 90 min onwards. Glucose Ra
values were significantly increased over the 60 min time point value from 75 to 120 min in the 64 g·h−1,
105 to 120 min with 39 g·h−1, and only at 120 min in the 20 g·h−1 Trial (Figure 4A,B).

In the analysis of the contribution of liver glucose to total Ra (n = 18), significant effects of treatment
(p < 0.01) but not time (p = 0.13) or interaction (p = 0.89) were observed. Pairwise comparisons of
treatment indicated that the percentage contribution of liver glucose to total Ra was significantly
reduced between 20 and 39 g·h−1 feeding rates (−17.8%, 95% CI: −22.8 to −12.8%), and further
significantly reduced when comparing 39 to 64 g·h−1 (−11.6%, 95% CI: −16.6 to −6.6%). These
reductions represent a mean percentage suppression of liver glucose output of 43 (14%), 61 (14%) and
72 (23%) for the 20, 39 and 64 g·h−1 treatments, respectively, in comparison to the 0 g·h−1 (Figure 4C).

3.4. Blood Plasma Measures

3.4.1. Glucose

There were main effects of time (p < 0.01), treatment (p < 0.01), period (p < 0.01) and an interaction
effect (p < 0.01) of treatment by time observed for plasma glucose response (n = 20). Period was then
used as a covariate for all further analyses. Mean glucose concentration was higher when consuming
39 g·h−1 and 64 g·h−1 (0.41 mmol·L−1 (95% CI: 0.31–0.51) and 0.46 mmol·L−1 (95% CI 0.36–0.56),
respectively) when pairwise comparisons to the 0 g·h−1 treatment were made. Consuming 39 and
64 g·h−1 also resulted in increased mean plasma glucose concentration by 0.23 (95% CI: 0.13–0.33) and
0.28 (95% CI: 0.18–0.38) mmol·L−1, respectively, in comparison to consuming 20 g·h−1. There was no
evidence of a difference between 39 and 64 g·h−1 treatments. Treatment by time interaction analysis
revealed that plasma glucose concentration was significantly increased above 0 min in the 64 g·h−1

treatment from 15 min until the end of the exercise period. Additionally, the 39 g·h−1 treatment
significantly increased plasma glucose concentration from the 0 min value at 15, 30, 45 and 60 min, as
did the 20 g·h−1 treatment at 30 and 45 min (Figure 5).
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Figure 4. Mean (SD) glucose rate of appearance (A) and rate of disappearance (B) during submaximal
exercise while consuming 0, 20, 39 and 64 g·h−1 of CHO. a, b and c indicates 64, 39 and 20 g·h−1 value
is significantly different from 0 g·h−1 at the marked time point; d indicates 64 g·h−1 is significantly
different from 20 g·h−1 at marked time point. ˆ indicates time point values significantly (p < 0.01)
different in comparison to 60 min values. Mean (SD) estimation of the contribution of liver glucose to
total glucose Ra during submaximal exercise (C) while consuming 20, 39 and 64 g·h−1 of CHO. There
was a significant treatment effect whereby 64 g·h−1 was significantly different from 20 g·h−1 (d) and
39 g·h−1 (e); and 39 g·h−1 was significantly (p < 0.01) different from 20 g·h−1 (f).
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treatment and time (p < 0.01) on plasma insulin response (n = 20). There was no effect of period  
(p = 0.14). On average insulin concentration increased by 2.5 (95% CI: 1.3–3.7), 5.2 (95% CI: 4.0–6.4) 
and 7.3 (95% CI: 6.1–8.5) µIU·mL when consuming 20, 39 and 64 g·h−1 CHO, respectively, compared 
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Figure 5. Mean (SD) plasma glucose (A); insulin (B); and non-esterified fatty acids (C) concentration
during rest (−60, −30 and 0 min), and during submaximal exercise, (15–120 min), while consuming
0, 20, 39 and 64 g·h−1 of CHO. * Values significantly different from 0 min time point. a, b and c
indicates 64, 39 and 20 g·h−1 value is significantly different from 0 g·h−1 at the marked time point;
d indicates 64 g·h−1 is significantly different from 20 g·h−1 at marked time point; e indicates 39 g·h−1 is
significantly different from 20 g·h−1 at marked time point; f indicates 39 and 64 g·h−1 are both different
from the 20 g·h−1 at the marked time point.

