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Abstract
Lacustrine groundwater discharge (LGD) can substantially impact ecosystem characteristics and

functions. Fibre optic distributed temperature sensing (FO‐DTS) has been successfully used to

locate groundwater discharge into lakes and rivers at the sediment–water interface, but locating

groundwater discharge would be easier if it could be detected from the more accessible water

surface. So far, it is not clear if how and under which conditions the LGD signal propagates

through the water column to the water surface–atmosphere interface, and what perturbations

and signal losses occur along this pathway. In the present study, LGD was simulated in a

mesocosm experiment. Under winter conditions, water with temperatures of 14 to 16 °C was

discharged at the bottom of a 10 × 2.8‐m mesocosm. Water within this mesocosm ranged from

4.0 to 7.4 °C. Four layers (20, 40, 60, and 80 cm above the sediment) of the 82 cm deep

mesocosm were equipped with FO‐DTS for tracing thermal patterns in the mesocosm. Aims

are (a) to test whether the positive buoyancy of relatively warm groundwater imported by LGD

into shallowwater bodies allows detection of LGD at the lake's water surface–atmosphere interface

by FO‐DTS, (b) to analyse the propagation of the temperature signal from the sediment‐water

interface through the water column, and (c) to learn more about detectability of the signal under

different discharge rates and weather conditions. The experiments supported the benchmarking

of scale dependencies and robustness of FO‐DTS applications for measuring upwelling into

aquatic environments and revealed that weather conditions can have important impacts on the

detection of upwelling at water surface–atmosphere interfaces at larger scales.

KEYWORDS
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1 | INTRODUCTION

Lacustrine groundwater discharge (LGD), that is, the discharge of

groundwater (GW) into lakes, can substantially impact ecosystem

characteristics and functions (Baker et al., 2014; Ridgway & Blanchfield,

1998; Warren, Sebestyen, Josephson, Lepak, & Kraft, 2005). Upwards

directed GW flow is sometimes called upwelling, especially in the

context of hyporheic zones, where commonly both upwelling and
- - - - - - - - - - - - - - - - - - - - - - - - - - -
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downwelling occur along river reaches. In the present manuscript, we

use the term upwelling solely for upward transport processes in the

water column; this definition is adopted from limnophysics. On the

one hand, upwelling of warmwater in cold lakes can be caused by natural

processes such as GW flow across the lake bed into the cold lake water

body during winter conditions (LGD; Lewandowski, Meinikmann, Ruhtz,

Pöschke, & Kirillin, 2013) or thermal springs in volcanic lakes (Cardenas

et al., 2012). On the other hand, it can be related to thermal pollution
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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caused by industries such as electric power plants, which use water and

discharge heated water into lakes and streams (Hung, Eldridge, Taricska,

& Li, 2005; Shuster, 1986). In both cases, quantitative interpretations of

warmwater upwelling patterns are hampered by the lack of understanding

of how the signal propagates from the sediment–water interface through

the water column to the water surface–atmosphere interface and which

perturbations and signal losses occur along this pathway. The present

study will focus on LGD as an example of upwelling of warm water in

lacustrine ecosystems during winter conditions due to its substantial

impact on the ecosystem characteristics and functioning. LGD creates

favourable habitats by affecting water chemical composition and

temperature, supporting for instance the spawning of fish (Brunke &

Gonser, 1997; Hayashi & Rosenberry, 2002). As climate warms, aquatic

environments with strong GW influence are expected to support habitat

stability and provide refuge for thermally stressed‐aquatic species

(Brabrand, Koestler, & Borgstrøm, 2002; Curry & Noakes, 1995; Hayashi

& Rosenberry, 2002). Furthermore, detection of LGD is essential with

respect to identifying it as a potential vector for pollution in aquatic

ecosystems when GW quality is degraded (Nakayama & Watanabe,

2008). Despite the reported relevance of LGD on ecosystems, very little

has been written about discharge of warm GW to lakes. Nearly all of the

literature discusses discharge of cold GW to warm lakes, primarily because

most of the research has been conducted during warm‐water periods.

Relatively cold GW has a higher density than warm lake water and,

thus, would not reach the water surface.

There are no detailed field observations of how warm water

propagates through the water column and to the surface of the lake

during winter conditions. We address this research gap by looking at

trigger conditions that allow upwelling of LGD from the sediment–water

interface to the water surface atmosphere interface. We consider the

temperature difference required between GW and surface water (SW)

as well as the influence of meteorological conditions and diurnal cycles.

The different temperatures of GW and SWmight allow the detection of

potential discrete areas of GW discharge to SW (Hare, Briggs,

Rosenberry, Boutt, & Lane, 2015). Under the prerequisite of similar ion

composition (which impacts water density), warm GW is less dense

and more buoyant than cold SW, which allows upwelling of GW to

the water surface. Thus, heat convection is augmented by density driven

buoyant forces where warm GW discharges to cold SW. This process

occurs during winter and early spring when SW is substantially colder

than discharging GW and when the mixing is at a minimum at the lake

surface (Hare et al., 2015; Lewandowski et al., 2013).

The basic concept of fibre optic distributed temperature (FO‐DTS)

technology is to analyse the temperatures monitored along specific

distance intervals of a fibre optic cable based on (a) the travelling time

of light in the optic fibre and (b) the temperature‐dependent

backscattering of light in the fibre (Selker, van de Giesen, Westhoff,

Luxemburg, & Parlange, 2006). In this way, temperature can be

monitored through the fibre optic cable up to a distance of several

km, with spatial resolutions ranging from 0.3 to 4 m and measurement

precision of 0.05 to 0.1 °C when sampling over 30‐s intervals (Hausner

et al., 2011; Selker, Thévenaz, et al., 2006; van de Giesen et al., 2012).

FO‐DTS has been used to detect GW discharge at the sediment–water

interface of lakes (Blume, Krause, Meinikmann, & Lewandowski, 2013;

Liu, Liu, Wang, & Zheng, 2015; Sebok et al., 2013) and streams (Krause,
Blume, & Cassidy, 2012; Lowry, Walker, Hunt, & Anderson, 2007).

Here, FO‐DTS is placed in layers of a specific depth above the

sediment–water interface, to provide high‐resolution temperature

data to quantify the incidence, frequency, persistence, and attenuation

of warmer discharging GW that reaches the water surface.

The aim of this study is to show that during winter, the positive

buoyancy of relatively warm LGD to cold SW will allow or enhance

detection of GW at the water surface–atmosphere interface (the lake

surface). To address this aim, a mesocosm was used as a model system.

