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Abstract 

Despite increasing longevity, many old people are not in good health. There has been an 

increase in the prevalence of age-associated multi-morbidity (two or more chronic 

conditions in the same person).   Also, severe infections, such as pneumonia, remain 

significant causes of mortality and morbidity in this aging group.   Many chronic health 

conditions share risk factors such as increasing age, smoking, a sedentary life style and being 

part of a lower socioeconomic group. However, despite this, multi-morbidities often co-

occur more commonly than would be predicted.  This has led to the hypothesis that they 

share common underlying mechanisms.  This is an important concept, for if it were true, 

treatments could be devised which target these common pathways and improve a number 

of age-associated health conditions. 

 

Many chronic illnesses associated with multi-morbidity and severe infections are 

characterised by an abnormal and sustained inflammatory response, with neutrophils being 

key effector cells in the pathological process.  Studies have described aberrant neutrophil 

functions across these conditions, and some have highlighted potential mechanisms for 

altered cell behaviours which appear shared across disease states.  It has been suggested 

that altered functions may represent neutrophil “senescence”.   This review considers how 

and why neutrophil functions change as the cell ages, and how and why neutrophil 

functions change as the host ages in health and disease and discusses whether neutrophil 

functions could be targeted to improve health outcomes in older adults. 

 
 
 
 
  



Introduction 

Our population is aging, but longevity is not always associated with good health and an 

increasing number of our older population are burdened with frailty, ill-health and 

functional limitation1. There has been a substantial rise in the prevalence of chronic, non-

communicable diseases associated with age2.  For example, the prevalence of cardiovascular 

disease (including hypertension, coronary heart disease and heart failure) increases from 

40% in people aged 40-59 years of age3  to 70% in people aged 70 years of age4; chronic 

obstructive pulmonary disease (COPD) increases from 8% in adults aged 50 to 20% of adults 

aged 705.   Furthermore, it is increasingly common for an older person to suffer with a 

number of medical conditions.  Multi-morbidity (defined as two or more chronic diseases in 

one person6) affects approximately 65% of over 60 year olds, of which 80% live with 

disabilities6 and multi-morbidity accounts for 60% of global deaths7.   The World Health 

Organisation has recognized this burden of ill-health (increased lifespan with multi-

morbidity) as a major challenge to be faced by global health care systems8, and in 2016, the 

first multi-morbidity care guidelines were published9, although the evidence base for multi-

morbid health care pathways is limited. 

 

The most common chronic non-communicable diseases are associated with inflammation, 

for example, COPD10, type 2 diabetes11, osteoporosis12 and dementia13 and these conditions 

often co-occur. Recent studies have demonstrated patterns of disease clustering14, with 

links seen between cardiovascular disease risk factors and conditions,  metabolic conditions, 

and pain, musculoskeletal and psychological conditions15.  Many of these conditions share 

risk factors of age, cigarette smoking, lower socioeconomic group, and sedentary lifestyle 

but the odds ratio of them occurring together are greater than would be predicted once 

these common shared risk factors are taken into account3,16. 

  

As well as chronic illness, there is a significant burden of infection related mortality and 

morbidity in our aging population.  Pneumonia (a severe lung infection defined by 

symptoms of a lower respiratory tract infection and new consolidative changes on a chest 

radiograph17) remains the commonest form of infectious death in the developed world, the 

fifth leading cause of death worldwide. Pneumonia is diagnosed in approximately 10.6 per 

1000 person years18 but 75 per 1000 person years in adults aged over 7019.   Deaths are 



highest in old patients, with mortality rates not improved over the last decade20,21.  Far from 

being an acute infection, many who survive the initial episode are frailer and require more 

social support than they did prior to admission22,23.  Recovery from the primary infection is 

also associated with an increased risk of secondary infections, and the outcomes from these 

events is even less certain24.   