3.4.2. Insulin

There were main effects of time (p < 0.01), treatment (p < 0.01), and an interaction effect between
treatment and time (p < 0.01) on plasma insulin response (n = 20). There was no effect of period
(p = 0.14). On average insulin concentration increased by 2.5 (95% CI: 1.3–3.7), 5.2 (95% CI: 4.0–6.4)
and 7.3 (95% CI: 6.1–8.5) µIU·mL when consuming 20, 39 and 64 g·h−1 CHO, respectively, compared
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to the 0 g·h−1 trial. Insulin concentration significantly increased from pre ingestion (0 min) values at
15–60 min time points for 64 g·h−1, and at 30 and 45 min for 39 g·h−1. Further pairwise comparisons
revealed that insulin concentration was significantly elevated in the 39 and 64 g·h−1 treatments
when compared to the 0 g·h−1 at time points between 15 and 45 min. At 30 min, consuming 39
and 64 g·h−1 also significantly elevated insulin concentration over that of consuming 20 g·h−1. The
64 g·h−1 treatment also significantly increased insulin concentration at time points 45 and 60 min when
compared to the 20 g·h−1 treatment (Figure 5).

3.4.3. Non-Esterified Fatty Acids

There were main effects of time (p < 0.01), treatment (p < 0.01), period (p < 0.01) and an interaction
of treatment by time (p < 0.01) on plasma NEFA (n = 20). Period was included as a covariate for all
further analyses. Pairwise comparisons between treatments revealed that on the 0 g·h−1 treatment
mean NEFA concentration was 0.10 (95% CI: 0.07–0.13), 0.12 (95% CI: 0.10–0.16) and 0.16 (95% CI:
0.13–0.19) mmol·L−1 higher than when consuming the 20, 39 and 64 g·h−1 treatments, respectively.
Additionally, the NEFA concentration throughout exercise on 20 g·h−1 was significantly higher
(0.06 mmol·L−1, 95% CI: 0.03–0.09) than when consuming 64 g·h−1. When consuming 0 g·h−1 all
NEFA concentrations were significantly increased above the 0 min time point from 60 min onwards.
On the 20 g·h−1 treatment plasma NEFA concentration was elevated compared to the 0 min time point
at 90, 105 and 120 min. Additionally, on the 39 g·h−1 treatment NEFA concentration increased at time
points 105 and 120 min compared to 0 min. No increase was observed on 64 g·h−1 treatment. Post
hoc interaction comparisons revealed that mean NEFA concentration in the 0 g·h−1 treatment was
significantly elevated compared to the 39 and 64 g·h−1 treatments from the 45 min time point until the
end of exercise. Additionally, the 20 g·h−1 treatment was significantly different from 64 g·h−1 at 90,
105 and 120 min. Finally, the 20 g·h−1 treatment significantly elevated plasma NEFA concentration in
comparison to the 0 g·h−1 at time point 90 min (Figure 5).

3.4.4. Lactate

Plasma lactate concentration (n = 20) revealed a significant effect of time (p < 0.01) and an effect of
treatment (p = 0.02) but no interaction (p = 0.84), and no period effect (p = 0.57). Post hoc comparisons
of time indicated that all exercising lactate concentrations were elevated above resting values, though
there was no significant difference between trials. Mean plasma lactate concentration was 1.06 (0.38),
1.09 (0.35), 1.04 (0.29) and 1.10 (0.36) mmol·L−1 for 0, 20, 39 and 64 g·h−1 trials, respectively.