Different layers of FO‐DTS cable were deployed at different water

depths to measure the temperature distribution. In addition, the

following questions are addressed:

1. Which lake‐internal upwelling patterns from the sediment–water

interface through thewater column to thewater surface–atmosphere

interface are caused by (simulated) LGD?

2. What are the intensities of (simulated) LGD at which GW signals

can be identified at the water surface with FO‐DTS?

3. What is the impact of weather conditions on detection of LGD at

the water surface–atmosphere interface?

This paper addresses the research questions by (a) qualitative

analysis of FO‐DTS data, (b) statistical analysis of the FO‐DTS data in

order to describe temperature hotspots and significant spatial patterns

across the water column, and (c) quantification of the effect of different

weather conditions, injection rates, and the diurnal cycle on the net heat

fluxes across the water surface (G, Wm−2) as well as the energy change

due to advective transport by the water inlet from the lake and the

water outlet from the mesocosm (Eadv in MJ) and the change of internal

energy in the mesocosm (ΔE in MJ). Section 4 presents a conceptual

model basedon analyses and limitations of FO‐DTS data. The conclusions

of the paper will summarize briefly the findings on the different data

analyses carried out, answering the three research questions.
2 | MATERIAL AND METHODS

2.1 | Experimental set up

The mesocosm is composed of two inlets and one outlet (see Figure 1).

Through one inlet water from Lake Müggelsee with a mean

temperature of 4.7 °C was discharged with a rate of 33 L min−1. The inlet

was open throughout the experiment in order to keep homogeneous and

relatively constantwater temperatures andwater levels. The second inlet

comprised a hosepipe that was deployed on the bottomof themesocosm

to provide the warm water (14–16 °C measured at halfway between tap

and mesocosm) injection. The hosepipe was insulated with insulation

foam in order to reduce cooling of the injected water along the flow path

from the tap (located in a building close to themesocosm, 65‐mdistance).

A nozzle was connected to the end of the hose and covered with a bag

(35 × 35 cm) filled with sediment in order to most realistically simulate

discrete LGD at the sediment–water interface. Finally, an outlet on the

opposite side to the cold water inlet assured a constant water level in

themesocosmof 0.82mheight. Theoutlet discharge rates varied from34

to 48 L min−1 depending on the applied warm water injection rate.



FIGURE 1 Sketch of the experimental set up showing a cross section through the mesocosm including the fibre optic distributed temperature
sensing set up
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An aluminium frame with dimensions: 4 m × 2 m and 1.5 m height

was used to deploy the FO‐DTS cable at different water depths

(Figure 1). The FO cable was installed in four layers at different heights:

20, 40, 60, and 80 cm (Layers 1, 2, 3, and 4, respectively) above the

bottom of the mesocosm (Figure 1). The FO‐DTS cable was routed

back and forth across the aluminium frame in a rectangular grid

formation so that 15 parallel reaches of the cable extended across each

layer within the mesocosm. Temperatures were averaged over 12.5‐cm

intervals (sampling resolution) along the FO‐DTS cable. We

acknowledge that the presence of the FO cable may alter the flow of

water and heat within the mesocosm; however, considering the cable

volume (0.009%) compared to the water volume and the spacing

between cables (at least 12.5 cm), the effect is probably minor.

FromMarch 11, 2015, toMarch 27, 2015, seven 24‐hr temperature

datasets were obtained: one control dataset without warm water

injection under overcast conditions; three datasets with 1 L min−1

injection rate, under clear, partly cloudy, and overcast conditions,

respectively; two datasets with 5 to 5.5 L min−1 injection rate, under

clear and overcast conditions, respectively; and finally, one dataset

with 15 L min−1 injection rate under overcast conditions.

Measurements were carried out using an ULTIMA‐S DTS (SILIXA

Ltd.) with a sampling resolution of 12.5 cm and spatial resolution of

approximately 30 cm. DTS sampling resolution depends on the

duration of each of the laser pulses sent by the DTS. For example, a

DTS sending laser pulses of 10 ns has a sampling resolution of 1 m,

the ULTIMA‐S, with a sampling resolution of 12.5 cm, sends pulses

of 1.25 ns. The spatial resolution refers to the distance between points

along the FO cable located next to an abrupt change on temperature in

a way that the point on the low side is not placed higher than 10% of

the abrupt jump and the point on the high side is placed higher than

90% of the abrupt jump (Selker, Tyler, & Van de Giesen, 2014).

Five hundred metres of multimode FO cable from Silixa Ltd., were

deployed for the experiments of this study. Using a multimode fibre

allowed flexible bending and thus supported an adequate set up of

the cable in the aluminium frame.
2.1.1 | Simulated upwelling flux rates versus rates reported
in literature

The LGD rates used in the present study are based on measured flow

rates in the tube (1 to 15 L min−1) used for injecting warm water into

the mesocosm. The tube outlet is covered by a sand bag to simulate

discrete LGD from sediments. An uncovered tube outlet might have

caused a jet stream that would be quite unrealistic for LGD and

therefore was avoided. The LGD rate can be referred to different

areas: (a) the sand bag covering the tube outlet (35 × 35 cm) resulting

in 8.2 to 122.4 L m−2 min−1, (b) a square metre, that is, 1 to 15 L m
−2 min−1, and (c) the entire mesocosm (10 × 2.8 × 0.82 m) resulting in

0.036 to 0.536 L m−2 min−1. The latter approach is often used in lake

studies in which the total exfiltration is related to the entire lakebed.

The LGD rates applied in the present mesocosm experiment are at

the upper end of LGD rates occurring in situ. Rosenberry, Lewandowski,

Meinikmann, and Nützmann (2015) reviewed the international

literature and report a median exfiltration rate of 0.74 cm day−1

(=0.005 L m−2 min−1) and a maximum of 745 cm day−1 (=5.2 L m−2 min−1).

The maximum of 745 cm day−1 is a point estimate based on seepage

metre measurements (Kidmose, Engesgaard, Nilsson, Laier, & Looms,

2011). A high rate referred to the entire lake bed is reported by

Piña‐Ochoa and Lvarez‐Cobelas (2009), which is 0.05 to 0.1 L m−2 day−1.

For punctual focused LGDmuch higher rates are possible: For example,

in Norrström and Jacks (1996) macropore GW discharge rates of 18

and 42 L min−1 are reported for areas of 0.0078 and 0.031 m2. More

extreme examples can be found in natural thermal ponds or pools with

hot springs with up to 800 L min−1 discharge rates (Haselwimmer,

Prakash, & Holdmann, 2013). Intense warm water discharge might also

be of anthropogenic origin such as sewage leakage from under water

pipes (Apperl, Pressl, & Schulz, 2017).
2.1.2 | Measurement protocol and calibration

Once the FO cable was properly deployed onto the aluminium frame,

the exact start and end positions of each cable line were identified.
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This was done by locally warming the cable at each bend, identifying

the temperature peak on the data output graph, and noting the

distance along the cable at this peak. This allowed locating of each of

the four fibre optic layers, including their start and end points, as well

as the beginning and end of each FO cable sequence.