 

Acute bacterial infections such as pneumonia require a functional immune system, and in 

particular, a coordinated and controlled innate immune response to clear infection without 

causing excessive host tissue damage; with the neutrophil being a key effector cell.   These 

cells have been implicated also in the pathogenesis of many of the co-morbidities present in 

old age.  For example, neutrophils are associated with lung tissue destruction in COPD (as 

reviewed in 25) but are also implicated in myocardial infarction26, and type 2 diabetes 27 and 

in more general features of ill health in old age, including frailty28.   

 

Classical neutrophil functions 

Neutrophils comprise 70% of circulating white blood cells, but have a short lifespan 

(approximately a half-life of eight hours) necessitating a high daily production rate of 1-

2x1011 cells/day in health29-31.    Defined as granulocytes and phagocytes, neutrophils 

contain a specialized antimicrobial granule system and ingest target particles such as 

bacteria29,32.  During maturation, neutrophils develop their characteristic granules, which 

are traditionally divided into three sub-types; azurophilic (primary), specific (secondary) and 

gelatinase (tertiary).  Azurophilic granules contain the neutral serine proteinases, 

(neutrophil elastase, proteinase 3, and cathepsin G) myeloperoxidase (MPO) and other 

antimicrobial proteins (e.g. α-defensins)32,33. Specific (secondary) granules are also 

predominantly bactericidal and contain products such as lactoferrin32,34,35 . Gelatinase 

(tertiary) granules contain metalloproteases (MMPs) such as gelatinase which digest 

extracellular matrix and aid neutrophil migration29,36.  Neutrophils are also able to generate 

reactive oxygen species (ROS) by NADPH oxidase, an enzyme which is only activated when 

its cytosol-based and membrane-based component parts bind, a process stimulated by 

pathogenic and host-derived inflammatory signals37.   Degranulation describes mobilization 

of granules and fusion with the neutrophil membrane, causing release of contents outside 

the cell or into a phagosomal vacuole32 .  When released, granules are both anti-microbial 



and cytotoxic, and have the potential for significant tissue damage, particularly when they 

are first released from the neutrophil, as here inhibitors of granule contents (such as Alpha 

1 Antitrypsin which inhibits neutrophil elastase) are insufficient in concentration to prevent 

local protein degradation38.    

 

After release from the bone marrow, neutrophils circulate in systemic blood, displaying high 

levels of physical plasticity, allowing them to move through capillary networks with 

diameters half that of the quiescent neurophil by elongating their cell shape, without 

significant delay in transit times39,40.   Towards the end of their short half-life, neutrophils 

develop an ageing phenotype with increased surface expression of CXCR441 which is thought 

to facilitate clearance by apoptosis and subsequent efferocytosis (clearance of neutrophils 

by phagocytosis) by stromal macrophages. 

 

During an inflammatory or infectious challenge, neutrophils migrate with great accuracy 

through tissue to sites of infection and inflammation, where they phagocytose bacteria and 

cell debris.  Direction sensing is achieved via occupancy of G-protein coupled receptors 

(GPCRs) on the surface of the neutrophil, as soluble chemo-attractants (such as Interleukin-

8 (CXCL8) or bacterial N-formyl-methionyl-leucylphenylalanine (fMLP)) form gradients, 

which neutrophils sense by the binding of ligands to receptors at the leading edge of the 

cell42.   When chemokine’s bind their cognate receptors, dissociation of heterotrimeric G 

proteins activate phosphatidylinositol-3 kinase (PI3K), an enzyme which has been implicated 

in the regulation of migration43, phagocytosis44 and azurophil degranulation45. PI3K 

phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-

trisphosphate (PIP3). In health, fluctuations in PIP3 are associated with the localized 

formation of pseudopodia (temporary cytoplasm-filled projections from the neutrophil cell 

membrane), which steer the cytoskeletal rearrangement required to orient the neutrophil 

to chemo-attractant cues46 and are required for migration and opsonophagocytosis. There 

are a number of PI3K classes and isoforms, but Class 1 delta and gamma isoforms are highly 

expressed in neutrophils, and thought central to accurate migration. Downstream of PI3K, 

the small GTPases (RhoA, Rac and CDC42) organize cell polarity, motility and phagocytosis 

with Rac and CDC42 localizing at the leading edge of the cell47 and RhoA and ROCK driving 

propulsion at the rear of the cell48.  Migration through the dense extracellular matrix is 



facilitated by the sequential release of proteinases and reactive oxygen species around the 

neutrophil49, degrading a path to assist passage. Thus, the process of migration can be 

associated with tissue damage.   