3.4.5. Adrenaline

Analysis of adrenaline concentration (n = 20) revealed there was a main effect of period (p < 0.01)
time (p < 0.01), treatment (p < 0.01), but no interaction (p = 0.10). Period was treated as a covariate
for all subsequent analysis. Pairwise comparisons of time indicated adrenaline concentrations were
increasing over the duration of the exercise bout. Additionally, comparisons between treatments
indicated that adrenaline concentration was highest on the 0 g·h−1 trial (0.99 ± 0.69 ng mL−1) in
comparison to the 39 g·h−1 (0.78 ± 0.38 ng mL−1) and 64 g·h−1 (0.78 ± 0.41 ng mL−1) trials. Mean
adrenaline concentration on the 20 g·h−1 trial was 0.87 (0.48) ng mL−1.

3.5. Associations between Metabolic Responses and Prediction of Subsequent Performance Outcomes

Association analysis between a number of key metabolic parameters during 2 h of exercise and
subsequent change in performance task outcome are shown in Table 2. This analysis revealed a
moderate positive association between increases in total exogenous CHO oxidized in the second
hour of exercise, and total glucose rate of disappearance in the second hour of exercise, with an
improvement in performance outcome. In addition, there was a tendency towards a moderate negative
association between change in circulating NEFA concentration and subsequent performance outcome.
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Factors such as liver glucose output suppression, mean plasma glucose, and mean plasma insulin
concentrations were not associated with the changes in performance task outcome.

Table 2. Association analysis for selected metabolic parameters, obtained on the 20, 39 and 64 g·h−1

ingestion trials, with change in performance outcome compared to 0 g·h−1.

Variable Pearson’s Correlation p-Value

Liver glucose suppression (%) −0.055 0.691
Total exogenous CHO oxidation in 2nd hour (g) 0.269 0.049 *

Total glucose Rd in 2nd hour (g) 0.291 0.033 *
Mean glucose concentration −0.045 0.747
Mean insulin concentration 0.158 0.253

∆ NEFA concentration from 0 g·h−1 −0.262 0.056 †

* Significant association between parameter and change in performance outcome from 0 g·h−1 trial; † tendency
towards significant association.

Using these metabolic parameters in a stepwise linear regression analysis revealed that the
combination of exogenous CHO oxidation in the second hour of exercise (p = 0.011) and the suppression
of circulating NEFA (p = 0.010) provided the best model to predict subsequent performance outcomes
as shown in Table 3. However, this model only explained ~19% of the variance in performance outcome
observed. The regression equation that resulted was:

Performance change from 0 (%) = 1.13 + 0.405 (Exo CHO) − 34.6 (∆ NEFA) (9)

where Exo CHO is the total exogenous CHO oxidation in 2nd hour in grams and ∆ NEFA is the
difference in NEFA concentration (mmol·L−1) in comparison to consuming the 0 g·h−1. Finally,
a best subsets analysis was conducted on all variables included in the regression. Including all
variables reported in Table 2, except for mean glucose concentration, explained 23% of the variance
in performance.

Table 3. Stepwise regression analysis of metabolic variables, obtained on the 20, 39 and 64 g·h−1

ingestion trials, with change in performance outcome compared to 0 g·h−1.

Model Variable (ID) R2 p (Variable ID)

1 (1) Total glucose Rd in 2nd hour (g) 0.087 0.033 (1) *
2 (2) +∆ NEFA concentration from 0 g·h−1 0.126 0.129 (2), 0.074 (1) *
3 (3) +Total exogenous CHO oxidation in 2nd hour (g) 0.192 0.048 (3) *, 0.032 (2) *, 0.48 (1)
4 (4) −Total glucose Rd in 2nd hour (g) 0.184 0.011 (2) *, 0.010 (3) *

Alpha-to-enter = 0.15; Alpha-to-remove = 0.15; * indicates a significant (p < 0.05) component in the model.