Calibration of the FO‐DTS by temperature offset correction was

carried out using an external probe of the DTS device and FO cable

reference sections within an isolated ice bath with a mix of ice and

water that assured constantly 0 °C. For the differential loss correction,

the fixed value setting was chosen along the relatively short cable

(500 m) without any splices. A default value of 0.255 dB/km was used

as this value is the expected value for Corning ClearCurve™OM3 fibre.

An alternate single‐ended measurement set up was used with

alternating monitoring direction of the light pulse sent from the DTS

device. Measurements were averaged at 10‐s intervals (integration

time) in each direction. This means that the time interval between

measurements from the same channel was 20 s.

2.2 | Data analyses and spatial statistics

All data analysis, including summarizing statistics for quantification of

spatial patterns and statistical relationships of observed data within

layers and between layers, was conducted in R and ArcGIS. The following

spatial statistical metrics were quantified:

2.2.1 | Moran's I and Moran scatter plot of testing spatial
autocorrelation

The Moran's I values were calculated as indicators of the degree of

linear association between a value in a specific location (x‐axis) and

surrounding locations (y‐axis). Moran's I scatter plots were used to

visualize the type and strength of spatial autocorrelation of observed

temperatures. The four quadrants of the Moran's I scatter plot indicate,

from x‐axis to y‐axis: high‐high and low‐low quadrants contain values

with positive spatial autocorrelation and high‐low and low‐high

quadrants contain values with negative spatial autocorrelations. The

Moran's I scatter plot displays a “spatially lagged” transformation of a

variable (in y‐axis) on the original spatial variable (in x‐axis). In addition,

the Moran's I scatter plot reports the summary of potential influential
FIGURE 2 (a) Raw temperature data (black line) and smoothed temperatur
temperature difference between raw temperature data and smoothed tem
observations (highlighted in red diamond shape in Moran's I scatter

plot) for the linear relationship between the data and the lag. Finally,

the slope of the scatter plot indicates Moran's I values obtained and

the overall spatial autocorrelation of the dataset (Anselin, 1996;

Bivand, Pebesma, & Gómez‐Rubio, 2013).
2.2.2 | Local indicators of spatial association maps

Local indicators of spatial association (LISA) have been calculated to

identify significant spatial clusters or outliers that have been used in

this study to highlight local hotspots of simulated warm water upwell-

ing. The clusters and spatial outliers of LISA maps correspond to the

four quadrants of the Moran's I scatter plots, providing a measure of

clusters or outliers that are of statistical significance (Anselin, 1995).
2.2.3 | Spatial correlation between layers: Band collection
statistics

Band collection statistics conducted in AcrGIS allowed the analysis of

sets of raster bands, in the present study a set of 4 FO‐DTS temperature

layers. Covariance and correlation matrices and basic statistical

parameters (minimum, maximum, mean, and standard deviation) for

each layer have been calculated. The covariance matrix indicates for

each layer how much variance is from the mean value of each layer.

The correlation matrix shows how correlated the cell values of one

layer are to the cell values of another layer (Environmental Systems

Research Institute, 2014).
2.3 | Preprocessing and sources of error

Figure 2a shows temperature data of a single measurement point on

the FO cable over 24 hr of measurement (black line) with a clear

diurnal trend. However, noise is predominant on the plotted curve.

Noise can be related to the sensor, turbulence, and short time fluctuations

of weather conditions (sunlight/no sunlight). In order to clear the

temperature signal, local polynomial regression fitting (LOESS) was

applied in R. The red line in Figure 2a represents the fitted curve.

Applying LOESS to the raw temperature resulted in removal of noise

from the data ranging from 0.0 to 0.6 °C (Figure 2b).
e data with local polynomial regression fitting (LOESS; red line) and (b)
perature data
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2.4 | Quantification of net heat fluxes across the
water surface, advective heat fluxes, and internal
energy change

In order to identify the main drivers affecting the spatial patterns

observed within the water column (Figure 3), heat losses and gains at

the mesocosm surface have been quantified. Steady state water flow

of the mesocosm has been assumed. G, ΔE, and net‐advective heat flux

(Eadv in MJ) have been calculated following equations in Appendix S1.

Eadv consists of cold and warm water inputs to the mesocosm and

the water flow out of the mesocosm.
3 | RESULTS

3.1 | FO‐DTS observed temperature patterns

Spatial linear interpolations of time averaged values (day and night

separately) from 24‐hr measurements are shown in Figure 3. The

slice3D plots integrate the four layers of FO‐DTS temperature

measurements. The plots show the temperature differences from the

minimum temperatures (ΔTmin in degrees [°C]) of each dataset with

the same colour scale for both day and night. Because the present

figure is focusing on spatial patterns of warm water upwelling, and not
FIGURE 3 Slice3D plots visualizing for the four layers of DTS measurem
Values averaged for approximately 12 hr day (always left of colour scale) o
weather conditions as follows: (a) 1 L min−1 clear 19.03.2015, (b) 1 L min−1 p
overcast 26.03.2015, (e) 5 L min−1 overcast 27.03.2015, and (f) 15 L min−1

water, outlet of mixed water from mesocosm. clear day, clear
overcast day, and overcast night
on quantifying upwelling per se, we did not use absolute temperature

values. In addition, ΔTmin values show the intensity of the warm water

hotspots in the water column and in the water surface for all three

injection rates in each dataset.

The plots allow tracing of the warm water injected at the bottom

of the mesocosm with rates of 1, 5–5.5, or 15 L min−1, respectively,

and its propagation through the water column. These plots represent

averaged values of measurements taken during day and night

separately. Figure 3a–c represents the ΔTmin observed in experiments

under clear or partly cloudy conditions. Although the source of warm

water can clearly be detected at the bottom of the mesocosm, its

impact on observed ΔTmin spatial patterns is vanishing with increasing

distance from the source in the upper layers.

