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WR-3 Waveguide Bandpass Filters Fabricated Using
High Precision CNC Machining and SU-8

Photoresist Technology
Hao Yang, Yuvaraj Dhayalan, Xiaobang Shang, Member, IEEE, Michael J. Lancaster, Senior Member, IEEE,

Bo Liu, Senior Member, IEEE, Hui Wang, Manju Henry, and Peter G. Huggard, Senior Member, IEEE

Abstract—This paper presents two WR-3 band (220–325 GHz)
filters, one fabricated in metal using high precision computer nu-
merically controlled milling and the other made with metallized
SU-8 photoresist technology. Both are based on three coupled
resonators, and are designed for a 287.3–295.9-GHz passband,
and a 30-dB rejection between 317.7 and 325.9 GHz. The first
filter is an extracted pole filter coupled by irises, and is preci-
sion milled using the split-block approach. The second filter is
composed of three silver-coated SU-8 layers, each 432 µm thick.
The filter structures are specially chosen to take advantage of the
fabrication processes. When fabrication tolerances are accounted
for, very good agreement between measurements and simulations
are obtained, with median passband insertion losses of 0.41 and
0.45 dB for the metal and SU-8 devices, respectively. These two fil-
ters are potential replacements of frequency selective surface filters
used in heterodyne radiometers for unwanted sideband rejection.

Index Terms—Micromachining, SU-8, terahertz components,
waveguide filter.

I. INTRODUCTION

MULTICHANNEL air and spaceborne sounders are em-
ployed for spectroscopic characterization of the Earth’s

atmosphere [1]. These instruments perform molecular spec-
troscopy at millimeter and submillimeter wavelengths in
relatively narrow frequency channels. Within the instrument,
linearly polarized signals are frequency demultiplexed by a
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quasi-optical feed chain using frequency selective surfaces
(FSSs). FSSs are also used to prevent the signals in the unwanted
sideband from reaching the double sideband heterodyne mixers
[2]. As the atmospheric signals are weak, the sideband rejecting
FSS needs to have a very low insertion loss and a high isolation
between two adjacent channels which are close to each other in
frequency [3]. For instance, the FSS reported in [3] transmits
316.5–325.5-GHz radiation with a maximum insertion loss of
0.6 dB and achieves greater than 30-dB rejection from 349.5 to
358.5 GHz. To achieve this specification, a transmission zero
is required and we believe this paper describes the first filter to
achieve this at these high frequencies.

Waveguide technology is potentially an attractive alternative
to FSS for sideband selection, due to its low loss and the possibil-
ity to construct lower volume filters. For waveguide components
in general, device dimensions decrease as frequency increases.
This means a reduction in size and mass of components, but
also a tighter dimensional tolerance is required during fabrica-
tion. Different micromachining techniques, such as computer
numerically controlled (CNC) milling [4]–[6], Si deep reactive
ion etching (DRIE) [7]–[9], lithographic micromachining tech-
nique [10], and SU-8 photoresist technology [11]–[13], have
been developed and employed to achieve high-dimensional ac-
curacy in the fabrication of high-frequency waveguide filters.
Laser micromachining [14] and 3-D printing [14] have also been
utilized for high-frequency filters by the authors using different
designs at about 100 GHz. This paper is complementary show-
ing how alternative technologies cope, at higher frequencies, for
a filter with demanding specifications.

CNC milling is a traditional way of fabricating metal wave-
guide components, especially at lower frequencies. Waveguide
components fabricated by CNC milling with excellent perfor-
mance have been reported. Authors in [4] and [5] describe
fourth-order W-band filters. In [4], the filter is measured to
have 0.5-dB insertion loss and a 4.53% (4.20 GHz) bandwidth,
and in [5], the filter is measured to have 0.6-dB insertion loss
and a 10% (10 GHz) bandwidth. For the 220–325-GHz WR-3
band, waveguide features and tolerances decrease by a factor
of around 3. Fabricating waveguide filters at such a frequency
requires an expensive, high precision CNC mill. Filter design
flexibility is also limited by tool sizes and depth to diameter as-
pect ratios [5]. However, the limits of conventional CNC milling
are still being pushed: examples of WR-3 band CNC milled filter
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can be found in [6], where two fourth-order bandpass filters are
presented, one with measured 0.7-dB insertion loss and 8.77%
(22.6 GHz) bandwidth and another with measured 0.5-dB in-
sertion loss and 9.83% (25.2 GHz) bandwidth. In this paper,
we present a WR-3 band CNC milled extracted pole filter with
an improved performance, which is designed specifically for
sideband rejection.