3.6. Heart Rate and RPE

There were significant effects of time, treatment and period (p < 0.01) but no interaction effect
(p > 0.99) for heart rate. Period was treated as a covariate for all subsequent analysis. Pairwise
comparisons indicated that heart rate tended to increase with increasing exercise duration. In addition,
post hoc comparisons of treatment indicated a significant difference between 0 and 64 g·h−1 with a
mean difference of 4 (95% CI: 2, 6) beats per minute between the two trials. The mean heart rates for
each treatment were 135, 137, 136 and 139 for 0, 20, 39 and 64 g·h−1 respectively.

There was a significant effect of time (p < 0.01) and period (p = 0.02), but not treatment (p = 0.83)
or interaction (p = 0.94) effects on RPE responses to exercise. Period was treated as a covariate for all
further comparisons. Post hoc comparisons indicated that mean RPE scores increased from 13 to 14
from minute 60 to minute 120.
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4. Discussion

During this investigation, we aimed primarily to characterize the metabolic response of
trained cyclists to the ingestion of graded amounts of CHO during a two-hour submaximal ride
to explore the dose-response. Our secondary aim was to determine the strength of association
between selected metabolic parameters and prediction of the performance task outcomes, previously
reported elsewhere [7]. We observed that increasing rates of CHO ingestion (particularly at 39 and
64 g·h−1) during non-exhaustive submaximal exercise resulted in: (1) a reduction in the contribution
of endogenous carbohydrate and fat stores to total energy provision; (2) a decrease in hepatic
glucose output in a dose response manner; (3) an increase in the contribution of exogenous CHO
oxidation to total energy contribution in a dose response manner; (4) an increase in rate of total
carbohydrate oxidation and plasma glucose turnover; (5) increased circulating blood glucose and
insulin concentration; and (6) a blunting of the circulating NEFA response to exercise. While
individually these responses to increasing doses of CHO feeding are not unforeseen the novel aspect
of the present study is the examination of dose-response effects in all of these responses. Moreover, the
correlation and regression analyses indicate that the rate of exogenous CHO oxidation and suppression
of NEFA are the two most closely linked to a significant prediction of subsequent performance
task outcome.

The significant alterations in fuel selection observed with the ingestion of 39 and 64 g·h−1 of CHO
in comparison to 0 or 20 g·h−1 closely compliment the performance task outcome data previously
reported [7]. In addition, the ingestion of 64 g·h−1 had no added effect, over 39 g·h−1, on many of
the key metabolic responses to exercise, but it did result in an increased rate of exogenous substrate
oxidation, and a further blunting of hepatic glucose output, when compared with the 39 g·h−1

trial. A difference in exogenous CHO oxidation rate and hepatic glucose output, two key metabolic
parameters, between the 39 and 64 g·h−1 trials might be expected to impact subsequent performance,
but no impact was observed. Interestingly, the best subsets regression analysis indicated that some
other metabolic parameters were also associated with change in performance in relation to graded
doses of CHO ingestion. These other predictors were mean insulin concentration, and suppression
in circulating plasma NEFA. The lack of difference in insulin or NEFA response between the 39 and
64 g·h−1 trials suggests that, with ingestion of a dose of single source CHO up to 64 g·h−1 over a
two-hour exercise bout, there seems little metabolic advantage of going beyond ~40 g·h−1.

Many investigators have observed a significant difference in plasma insulin and NEFA
concentration with the ingestion of CHO during submaximal exercise, and a subsequent alteration of
fuel utilization [5,16]. However, the only previous dose-response study [4] did not observe differences
in insulin or NEFA response between the two highest CHO doses ingested (30 and 60 g·h−1). The
present study data corroborate these observations and, with a more suitably powered design, suggest
that moderate amounts of CHO in the region of only 40 g·h−1 are sufficient to modulate metabolic
responses enough to impact upon subsequent performance task outcome. By utilizing stable isotopes
researchers have been able to quantify the movement of glucose into and out of the plasma pool during
exercise when carbohydrate is consumed [15]. During exercise, blood glucose can be maintained
or increased by the augmented release of glucose from the liver. In the present study, the 20 g·h−1