In contrast, Figure 3d–f represents ΔTmin observed in each

experiment under overcast conditions. Injected warm water can be

traced in all four layers at all applied injection rates: 1, 5, and

15 L min−1. In addition, night measurements show clearer spatial

patterns than day measurements. Finally, depending on the applied

injection rate, the upwelling of warm water from the bottom shows

different flow paths (see Figure 3d–f). The different flow paths

observed in Figure 3d–f are related to the cold water inlet on the right

side of the mesocosm. The cold water inlet created a vortex from the

right side of the mesocosm to left, and the injected warm water moved
ents the difference from the minimum temperature of each dataset.
r night (always right), respectively. Different injection rates and
artly cloudy 25.03.2015, (c) 5.5 L min−1 clear 18.03.2015, (d) 1 L min−1

overcast 12.03.2015. inlet of cold lake water, inlet of warm
night, partly cloudy day, partly cloudy night,
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along with this vortex. In Figure 3f, this effect is also visible on the top

layer. Due to the high injection rate (15 L min−1), the warm water flows

straight up to the SW in Figure 3f.
3.2 | Quantitative analysis of spatial temperature
patterns

3.2.1 | Horizontal spatial temperature patterns: Spatial
autocorrelation within layers: Moran's I scatter plots and LISA
maps

All datasets show significant spatial autocorrelation between data

points within each layer with p values less than 2.2 e−16, except the

dataset of Layer 3 at an injection rate of 1 L min−1 at night under clear

sky conditions where the p value is 1.18 e−06. As an example, Figure 4

compares the Moran's I scatter plots and LISA maps during daytime for

1 L min−1 clear sky and 15 L min−1 overcast sky conditions. When

injecting 1 L min−1 with clear sky conditions, despite the significant

spatial autocorrelation, the temperature data values are more

dispersed over the four quadrants. Figure 4a indicates potential

influential observations in Layers 1 and 2, mainly located in the

quadrant “high‐high,” identifying a positive spatial autocorrelation

between observation points surrounding those data values. However,

in Layers 3 and 4 (Figure 4a), the distribution of potential influential

observations over the four quadrants is more dispersed, not showing
FIGURE 4 (a) and (b) Moran's I scatterplots, (c) and (d) LISA maps, (a) and (c)
In (a) and (b), potential influencing measures for the linear relationship betwe
(d), red coloured points belong to the high‐high quadrant in Moran's I scatter
I scatterplot, and blue coloured points are spatially nonsignificant points. F
a clear clustering of points on “high‐high” and “low‐low” quadrants

(in red and yellow in LISA maps, Figure 4c).

On the contrary, temperatures observed for the 15 L min−1

injection rate show stronger spatial autocorrelation with most of

the data points in high‐high and low‐low quadrants indicating a

positive spatial autocorrelation (Figure 4b and 4d). Thus, the spatial

autocorrelation over the four layers is stronger than in the dataset of

1 L min−1 and clear sky condition. Furthermore, LISA maps (Figure 4

d) show a clear clustering of the highly spatially autocorrelated values.

Calculated Moran's I values in Figure 5 compare the intensity of

spatial autocorrelation between the temperature data points for

different weather conditions and day or night observations within each

layer. In all cases, Moran's I values increase from the lowest to the

highest injection rates (Figure 5). The injection of warm water has a

larger impact on the temperature patterns observed in the upper layers

at higher injection rates. In general, all layers show highest Moran's I

values when the measurements were obtained under overcast weather

conditions. Layers 3 and 4 (uppermost layers in the water column)

show the highest increase in Moran's I values under overcast weather

conditions at injection rates of 1 and 5 L min−1 injection rates.

Moran's I values for Layers 1 and 2 (closest to the warm water

injection) were high under all weather conditions. This indicates a

higher influence of warm water inflow on temperature patterns

observed in Layers 1 and 2 than in Layers 3 and 4.
for 1 L min−1 clear sky, day, (b) and (d) for 15 L min−1 overcast sky, day.
en the data and the lag are highlighted as red diamond shape. In (c) and
plot, yellow coloured points belong to the low‐low quadrant in Moran's
rom top row to bottom row: Layers 4, 3, 2, and 1



FIGURE 5 Moran's I values. (a) Day, clear and partly cloudy sky; (b) night, clear and partly cloudy sky; (c) day, overcast sky; and (d) night, overcast
sky. All plots are plotted from lowest to highest injection rates
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Under clear sky weather conditions, Moran's I values for Layers 1

and 2 are similar or decrease slightly during night measurements. For

Layers 3 and 4, Moran's I values during night are lower than Moran's

I values during day measurements.

Under overcast weather conditions, Moran's I values within Layers

1, 2, 3, and 4 for 1 L min−1 injection rate increase during night

measurements. For an injection rate of 5 L min−1, Moran's I values for

Layers 1 and 4 are lower during night than during day measurements.

Finally, Moran's I values for 15 L min−1 injection rate are very similar

during day and night measurements.

In summary, significant spatial autocorrelations within each layer

have been identified in all datasets. However, calculatedMoran's I values

vary depending on the injection rate of warmwater, weather conditions,

and the diurnal cycle (see Figure 5). This indicates that the strength of

the spatial pattern within each layer also varies depending on the

injection rates applied, the weather conditions, and the diurnal cycle.
3.2.2 | Vertical spatial temperature patterns: Spatial
correlation between layers

Spatial correlation between neighbouring layers

At high injection rates, the largest correlations between neighbouring

layers occurred (Table S1). At lower injection rates, the correlation

was usually much smaller and the largest correlation generally occurred

between neighbouring layers. There are three exceptions where the

largest correlations occurred between nonneighbouring layers: dataset

1 L min−1, clear, daytime and 1 L min−1, partly cloudy, day and night‐time.

The reason might be that the extent of the spatial warmwater pattern in
Layers 1 and 3 is more similar than the observed pattern in Layer 2

(See Figures 4c and S1).

Measurements under clear sky conditions with an injection rate of

1 L min−1 showed a downward trend (from Layer 1 to 4) on spatial

correlation coefficients calculated between neighbouring layers (1&2,

2&3, 3&4). When weather conditions were “partly cloudy” for 1 L min−1,

spatial correlation coefficients calculated between neighbouring layers

showed an upward trend from Layer 1 to 3 (1&2 and 2&3) and the

lowest value between the two uppermost layers (3&4). Finally, when

weather conditions were overcast and injecting 1 L min−1, it is possible

to see that there was an upward trend (from Layer 1 to 4) on spatial

correlation coefficients calculated between neighbouring layers (1&2,

2&3, 3&4), for example, from 0.415 to 0.815 during day.

The same upward trend was observed for an injection rate of

5.5 L min−1 with clear sky conditions for spatial correlation coefficients

calculated between neighbouring layers: from 0.516 to 0.685. At

injection rate of 5 L min−1 with overcast conditions, spatial correlation

coefficients between neighbouring layers keep increasing, for example,

from 0.795 to 0.933 day.