 

Phagocytosis is an active, receptor mediated process50.   In unopsonized phagocytosis, 

interactions between neutrophilic pattern recognition receptors (PRRs) (such as Toll Like 

Receptors51) and surface-expressed pathogen-associated molecular patterns (PAMPs) 

support slow bacteria envelopment29.   Opsonized phagocytosis is a much more dynamic 

process, where neutrophils internalize bacteria through their opsonin receptors, Fc 

receptors and a sub-group of β2-integrins, which bind complement52.     In the presence of 

overwhelming infection or during ingestion of large particles, neutrophils display “frustrated 

phagocytosis” where they degranulate and release proteinases and reactive oxygen species 

around the semi-internalized particle into the extracellular matrix53, causing localized tissue 

damage. More recently, Neutrophil Extracellular Traps (NETs) have been described, which 

are large, complex, fibrous structures formed from nuclear chromatin and granular 

proteins54 which are extruded from neutrophils to ensnare bacteria, bringing them into 

close association with antimicrobial proteins.   These appear to represent a neutrophil’s final 

response to overwhelming infection and inflammation but are also associated with 

significant local tissue damage55, caused in part by the effects of proteinases which are 

more resistant to anti-proteinase inhibition when membrane bound56.   Figure 1 provides an 

overview of these functions. 

 

Neutrophils are thought to exist in three states; quiescent, activated or primed57.  An 

activated cell is able to degranulate, produce significant quantities of ROS and release NETs, 

all of which could harm host tissue.  Priming appears to be an intermediate and protective 

step prior to full activation, from which a cell can step up, and become activated, or step 

down, and become quiescent, providing a natural break before bacteriocidal and cytotoxic 

products are released57.  

 

The aging neutrophil 

Most of our understanding of the lifespan of a neutrophil is based on murine models. 



Circulating neutrophil numbers do not remain constant throughout the day and neutrophils 

are released and cleared in waves.  C-X-C chemokine receptor type 2 (CXCR2) and CXCR4 

regulate neutrophil trafficking from the bone marrow.  The interaction between CXCR4 and 

the stromal cell-derived factor 1 (SDF1), also known as C-X-C motif chemokine 12 (CXCL12) 

retains neutrophils within the marrow environment, while CXCR2 regulates neutrophil 

mobilization through antagonism of CXCR4 signaling58.   Fresh, young neutrophils are 

released from the bone marrow during the resting phase of an animal’s life (night, for most 

humans), with absolute neutrophil numbers peaking at this time.   

 

Like all cells in the body, neutrophils age and are susceptible to damage.  Aged neutrophils 

are cleared at the end of the resting phase of the day59. These oscillations are thought to 

provide a pool of protective neutrophils at the time when exposure to pathogenic 

microorganisms is believed to be more likely.  Potential  damaging triggers are thought to 

include exposure to external signals (including the microbiota60 and free radicals), however, 

unlike monocytes or eosinophils, neutrophils are thought to have little capacity for DNA 

repair61. Cellular aging leads to specific changes in the appearance, surface expression and 

function of neutrophils (reviewed elegantly in 62).   