treatment reduced hepatic glucose output by 43% but the performance outcome (3.7% improvement)
previously reported [7] was too variable for it to be considered a significant performance enhancement.
Hepatic glucose output calculations in the current investigation reveal that all CHO ingestion rates
resulted in a reduction in hepatic glucose output, and that the magnitude of reduction essentially
followed a dose-response pattern. Higher CHO ingestion rates of 39 and 64 g·h−1 both suppressed
hepatic glucose output to a greater extent than the 20 g·h−1 treatment. Interestingly, the magnitude of
suppression in the 39 and 64 g·h−1 trials was similar or greater than that observed by McConnell et
al. [8] when they fed CHO at 100 g·h−1. This observation could suggest that even low doses of CHO at
39 and 64 g·h−1 are resulting in a near maximal suppression of hepatic glucose output, which is not
exceeded unless very high doses of CHO are ingested (i.e., 180 g·h−1; Jeukendrup [5]). The lack of



Nutrients 2018, 10, 37 17 of 20

any association between hepatic glucose output suppression and performance outcome suggests that
even modest reductions in liver glucose output, induced by feeding only 39 g·h−1 of CHO during two
hours of exercise, are sufficient to impact upon subsequent endurance task performance.

Exogenous CHO oxidation rates increase when CHO is ingested, but when a single source of
CHO is ingested these typically only reach rates of ~1 g·min−1 [5,17,18]. In the present study, rates
of exogenous CHO oxidation followed a dose-response pattern with the highest rates of around
0.75 g·min−1 achieved on the 64 g·h−1 trial. On the 39 g·h−1 trial exogenous CHO oxidation rates
reached 0.55 g·min−1. These data are slightly higher than those obtained by Smith et al. [4] in their
dose-response study. Smith et al. [4] noted rates of ~0.3 and ~0.5 g·min−1 for their 30 and 60 g·h−1

CHO ingestion trials, respectively. The lack of performance task improvement with increasing rate
of oxidation of exogenous CHO in the present study, and in the Smith et al. [4] study, suggests that
capacity to oxidize exogenous CHO at a high rate is not for the key factor driving performance
improvement. In addition, there was only a weak, albeit significant, association observed between
exogenous CHO oxidation rate and subsequent performance outcome, as well as a modest contribution
from exogenous CHO oxidation rate to prediction of performance outcome in the regression analyses.
Overall, these data suggest that higher exogenous CHO delivery and higher subsequent oxidation
likely contribute to endogenous (hepatic) glycogen sparing during two hours of endurance cycling,
and can have some impact upon subsequent performance task outcome. However, as a note of caution,
these observations may be particular to the exercise model investigated. For example, in longer exercise
task durations exceeding three hours of total activity it may well is that higher feeding rates and higher
exogenous CHO oxidation would translate to improved performance.

The blunting of fat oxidation observed only on the two highest CHO doses (39 and 64 g·h−1)
subsequently would drive fuel utilization towards a CHO dependent state. The suppression of fat
oxidation and circulating NEFA concentration was similar on both 39 and 64 g·h−1 feeding rates. Thus,
it seems that feeding of only 39 g·h−1 is sufficient to sustain exercise. Van Loon et al. [19] reported
that a suppression in adipose tissue lipolysis increases glycogen utilization in exercising humans.
While a greater dependence upon CHO oxidation was observed between 39 and 64 g·h−1 feeding
rates compared with 0 g·h−1, there was no difference in CHO usage between the two highest feeding
rates in the present study. These observations suggest that near optimal substrate metabolism changes
occurred with a feeding rate of close to 40 g·h−1.

Our results highlight that CHO provision leading to an increased oxidation of exogenous CHO,
increased total glucose disposal, and reduction in circulating NEFA, have the closest associations with
subsequent performance task outcome. Higher CHO feeding rates that reach a threshold level to blunt
circulating NEFA concentration, increase reliance on CHO oxidation, and enhance exogenous CHO
oxidation, will have the biggest impact upon subsequent performance task outcome. The threshold
required for these outcomes appears to be around 40 g·h−1 in the present study. However, these
associations are low to moderate and the threshold of CHO ingestion rate could well be influenced
by the total task duration and/or training status of participants. With longer task durations (>3 h) an
increased reliance on exogenous CHO oxidation later in exercise could enhance liver glycogen sparing
and could improve subsequent performance outcomes. Furthermore, with improved training status
comes improved capacity to oxidize substrates [20,21] which might drive the CHO provision threshold
beyond 40–60 g·h−1.