On the contrary, when injecting 15 L min−1, calculated spatial

correlation coefficients between neighbouring layers only increase

for layers 1&2 and 2&3 from 0.846 to 0.888. Spatial correlation

coefficients for 3&4 layers decrease to 0.450.

Spatial correlation between nonneighbouring layers

Highest spatial correlations calculated between nonneighbouring

layers (1&3, 1&4, and 2&4) were found for 1 L min−1 under overcast

conditions during night (0.681, 0.572, and 0.663, respectively) and
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for 5 L min−1 under overcast conditions during day (0.608, 0.546, and

0.791, respectively).

Spatial correlation coefficients between Layers 1&3 generally

increase from 1 to 15 L min−1 under overcast conditions. Spatial

correlation coefficients between layers 1&4 and 2&4 generally

increase from 1 to 5 L min−1 and considerably decrease at 15 L min−1.

These observations agree with the change on the spatial pattern

observed in Figure 3f, compared with the spatial patterns observed in

Figures 3d and 3e. In Figure 3f, injected warm water flows straight up

across Layers 1, 2, and 3. In Layer 4, injected warm water spreads all

over the water surface. Low spatial correlation coefficients for

15 L min−1 between Layers 2&4 and 1&4 indicate differences of spatial

patterns observed between Layers 1&4 and 2&4 in Figure 3f.

Figure 6 presents calculated spatial correlation coefficients for

different (clear sky, partly cloudy, and overcast) conditions for both

day and night measurements independently.

Spatial correlation coefficients calculated between 1&2, 1&3, and

2&3 are higher during night than during day. However, spatial

correlation coefficients calculated for 1&4, 2&4, and 3&4 showed

different results. For clear sky conditions, calculated spatial correlation

coefficients during night time are lower than calculated spatial

correlation coefficients for the same injection rates during day. In

contrast, calculated spatial correlation coefficients for overcast

weather conditions are slightly higher during night than during day

within the same injection rates, for both 1 and 15 L min−1. In contrast,

for 5 L min−1 under overcast conditions, spatial correlation coefficients

are slightly lower during night than during day.
FIGURE 6 Spatial correlation coefficients for (a) day, clear sky and partly clo
and overcast conditions; (d) night and overcast conditions
Three main findings can be listed from the calculation of spatial

correlation coefficients between layers:

• In general, overcast weather conditions result in higher spatial

correlation coefficients between neighbouring layers and

nonneighbouring layers.

• At 15 L min−1, the uppermost layer (Layer 4) is spatially less

correlated with the underlying layers than at 1 and 5 L min−1 under

overcast conditions. These observations agree with the change on

the spatial pattern observed in Figure 3f in comparison with the

spatial patterns observed in Figure 3d,e.

• The diurnal cycle has an effect on spatial correlation coefficients

calculated between layers. Layers within the water column show

higher spatial correlation coefficients between them during night

than during day for the same injection rates no matter of the

weather conditions. However, for the uppermost layer (Layer 4)

at the water surface–atmosphere interface, spatial correlation

coefficients are lower for clear nights and generally similar or

slightly higher for overcast nights.
3.3 | Net heat fluxes across the water surface,
advective heat fluxes, and internal energy change

The effects of different weather conditions, different injection rates,

and the diurnal cycle on the energy balance of the water column were

quantified. This was done by quantifying the net heat fluxes across the
udy conditions; (b) night and clear sky, partly cloudy conditions; (c) day
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water surface (G in W m−2) as well as the energy change due to

advective transport by the water inlet from the lake, the warm water

inlet at the bottom of the mesocosm and the water outlet from the

mesocosm (Eadv in MJ). Their sum results in the change of internal

energy in the mesocosm (ΔE in MJ).

Net heat fluxes across the water surface (G)

Net heat fluxes across the water surface (G) during day and night

are composedof net radiation (Rn), latent heat fluxes (phase transformation,

λE), and sensible heat fluxes (H) with Rn being themost important of the

three (see Figure 7a,c,e,g,i,k,m). This indicates that the system gains and

loses energy mainly by Rn.

Net radiation (Rn) is composed of net shortwave radiation (Rns) and

net longwave radiation (Rnl). The net shortwave radiation (Rns) is

considered a heating term (during daytime) and the net longwave

radiation (Rnl) is considered a cooling term (during day and night; Betts,

2015). Therefore, during daytime, calculated Rn values are higher than

during night for both clear and overcast weather conditions (Figure 7a,
FIGURE 7 Calculated heat fluxes across the water surface (G), net radiation
dataset with 0 L min−1 injection rate, overcast, (c) 1 L min−1 clear, (e) 1 L min
overcast, and (m) 15 L min−1 overcast and calculated ΔE, EG and Eadv for (
cloudy, (h) 1 L min−1 overcast, (j) 5.5 L min−1 clear, (l) 5 L min−1 overcast, a
c,e,g,i,k,m). This is because during daytime, the surface cooling due to

Rnl is partly compensated by Rns (Betts, 2003, 2015; Betts, Desjardins,

& Worth, 2013). In addition, during night, there is no shortwave

radiation coming from the sun and the cooling term, Rnl, will be the

main component of the Rn.

In general, Rn values during daytime are lower under overcast

weather conditions than under clear sky conditions (Figure 7a,c,e,g,i,

k,m). During night, Rn values are less negative under overcast

conditions than under clear sky conditions (Figure 7a,c,e,g,i,k,m). These

results are related to the important effect that clouds have on the net

radiation balance (Rn; Betts, 2015). On the one hand, during daytime,

incident downward shortwave radiation at the water surface is lower

under overcast weather conditions than under clear sky conditions.

On the other hand, during day and night, surface cooling to space

due to Rnl is lower under overcast weather conditions than under clear

sky conditions (Betts, 2003, 2015; Betts et al., 2013). The smallest net

heat fluxes across the water surface (G) occur under overcast

conditions (see Figure 7a,g,k,m).
(Rn) evaporative heat flux (λE), and sensible heat flux (H) for (a) control
−1 partly cloudy, (g) 1 L min−1 overcast, (i) 5.5 L min−1 clear, (k) 5 L min−1

b) control experiment overcast (d) 1 L min−1 clear, (f) 1 L min−1 partly
nd (n) 15 L min−1 overcast
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Energy transferred across the interface (EG) and advected

energy by inflows and outflows (Eadv)

For all datasets, during daytimemeasurements, the system gains energy

mainly by EG and during night timemeasurements by Eadv (Figure 7b,d,f,

h,j,l). Only, for 15 L min−1 overcast weather conditions dataset, the

systemmainly gains energy by Eadv during day and night due to the high

amounts of injected warm water (Figure 7n). This means that the

energy gains in themesocosmduring day are dominated by the net heat

fluxes across the water surface (G) and the energy losses in the

mesocosm are dominated by the energy transported by advection into

and out of the mesocosm. On the contrary, the energy gains in the

mesososm during night are dominated by the imported energy of the

injected warm water (Eadv) and the energy losses in the mesocosm are

dominated by the net heat fluxes across the water surface (G).