 

In brief, freshly released neutrophils are thought to express high levels of L-selectin (CD62L) 

on their surface but low levels of CXCR4. Exposure to low grade inflammation increases 

CD11b/c/ ICAM1 and CD49d expression, which in turn promotes migration through the 

endothelium. Following migration to tissues, cells with low levels of CD47 are more likely to 

be phagocytosed by tissue macrophages (a process termed efferocytosis).  As the cells age, 

they express more CXCR4, which is the receptor for SDF-1 and consequently, aged 

neutrophils migrate to areas of high SDF-1 production, including the bone marrow, where 

they can be cleared following apoptosis63. 

 

Aging does not always lead to neutrophil clearance however, and during challenges such as 

sepsis, the redirection of aged neutrophils to bone marrow appears to be suspended. In a 

recent study, Toll like receptors (TLR-4 in particular) enabled the recruitment of aged 

neutrophils to an inflammatory focus where the aged cells had an increased capacity to 

phagocytoze gram-negative and gram-positive bacteria without a corresponding rise in 



respiratory burst or cytokine production64.  In contrast, in a different murine model by 

Zhang et al reported that aged neutrophils (in response to bacterial products) could produce 

more NETs and ROS60.  It remains unclear, therefore whether retaining an aged population 

of neutrophils is beneficial or potentially damaging, and it is also unclear whether these 

murine responses are present in humans.   

 

In reproducing cells, senescence is distinct from being old. Senescence is the process by 

which cells irreversibly stop dividing and enter a state of permanent growth arrest without 

undergoing cell death, caused by telomere erosion, DNA damage or the aberrant activation 

of oncogenes.  Neutrophils never divide, and therefore it is unclear when, or if, they become 

senescent, and how one might recognize this state.  In other cells, senescence is recognized 

as a negative and pro-inflammatory condition.  Senescent cells secrete various cytokines, 

chemokines, matrix remodelling proteases and growth factors, a phenotype collectively 

referred to as the senescence-associated secretory phenotype (SASP)65.    It is unclear, if 

present, whether neutrophil senescence is a similarly negative process for the host 

however, in vitro, bench-aged neutrophils demonstrate changes in micro-RNA expression 

(epigenetic changes) which control chemokine and cytokine signaling, small GTPase activity 

and regulation of the actin cytoskeleton66, and these processes are implicated in cell 

migration, degranulation and inflammation.  

 

Neutrophil heterogeneity. 

The classical view of neutrophils states these cells have an effective but undifferentiated 

response to inflammation and significant potential for host injury. However, alongside a 

recognition that neutrophil functions may change as they age, there is growing recognition 

that these cells may be more diverse in phenotype than first thought. Neutrophils are 

transcriptionally active67,  can release a wide array of context specific products68  and have 

an adaptable lifespan depending on activation status and environmental circumstance69. 

Furthermore, an increasing number of neutrophil phenotypes have been identified in 

different experimental models, which seem able to display different functional 

characteristics.  During a significant inflammatory challenge such as sepsis, immature 

neutrophils are released from the bone marrow.  These cells can phagocytoze, have a longer 



life span, are more resistance to apoptosis but migrate less efficiently than mature 

granulocytes70.   

 

However, neutrophil phenotypes do not merely reflect cellular aging and more functionally 

distinct phenotypes have also been described71.   Although our understanding of the nature 

of these phenotypes is incomplete, it appears that different phenotypes are present at 

different stages of the inflammatory process.  In models of acute lung injury, there appear 

to be two waves of neutrophil recruitment;  the first is the classical and pro-inflammatory 

neutrophil, as described above, which has been associated with significant tissue damage72.  

The second wave appears to be a pro-angiogenic neutrophil73,  which is found in hypoxic 

tissues, can be identified by being CD49d+VEGFR1highCXCR4high, is characterized by increased 

MMP-9 release74,75 and has been associated with improved clinical outcomes76. 

 

There are also descriptions of anti-inflammatory neutrophils including low-density 

neutrophils (LDN) that appear in transient inflammation and during tumor clearance77 and 

neutrophils which appear to modulate T cell function via Mac 1 signaling, leading to immune 

suppression78 .  Not all neutrophils stay in tissues for clearance by efferocytosis, and a 

subset have been shown to “reverse transmigrate” back into the systemic circulation79.   