Prediction of performance task outcome from metabolic parameters was not particularly strong,
with only 19–23% of the variance in subsequent performance task outcome explained by the key
metabolic parameters in the model. Interestingly, the prediction model containing only the two
variables of exogenous CHO oxidation rate and suppression of plasma NEFA response provided
almost all of the predictive power of the model. Given that these two parameters are most closely
aligned to the actual CHO dose administered, it would seem plausible to suggest that higher doses
of CHO should result in better performance outcomes. However, further investigation into higher
rates of CHO provision and performance outcome are required before this can be categorically stated.
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Of particular interest would be studies in which comparisons are made between ingestion rates within
the 40–60 g·h−1 range using single source CHO, with those in the 90–120 g·h−1 range using multiple
transportable CHO. To date, only one study, by Baur et al. [22], has compared a single source trial with
a practically relevant feeding rate of glucose, against a multiple transportable CHO trial designed
to maximize rate of exogenous CHO oxidation. Their study compared feeding rates of glucose at
62 and 93 g·h−1 with a 2:1 glucose: fructose beverage ingested at 93 g·h−1, during three hours of
endurance cycling. Their data revealed that when compared to the 62 g·h−1 glucose trial, there was
no clear evidence of a benefit to performance compared with ingestion of 93 g·h−1 of the glucose:
fructose beverage. These data indicate that aiming to increase exogenous CHO oxidation through
consumption of composite CHO drinks at high feeding rates will not necessarily lead to meaningful
performance gains. Thus, it seems that there is a need for further investigation of CHO dose and
performance outcome. So, at high ingestion rates the use of multiple transportable CHO will likely
reduce gastrointestinal symptoms, but this does not necessarily translate into enhanced endurance
exercise performance. These previous findings may explain the lack of a strong association between
exogenous CHO oxidation rate and subsequent performance outcome in the present dataset. Thus, it
seems that in endurance tasks lasting <3 h, a feeding rate of 40 g·h−1 of single source CHO could be
considered near optimal to provide sufficient metabolic advantages to maximize performance gains.

5. Conclusions

Researchers have been aiming to identify the optimal ingestion rate of CHO to elicit the greatest
improvements in endurance performance for many years. We have reported that the ingestion of 39
and 64 g·h−1 of single source CHO were equally effective at improving endurance exercise performance
in comparison to a control condition (0 g·h−1). The data presented in the current manuscript further
demonstrate that the ingestion of 39 g·h−1 of CHO appears sufficient to alter substrate utilization
during a two-hour submaximal exercise bout, and lead to performance gains. These performance
gains partly come from preservation of endogenous glycogen stores, most likely hepatic stores, and
maintaining high rates of CHO oxidation through suppression of circulating NEFA concentration.
Ingestion of CHO at a lower rate (20 g·h−1) is insufficient for these particular metabolic changes
to occur, while increasing the rate of ingestion to 64 g·h−1 does not appear to have any additional
benefit. The lack of any additional change in many metabolic parameters when consuming 64 g·h−1

could be partly responsible for a lack of any additional improvement in subsequent performance task
outcome. From these present observations, we conclude that an ingestion rate of 39 g·h−1 is a dose
beyond which there a no further performance or metabolic benefits, suggesting that it could be an
optimal ingestion rate, to elicit a sufficient alteration in fuel provision during submaximal exercise.
While a 39 g·h−1 dose appears effective in this investigation, the observations should be confined to
the particular task duration and participant group studied. Further work is required to explore the
metabolic advantages and potential performance enhancement from higher feeding rates in more
well-trained/elite competitors, in female participants, and in tasks lasting longer than three hours.
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