Internal energy changes in the mesocosm (ΔE)
ΔE changes over time are clearly affected by the diurnal cycle (see

Figure 8). ΔE decreases during the day; it reaches a minimum during

night and increases again in the early morning. However, the intensity

of changes of ΔE over time varies depending on weather conditions

and injection rate.

ΔE changes over time are lowest under overcast weather conditions

for all different injection rates. The dataset with an injection rate of

1 L min−1 shows the lowest ΔE changes over time, and 15 L min−1 shows

the highest ΔE changes over time.

High changes on ΔE over time are observed when injecting

1 L min−1 under clear sky conditions. For partly cloudy conditions,

keeping the same injection rate, the maximum loss of energy over time

is smaller than under clear sky weather conditions. However, the slope

of ΔE in Figure 8 for 1 L min−1 partly cloudy is higher than that of the

1 L min−1 clear sky during day; this indicates that the rate of energy

loss is greater. On increasing the injection rate to 5.5 L min−1 under

clear sky, maximum energy loss in the system is almost similar to the

maximum energy loss when injecting 1 L min−1 under clear sky.

However, change of ΔE over time is greater when injecting 5.5 L min−1

under clear sky than when injecting 1 L min−1 under clear sky.
FIGURE 8 Change of energy (ΔE) over time for seven datasets:
1 L min−1 clear, 1 L min−1 partly cloudy, 1 L min−1 overcast,
5.5 L min−1 clear, 5 L min−1 overcast, 15 L min−1 overcast, and control
dataset with 0 L min−1 injection rate, overcast conditions
Coupling internal energy changes over time (ΔE), net heat

fluxes across the water surface (G) and energy in the mesocosm

(EG and Eadv)

Under overcast conditions, energy changes (ΔE) in the mesocosm are

lower and slower than energy changes (ΔE) in the mesocosm under

clear sky conditions. This can be related to the calculated small net

heat fluxes across the water surface (G) under overcast conditions.

Or in other words, energy at the water surface is lost at smaller

quantities and at slower rates under overcast conditions than under

clear sky. As the amount of injected warm water increases, the amount

of advected energy (Eadv) in the mesocosm increases. Under clear sky,

net heat fluxes across the water surface (G) are bigger than under over-

cast weather conditions. Higher injection rates of warm water under

clear sky will result in higher and faster energy changes (ΔE) over time

in the mesocosm due to bigger net heat fluxes across the water surface

(G). On the contrary, under overcast conditions, higher injection rates

of warm water will contribute to decrease and to slow down the

energy changes (ΔE) over time in the mesocosm, due to small net heat

fluxes across the water surface (G).

Finally, during daytime, because Rn is the main component of the

net heat fluxes across the water surface (G), the mesocosm energy

gains are due to Rn (Rns and Rnl). This agrees with EG being the main

driver of gains of energy in the mesocosm during daytime. If the

mesocosm is subject to strong gains of energy due to Rn during

day (for instance under clear sky), it means that energy gains by Rns

will prevail over energy losses by Rnl. During night, the main losses

of energy in the mesocosm are driven by Rn (only Rnl). This agrees

with EG being the main driver of losses of energy in the mesocosm

during night.

Observed spatial patterns of injected warm water in the

mesocosm, net heat fluxes across the water surface (G), and

energy changes over time (ΔE)
Spatial patterns of injected warm water across the water column and

at the water surface observed in Figure 3d–f can be related to small

and slow energy changes (ΔE) over time, due to small net heat fluxes

across the water surface (G) under overcast weather conditions during

day and night. During daytime, the heat signal of the injected warm

water will prevail across the water column and at the water surface

due to: 1) less absorbed shortwave radiation at the water surface of

the mesocosm (Rns) and 2) less water surface cooling in the mesocosm

due to Rnl. During night‐time, the heat signal of the injected warm

water will prevail across the water column and at the water surface

due to: 1) less water surface cooling in the mesocosm due to Rnl and

2) energy gains in the mesocosm due to injected warm water.

Finally, spatial patterns of injected warm water, across the water

column and at the water surface, observed in Figure 3a–c can be

related to high and fast energy changes (ΔE) over time in the

mesocosm, due to stronger net heat fluxes across the water surface

(G) under clear sky during day and night, than under overcast

conditions. In general, during daytime, the heat signal of the injected

warm water is not detectable at the water surface, mainly due to high

amount of absorbed shortwave radiation at the water surface (Rns)

during clear sky and to a less extent, due to water surface cooling in

the mesocosm by Rnl. During night, the heat signal of the injected



MARRUEDO ARRICIBITA ET AL. 11
warm water is not detectable at the water surface due to strong

cooling of the water surface in the mesocosm by Rnl.
4 | DISCUSSION

4.1 | Detectability of upwelling signals

One basic question of the present study is if and under which

circumstances the lake‐internal upwelling pattern due to simulated

GW discharge can be detected in the water column and at the water

surface. For that purpose, temperature signals due to the positive

buoyancy of relatively warm water need to be separated from other

temperature fluctuations. In the context of the present study, strong

spatial autocorrelations within layers and strong spatial correlations

between layers are interpreted as “real” temperature signal related to

the positive buoyancy of relatively warm water, instead of to other

temperature fluctuations. Moran's I and LISA maps (indicators for

horizontal spatial patterns within layers) confirmed the spatial patterns

visually observed in Figure 3. The strength of spatial autocorrelation

within layers (horizontal spatial patterns) increased under overcast

conditions, at higher injection rates and during night‐time. Calculated

spatial correlation coefficients between layers (vertical spatial patterns)

also increased under overcast weather conditions, higher injection

rates, and during night‐time measurements. At 15 L min−1 injection

rate, spatial correlation coefficients between Layer 4 (the uppermost

layer) and the other layers decreased due to a change of the general

shape of the upwelling flume (Figure 3f and Figure 9a.6 and b.6). Due
FIGURE 9 Conceptual model of spatial distribution of injected water in the
rates during (a) day and (b) night. (a.1) and (b.1) 1 L min−1, clear sky; (a.2) and
(a.4) and (b.4) clear sky, 5.5 L min−1; (a.5) and (b.5) 5 L min−1, overcast sky; (a.
indicated by the intensity of the red colour: Light red: weak signal, dark red: s
Rns. The blue colour indicates the losses of energy from the mesocosm. The
to the intense injection rate, the warm water signal travels straight

upwards, and once it reaches the water surface, it spreads horizontally

at the water surface.