How neutrophil populations change to respond to environmental challenges is unclear and 

it is yet unknown whether any of these phenotypes represent “senescent” neutrophils but 

population plasticity is well recognized in T cells80 and monocytes/macrophages81 and might 

also occur in neutrophils.   

 

Neutrophils from the ageing host 

There are many theories of why we age as an organism but host and cellular aging appear 

inextricably linked.   It has been hypothesised that host aging represents a failure of somatic 

maintenance, resulting in a build-up of cellular damage82 and most models of aging include 

an increased presence of senescent cells which have been linked to organ dysfunction, 

disease and poor host outcomes83.    Even in health, the aging host represents a pro-

inflammatory environment for immune cells, with greater circulating levels of a number of 

cytokines including IL-6, Tumor necrosis factor (TNF)α and IL-β84 which might impact on 

cellular functions.  



 

In health, neutrophil numbers do not change as we age85, however, during severe 

infections, older patients can exhibit a neutropenia, due to the blunted response of 

neutrophil progenitors to granulocyte colony stimulating factor (G-CSF) with age, which in 

health is compensated for by Granulocyte-macrophage colony stimulating factor (GM-CSF) 

and IL-386,87. Furthermore, the ability to delay apoptosis in response to survival signals (GM-

CSF, Interferon-1) at the site of inflammation is impaired88 and thus prolonged infectious 

insults can result in the double challenge of a reduction in mobilisation of immature 

neutrophil from the bone marrow without an increase in the survival of activated, mature 

cells.   

 

Neutrophils donated from an old host often show a functional decline.  Neutrophil adhesion 

to the endothelium appears unaltered in an aging population 89,90, suggesting that 

extravasation of neutrophils is unchanged in old age but chemotaxis appears impaired with 

age 91,92.  We have published evidence that neutrophils from older donors are less able to 

accurately migrate due to dysregulated and excessive PI3K activity93 and although there is a 

decline from middle age, the deficit is most apparent after people reach their sixth decade 

of life.  This is associated with an increase in primary granule mobilization and increased 

neutrophil proteinase activity, as demonstrated by higher levels of CD63 on the surface of 

neutrophils and increased neutrophil elastase specific degradation products93, supporting 

increased degranulation. There is a reduction in phagocytic ability for opsonized 

bacteria90,94,95, especially to staphylococcus aureus85, an organism the elderly are 

notoriously susceptible to. CD16 levels are reduced with age, impacting Fc-mediated 

phagocytosis94 and Fc Receptor triggered oxidative burst 96.  This phagocytic deficit is not 

mirrored in un-opsonized bacteria97, suggesting the receptors of innate recognition (e.g. 

CD14) are not affected by aging 95. Finally, NET release are reduced in cells isolated from old 

subjects, in response to a number of physiological and pathological stimuli including 

lipopolysaccharide (LPS) and interleukin-8 (IL-8)98.    

 

It is unclear why neutrophils from old donors have these functional deficits but it has been 

hypothesized that the low-grade inflammatory systemic environment seen with aging84,99 

may lead to epigenetic changes in cells, such as DNA methylation (which has been shown to 



vary widely between individuals100) which in turn may impact on cellular phenotype and 

function101.  These changes might alter the responses of immune cells to further 

inflammatory stimuli in a negative manner, heightening the potential for microbial invasion 

and host damage102.  Currently, this mechanism remains putative, demonstrated in a limited 

number of studies.  Further studies, ideally longitudinal and therefore long-term, will be 

needed to firmly link epigenetic changes to alterations in cellular functions to clinical 

outcomes, but these will be challenging to perform. 

 

The impact of disease on neutrophil functions with age. 

Should sustained inflammation be causally implicated in dysregulated neutrophil responses, 

one might predict that chronic inflammatory diseases would be associated with an even 

greater burden of cellular dysfunction compared to healthy aging, as they are associated 

with more inflammation.   There is some evidence to support this theory. 