4.2 | Relevance of diurnal cycle and cloud cover on
signal detectability

Under overcast conditions, calculated slow energy changes (ΔE) over

time and low net heat fluxes across the water surface (G) seem to be

related to the spatial patterns in Figure 3d–f and the results obtained

with the Moran's I coefficient, LISA maps, and the spatial correlation

coefficients. Slow changes of energy (ΔE) over time and low net heat

fluxes across the water surface (G) indicate that the mesocosm is able

to sustain internal energy for longer time periods than under clear sky

conditions. This means that the heat signal related to warm water

injection is not lost. On the contrary, in datasets under clear and partly

cloudy conditions, higher energy changes (ΔE) over time and higher net

heat fluxes across the water surface (G) were calculated. In other

words, the mesocosm loses internal energy faster over time, and

consequently, the heat signal related to warm water injection is lost

faster over time under clear sky conditions.

The amount of energy in a water body (for instance, a lake) is

controlled by the inflows and outflows of water into and out of the

water body and by heat fluxes across the water surface, among others

(Henderson‐Sellers, 1986). The net heat fluxes across the water

surface (G) are composed of net shortwave radiation (Rns), net longwave

radiation (Rnl) and nonradiative fluxes (sensible heat [H] and latent heat

[λE]; Henderson‐Sellers, 1986; McAlister & McLeish, 1969). The main
water column under different weather conditions, for different injection
(b.2) 1 L min−1, partly cloudy sky; (a.3) and (b.3) 1 L min−1, overcast sky;
6) and (b.6) 15 L min−1, overcast sky. The degree of the signal strength is
trong signal. The size of the arrows indicates the strength of the Rnl and
red colour indicates the gains of energy in the mesocosm
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component for calculated net heat fluxes across the water surface (G) is

the net radiation (Rn), which is the sum of net shortwave radiation (Rns)

and net longwave radiation (Rnl). The net radiation balance is driven by

the diurnal cycle of the incident shortwave radiation (Betts, 2015). This

means that the solar warming during daytime and the longwave cooling

during night‐time drive the diurnal cycles of air temperature and water

surface temperature (Betts, 2015; Vercauteren et al., 2011) and, thus,

impact on the detectability of the injected warm water temperature

signal in the mesososm.

Furthermore, cloud cover is also a relevant regulator of the diurnal

cycle of the net radiation balance (Rn; Betts, 2003, 2015; Betts et al.,

2013; Dai & Trenberth, 1999). Clouds decrease the incident shortwave

radiation at the water surface and decrease the net surface cooling at

the water surface because there is less Rnl.

Therefore, the detectability of the injected warmwater temperature

signal in the mesocosm is decisively controlled by the diurnal cycle of the

net radiation balance (Rn) and the cloud cover.

In order to illustrate the relevance of the diurnal cycle (day vs.

night) of the net radiation balance (Rn = Rns + Rnl) and cloud cover on

the observed spatial patterns of the heat signal related to warm water

injection and based on the results presented in this paper, a conceptual

model for the spatial patterns observed under different weather

conditions (clear, partly cloudy, and overcast), injection rates, and

diurnal cycles (day vs. night) is suggested in Figure 9. It illustrates the

relevance of the net heat fluxes across the water surface (G) by the

strength of net short wave (Rns) and net long wave (Rnl) radiation

(conceptualized by size of arrow: big: high values, small: low values)

for different injection rates, different weather conditions (clear, partly

cloudy, and overcast), and diurnal cycles (day vs. night). During day,

the main gains or losses of heat at the mesocosm's water surface are

due to the Rn (=Rns + Rnl). During clear sky conditions during daytime,

due to the higher solar warming (Rns) at the water surface than during

overcast weather conditions, the water surface is heated up. In

consequence, the heat signal of the injected warm water at the water

surface is mixed with the heated water surface due to solar warming.

On the contrary, during overcast weather conditions during daytime,

calculated Rn (see Figure 7) and solar warming due to Rns are lower.

In consequence, the heat signal of the injected warm water can be

detected at the water surface (see Figure 9a).

During night, because there is no Rns, the main gains or losses of heat

at themesocosm'swater surface are due toRnl. Both, during night and day,

the degree of heat losses from thewater surface depends on the presence

of clouds at the sky (see Figure 9b). During clear sky conditions, the

strength of Rnl is higher than under overcast weather conditions. In

consequence, during clear sky conditions at night, the mesocosm loses

higher amounts of energy across the water surface–atmosphere interface

than during overcast conditions. The heat signal of the injected warm

water at the water surface is lost faster during clear sky conditions

than during overcast conditions at night (Figure 9b).
4.3 | Application of FO‐DTS for detection of LGD
upwelling

FO‐DTS has been used to detect GW discharge at the sediment–water

interface in lakes (Blume et al., 2013; Liu et al., 2015; Tristram et al.,
2015) and streams (Hare et al., 2015; Krause et al., 2012; Lowry

et al., 2007). However, it had not yet been determined how the

temperature signal propagates from the sediment–water interface

through the water column up to the water surface–atmosphere

interface and how the signal is affected by environmental parameters

such as weather conditions (clear vs. overcast) and the diurnal cycle

of net radiation. In Hare et al. (2015), FO‐DTS measurements were

compared with thermal infrared (TIR) measurements, which allowed

the comparison of heat signals detected at the stream bed and at the

water surface. Winter conditions were proven to be the best season

to conduct these kinds of measurements. However, the characterization

of weather and diurnal conditions that might have affected the

upwelling patterns of the GW heat signal across the water column

was not addressed until the present study. For instance, Liu et al.

(2015) conducted an experiment on the lake bed that took into account

environmental factors to determine the best time to detect GW

discharge areas with FO‐DTS. Liu et al. (2015) worked in a lake that

was relatively shallow, which reduced the effect of vertical stratification

on the lakebed temperatures during the FO‐DTS measurements.

Nevertheless, the FO‐DTS experiment conducted did not include

multilevel temperature measurements or a detailed characterization of

the influence of weather conditions and the diurnal cycle of net

radiation on the detection of GW discharge across the water column.

The knowledge gap on upwelling GW heat signals monitored with

FO‐DTS across the water column may have led to misinterpretations.