 

Cardiovascular disease is associated with neutrophilic inflammation.  Neutrophil 

recruitment is associated with impaired microvascular perfusion, left ventricular dilation 

and adverse cardiac events in patients treated for myocardial infarction103. Furthermore, 

myeloperoxidase (a marker of neutrophil activity) is increased acutely following myocardial 

damage and predicts outcomes103,104.  Similar to acute lung injury, there appear to be two 

waves of neutrophil recruitment to areas of infarction, with the first wave being pro-

inflammatory, causing tissue damage105 and the second being pro-angiogenic, assisting with 

new vessel formation and tissue reperfusion106, perhaps reflecting two different phenotypes 

of neutrophils.    In old adults, changes in the expression and function of neutrophil small 

GTPases (which act downstream to PI3K, already implicated in neutrophil dysfunction93) 

appear to favor tissue damage rather than repair, and are associated with an increased 

future risk of cardiovascular disease107.  Accelerated epigenetic aging has been associated 

with cardiovascular risk108,109,  with hypermethylation of the gene body of Rho GTPase-

activating protein 24 (ARHGAP24) reported in old patients with heart failure110 and DNA 

methylation in peripheral blood leukocytes related to atherosclerosis in older adults111.  

Together, these studies support a link between accelerated aging, epigenetic influences, 

neutrophil functions and cardiovascular outcomes. 

 



Similarly, neutrophils from patients with Chronic Obstructive Pulmonary Disease (COPD), 

which is classically characterized by neutrophilic inflammation10 demonstrate some of the 

functional deficits present in the aging host. This includes poor migratory accuracy causally 

associated with PI3K signaling112 a pro-inflammatory phenotype113  with evidence of 

increased degranulation114 but crucially, these changes to neutrophil function appear at 

younger age than seen in healthy smoking controls112.  Smoking cigarettes, a pro-

inflammatory pastime and the greatest risk factor for COPD, is associated with an 

accelerated epigenetic aging profile115 which in turn is associated with the onset of chronic 

lung diseases including COPD and lung cancer116.  

 

Most studies have only compared one chronic disease state to health and it is unclear 

whether multi-morbidity might alter neutrophil functions more than a single disease state. 

However, studies of other aspects of cellular immunity and inflammation provide some 

insights which suggest this might be the case.  Data from the U.S. National Health and 

Nutrition Examination Survey data collected between 1999 and 2008 described 

relationships between C-reactive protein, white blood cell count, segmented neutrophils 

percent, eosinophils percent and glycohemoglobin levels and the number of chronic 

diseases present in an individual117. 

 

The role of infections 

Severe infections are associated with an even greater burden of inflammation than chronic 

diseases, albeit (usually) over a shorter period of time and one might see changes in cellular 

phenotypes after these infective events.     

 

A number of studies have highlighted the increased inflammatory burden experienced by 

older people during an infection.  Systemic pro-inflammatory cytokines and chemokines 

including (for example) CXCL8, TNFα, IL-1β and IL-6 have been shown to be increased in a 

sustained manner during episodes of severe infections and sepsis in old adults compared to 

younger adults experiencing similar infective events118,119.   

 

Despite this pro-inflammatory state during infections, cross sectional data suggest that the 

immune response is impaired, leading to a paradoxical state of enhanced systemic 



inflammation but also reduced immune capacity.  There is a stepwise decrease in the 

effectiveness of the immune response and in particular the accuracy of neutrophil 

migration, as the severity of the infectious insult progresses in old patients (from a simple 

lung infection to pneumonia with sepsis), but this is not seen in young adults until the 

development of sepsis120.  Of interest, the highly blunted neutrophil responses described in 

sepsis121 and implicated in multi-organ failure122 occur in both young and old adults, and are 

associated with sustained inflammation121 with a reduction in anti-inflammatory 

signaling123.  Neutrophil functions remain blunted at six weeks following the infective event, 

suggesting a prolonged period of immune suppression, but of note, this is only seen in old 

adults, as neutrophils from young donors recover to baseline functions within this time120.   