This is because the temperature within the water column may be

affected by several external parameters. Therefore, timing and

conditions when measuring warm upwelling fluxes with FO‐DTS are

of great relevance for the interpretation of the results. For instance,

it is crucial to be aware of the vertical positioning of the cable because

variations of the vertical positioning of the cable on the sediment or

within the water column may lead to misinterpretations of the patterns

observed. Variable external conditions have to be taken into account

for correct interpretation that might present a real difficulty for any

quantitative assessment. Therefore, it is essential to determine those

parameters that may influence the temperature such as solar radiation

and to make sure that the temperature variations of the lake as

detected by the FO‐DTS are mainly caused by GW discharge (Liu

et al., 2015) as presented in this paper.
4.4 | Possible system interferences and uncertainties
of the study

4.4.1 | Effect of wind and possible consequences

Wind is an important factor affecting lake SW temperatures and lake

internal mixing (Pöschke et al., 2015). Wind promotes movement and

mixing of SW bodies. The SW can be dragged by the wind from one

shore of a lake to the other shore inducing downwelling of water in

the water body on one side of the lake and at the same time water

movement from the bottom of the lake upwards to the lake surface

(mixing). This process, relevant in lake settings, is probably irrelevant

in the small experimental mesocosm used in the present study. From

the slice3D plots in Figure 3, there is no indication for a wind‐induced

circulation or mixing. Wind speeds during the experiments were

generally low (ranging from 0.0045 to 2.1789 m s−1). Steep bank slopes
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reaching a height of 1 m above the water surface prohibited wind

impacts on the water surface. Furthermore, due to the small size of

the mesocosm, the wind fetch is short and a potential wind impact

on the water surface is irrelevant. However, when transferring the

results of the mesocosm experiment to a real lake setting, possible

wind impacts should be taken into account.
4.4.2 | Thickness of water column in the present study

In the present study, the thickness of the water column is 0.82 m. The

obtained conclusions could be directly transferred to shallow lakes not

deeper than 1 m, shore areas of lakes not deeper than 1 m, and

probably to shallow lakes with slightly larger depth. Because there is

no thermal stratification within the water column of the mesocosm,

the obtained results of the present study can only be transferred to

cases where there is no thermal stratification.
4.4.3 | Possible effects of electrical conductivity of GW

The upwelling of the water injected at the mesocosm's bottom is

driven by density differences of the injected water and the water in

the mesocosm. The density differences are caused by different

temperatures and different ion compositions of the two waters. The

water in the mesocosm is a mixture of lake water and water previously

injected at the mesocosm's bottom. Due to differing injection rates

during the different experiments, there is no constant relationship

between the relatively large inflow from the lake (33 L min−1) and

the relatively small inflow from the injection at the mesocosm's bottom

(0 to 15 L min−1). For simplicity, we assume that the mesocosm water

composition is basically identical to the lake water composition. On the

basis of measurements of the ion composition of both water bodies,

we ended up with total dissolved solid concentrations of 489 mg L−1

for the lake and 429 mg L−1 for the injected water, that is, there is a

density difference of 60 mg L−1 between the two waters. Based on a

mean mesocosm temperature of 4.7 °C, the density of the water in

the mesocosm is 0.999946 kg L−1, and based on a mean temperature

of 15 °C of the injected water, the density is 0.999114 kg L−1, that is,

there is a density difference of 832 mg L−1 between the two waters.

Basically, the density difference due to the different ion composition

of the two different waters, strengthen the temperature induced density

difference. The combined effect of ion composition and temperature

on the density difference between the two waters is 880 mg L−1

(calculation according to Dietz, Lessmann, & Boehrer, 2012) or

921 mg L−1 (calculation according to Boehrer & Herzsprung, 2010).

Therefore, the injected warm water should immediately rise

upwards through the surrounding denser lake water via buoyancy.

During the short ascent, some mixing might have occurred and the

contact with surrounding water resulted in some cooling of the injected

warm water. Nevertheless, only in experiments during overcast

conditions (Figure 3d–f), the injected warm water was still warmer than

the rest of thewater in themesocosmwhen it reached thewater surface

and thus, floated on the top of the water body. From there, the warmer

less dense water gradually spread as a plume on the water surface.

Low wind speeds, shallow water conditions, and density differences

between simulated GWand SWmight favour the upwelling of simulated

GW discharge on the SW. However, in the present study, the main
parameters controlling the detection of simulated GW on the water

surface seem to be the net radiation balance (Rn) and the cloud cover

during day and night‐time measurements. Because the experiments

have been carried out under specific conditions, the previous statements

are only true in lake areas where the same conditions apply as in the

mesocosm experiment during winter conditions.

This study is a first attempt to simulate thermal patterns of

discrete LGD in shallow lakes or close to lake shores. The mesocosm

experiment and simulation of GW discharge is the first step in order

to identify the main controlling parameters that favour detection of

hotspots of LGD on the lake surface (mesocosm surface in this case).

We have decreased the amount of variables that impact LGD by

simulating discrete GW discharge in a mesocosm. The mesocosm

where the simulation has been performed intends to represent a small

shallow area of a lake where GW exfiltration by LGD occurs. Thus, not

all the influencing factors such as wind, waves, and vegetation that

could be present under natural conditions have been considered.

However, GW discharge that is warmer than SW has been little

studied relative to discharge of cold GW to warmer SW. Thus, by

conducting studies during colder times of the year, scientist can make

use of the conclusions presented here.
5 | CONCLUSION

The present study demonstrates that during winter conditions, the

positive buoyancy of relatively warm water imported by simulated

LGD into shallowwater bodies (mesocosmused asmodel system) allows

detection of LGD at the lake's water surface–atmosphere interface by

FO‐DTS. FO‐DTS technology offers fine scale measurements with high

temporal resolution and allows the observation of induced lake‐internal

upwelling caused by simulated LGD in a three‐dimensional perspective.

In this manner, different lake internal upwelling patterns have been

described from the sediment–water interface through thewater column

to the water surface–atmosphere interface caused by the injection of

warm water at different rates, different weather conditions, and during

the diurnal cycle. SimulatedGWsignals at thewater surfacewere identified

at all applied injection rates, from lowest 1 L min−1 to highest 15 L min−1.

However, detection of simulated LGD at the water surface–atmosphere

interface was mainly determined by the diurnal cycle of the net

radiation balance (Rn) and the cloud cover.

Based on the results presented in this paper, overcast weather

conditions and night‐time measurements are recommended for tracing

discrete warm water upwelling fluxes across the water column and at

the water surface.
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