In support of this experimental finding, primary infections are often followed by secondary 

infections in old adults, associated with immune suppression and poorer clinical 

outcomes24.    

 

Most studies of cell functions during infection have not considered multi-morbidity, but it is 

clear that patients with multiple co-morbidities have the worse clinical outcomes.  

Therefore, it is tempting to hypothesize that neutrophil functions may be further impaired. 

 

In summary, current data support a similar alteration of neutrophil functions in a number of 

chronic inflammatory diseases and during infections in old age.   Inflammation and 

epigenetic modifications are noted in some studies, and therefore might represent a shared 

mechanism of effect.    However, current data is not prospective, and therefore it is unclear 

which came first; the aging, the altered neutrophil function, the illness (be that the chronic 

disease or severe infective event), the inflammation or the epigenetic change.  It is also 

uncertain why neutrophil responses change with age and illness.   

 

Neutrophils do not act in isolation, but represent a component of a (usually) highly 

coordinated immune response, and just as there is evidence of dysregulated neutrophil 

responses with age and disease, similar defects have been described with other cells of the 

immune system.  For example, monocyte and macrophage function has been shown to be 

altered with age124, and in chronic disease such as COPD125 where a reduction in anti-aging 

molecules has been described126.   



 

In some age-related chronic diseases, a reduction in the plasticity of immune cell 

populations has been described, which might favour sustained inflammation.  For example, 

in Rheumatoid arthritis, this has been described within joint T cell populations127 and in 

COPD,  monocyte derived macrophages have been shown to retain a pro-inflammatory 

profile; losing their ability to change to an anti-inflammatory phenotype, in contrast with 

cells isolated from non-COPD controls128.  With aging, there might be epigenetic-driven 

changes in either the proportion of different phenotypic populations of neutrophils, or an 

inability to change phenotype during specific challenges.   Chronic disease and severe 

infections might amplify these responses, creating a negative cycle of further cellular 

dysfunction (see figure 2).  If this were the case, it is likely that all facets of the immune 

system would be affected and indeed, there is significant evidence to support the notion 

that this is not a “one cell” problem. 

 

Targeted treatments 

Further work is needed to understand the mechanisms underpinning the decline in the 

immune system with age, but already some potential targets have been identified which 

may offer therapeutic relief by targeting immune responses.   

 

PI3K has been implicated in the neutrophil migratory defect seen with ageing, and PI3K 

inhibitors have been shown to restore neutrophil migratory accuracy in vitro, especially 

Class 1 delta and gamma isoforms93 which are enriched in neutrophils and implicated in cell 

migration.    Early phase clinical trials of a PI3K delta inhibitor to improve inflammation are 

already underway in COPD and bronchiectasis, a suppurative lung disease129.  

 

Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) has been shown to be decreased in 

a number of aging co-morbidities including COPD130.  Low levels of Nrf2 would contribute to 

oxidative stress, and pharmacological activation of Nrf2 by sulforaphane, a potent activator 

of Nrf2, has been shown to improve facets of the immune response in innate immune cells, 

including enhancing the phagocytosis of bacteria131.  

 



If mechanisms are linked by the common theme of aging in multi-morbidity, therapeutic 

targets could cross disease silos.  Recently, we have shown that 80mg Simvastatin (a HMG 

Co-A reductase inhibitor classically used to reduce cholesterol levels) once daily for two 

weeks restored neutrophil migratory accuracy in a randomised, double-blinded clinical trial 

in healthy old adults.  The same dose had the same restorative effect on neutrophil 

migration during pneumonia but not sepsis and not in young adults in vitro120.  This builds 

on a body of evidence suggesting that statins may positively impact on patient outcomes 

during infections, but only when used in old adults, at high dose, and before the onset of 

severe sepsis132.  The exact mechanism of effect is unclear, but statins are known to alter 

small GTPase activity, which in turn would impact on cellular polarity and migrational 

accuracy133.  We have also reported similar positive effects on immune function when 

statins were used in COPD134 and there are on-going studies of statins being used in 

inflammatory conditions far removed from cholesterol modification, including uveitis135, 

where neutrophils are implicated in tissue damage136.    

 

There is great interest in the development of drugs to maintain healthy aging, and this is an 

area of pharmacodiscovery which needs to expand. 

 

Conclusion. 

Multi-morbidity and the sequelae of surviving severe infections are associated with a 

significant burden of ill health in old adults.  Many of these conditions share a sustained and 

damaging inflammatory response with innate immunity, and in particular neutrophils, 

implicated in disease processes.  There is increasing evidence to support a global decline in 

immune cell function in old age, which appears even more compromised in the presence of 

inflammatory challenges such as chronic disease and acute infections.  Recent studies of 

neutrophils in (mainly murine) disease models support there being different phenotypes of 

neutrophils, which present to tissues depending on the inflammatory challenge.  In some 

studies, these cells have been termed “senescent”.  Being a non-dividing cell, it is unclear 

whether neutrophils can enter a senescent state, as described in other cells, and whether 

they can remain pro-inflammatory without entering apoptosis or being cleared by 

macrophages. More studies are needed to understand neutrophil responses and 

phenotypes in age, disease and multi-morbidity, but emerging evidence suggest that we can 



target these processes, and this may give us new therapeutic options to improve older 

patient outcomes.      

 

  



Figures 

 
Figure 1.  Neutrophil functions in health and old age 
Legend. 
A. Systemic neutrophils adhere and transmigrate past endothelial cells to enter the 
extracellular matrix.  This process is thought to be unaltered with age.   
B.  Once extravasation has taken place, neutrophils follow chemoattractant gradients 
formed by chemokines to move towards the inflammatory source.  They release proteinases 
and ROS (shown in green) to degrade a pathway through the dense extracellular matrix. In 
old age, this pathway is less direct, with reduced accuracy of migration.  
C.  Once at the site of infection, neutrophils phagocytoze bacteria into the phagosome, 
which then matures into a bactericidal lysophagosome (shown in green) by combining the 
vesicle containing the bacteria with the toxic contents of neutrophil granules. In age, 
phagocytosis of opsonized bacteria is reduced, with reduced expression of CD16.   
D. Once the phagocytic capacity of neutrophils has been reached, they extrude their DNA 
contents which become coated in bacteriocidal proteins, including neutrophil elastase and 
myeloperoxidase.  NETs can be greater than 10x larger than the cell itself.  In old age, NET 
release is reduced, thought to be moderated by a reduction in ROS generation, a critical 
step in NET formation. 
 

 



 
Figure 2. Reduced neutrophil plasticity with age:  a potential mechanism to link age, 

inflammation and chronic disease? 

Legend.  

1.  In health, during an infectious challenge, neutrophils migrate accurately to the infected 
or inflamed tissue.  Once there, they clear bacteria by phagocytosis and in turn are cleared 
by macrophages in a process termed efferocytosis. 
2.  There is increasing recognition that other neutrophil phenotypes may also contribute to 
tissue repair.  Some neutrophils appear to migrate away from inflammation, and return to 
the marginated pool (termed reverse transmigration), others are anti-inflammatory or pro-
angiogenic, releasing MMP-9 to promote new vessel formation and clear inflammation (as 
shown here). 
3. With increasing age, the presence of low grade systemic inflammation may reduce the 
diversity of neutrophilic responses, so that only a pro-inflammatory and injurious phenotype 
is supported.  Neutrophil migratory accuracy is reduced, as is the ability to clear opsonised 
bacteria.  
4.  These pro-inflammatory cells lead to further tissue inflammation and increase the 
potential for subsequent infections and organ dysfunction by causing tissue damage.  
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