SU-8 photoresist is a promising technology for manufactur-
ing millimeter and submillimeter waveguide components, and
is used for the second filter discussed in this paper. SU-8 is a
photolithographically patterned, epoxy-based, resin that is re-
sistant to organic solvents once cured, and can have a thickness
ranging from 0.5 µm to 1 mm [15]. There are several advantages
of using SU-8 micromachining over CNC machining. For ex-
ample, SU-8 can achieve a similar high-dimensional accuracy
with potentially lower cost. It may also allow sharper internal
corners and higher corner radius to depth ratios. Meanwhile, the
SU-8 process is a batch fabrication which allows repeatability
between devices as well as production of several devices in a
single fabrication run [15]. Compared with DRIE, standard pho-
tolithography processes are used with SU-8 with better surface
roughness on the sidewalls of waveguide structures [15]. SU-8
photoresist technology has been employed to demonstrate filters
in the WR-10 [11], WR-3 [12], and WR-1.5 bands [13]. In this
paper, a new WR-3 band waveguide filter is designed for the
SU-8 process to meet a specification similar to the FSS filter
described above.

For both the CNC and the SU-8 filters presented and
compared below, the specifications in [3] were adjusted to cope
with the available measurement capability. Both filters have
transmission zeros with the CNC filter having a conventional
design; however, the SU8 filter is a completely new design
topology to produce the transmission zero. Frequencies have
been scaled down by a factor of 1.1, so that the new passband
is 287.3–295.9 GHz and the stopband attenuation specification
becomes 30 dB between 317.7 and 325.9 GHz.

Structural details and design methods of the two filters are
presented in Sections II and III, which is followed by a descrip-
tion of the fabrication process in Section IV. Measurements
and discussions are presented in Section V, and conclusions are
given in Section VI.

II. DESIGN OF CNC MILLED EXTRACTED POLE FILTER

The CNC filter design is shown in Fig. 1. It is based on three
coupled resonators operating at TE101 mode and an extracted
pole resonator [16]. The material conductivity is assumed to
be that of gold (i.e., 4.10 × 107S/m). A third-order waveguide
cavity filter which has a Chebyshev response was designed first,
using the synthesis technique described in [17], to have a cen-
ter frequency of 291.6 GHz, a bandwidth of 3% (8.6 GHz),
and a return loss in the passband of �20 dB. For this struc-
ture, an iris between the test ports and the first/last resonators
controls the external coupling (Qe ); the iris between resonators
1 and 2 (or resonators 2 and 3) controls the coupling coeffi-
cient k12 (or k23). To meet this specification, the external Q and
coupling coefficients are calculated to be Qe1 = Qe3 = 28.87,

Fig. 1. Diagram of extracted pole filter structure. a = 864, b = 432, l1 =
l3 = 510, l2 = 517, le = 619, lx = 383, de = 205, dp1 = dp3 = 432, and
d12 = d23 = 309 (unit: µm).

k12 = k23 = 0.030. To meet the upper stopband specification,
a steep roll-off is needed on the high frequency side of the pass-
band. It has been shown [16] that the selectivity of a conventional
waveguide filter can be improved by using inductively coupled
stopband cavities connected to the broad wall of the waveguide
[18]. In [19], the advantages of this extracted pole technique have
been demonstrated. A single extracted pole resonator, added to
the third-order waveguide filter using the method of authors in
[20] and [21], provides a transmission zero in the rejection band
and achieves a very high cut-off rate into the upper sideband.

In order to be compatible with CNC milling process, the
corners of the resonators have a radius of 0.10 mm (see Fig. 1)
to permit fabrication with a 0.20-mm end mill. Meanwhile, the
minimum dimension in the E-plane must also be larger than
0.20 mm. After initial design of the structure using the coupling
matrix approach [17], full-wave simulation and optimization
for this filter are carried out by CST Microwave Studio (version
2016) using the Trust Region Framework algorithm. The cavity
dimensions achieved after optimization are shown in Fig. 1. To
give an idea of scale, the total length of the filter structure is
4 mm.

In order to test the filter, a CNC machined block which con-
tains the filter is designed. The input and output waveguides
have both been extended by 8 mm in order to accommodate
standard waveguide flanges and screws. A 20-mm length of
straight WR-3 waveguide is included as a measurement refer-
ence in the same block as the waveguide filter. Standard UG-
387 waveguide flanges were machined in the block. By utilizing
an E-plane split-block technique, the transmission loss is min-
imized as no surface current flows across the contact plane.
The simulation results after optimization for S-parameters are
shown in Fig. 2. The predicted passband insertion loss for the
extracted pole filter (4 mm filter structure) is below 0.4 dB and
the rejection in the unwanted sideband is above 30 dB. Passband
reflectivity, S11 , is below −20 dB.

III. DESIGN OF SU-8 MICROMACHINED FILTER

The SU-8 photoresist filter is designed [16] to meet the
same specifications. It exploits the stacked metalized layer ap-
proach associated with SU-8 [22]. The filter has three cou-
pled resonators and a cross-coupling between the first and
third resonators and is shown in Fig. 3. With this topol-
ogy and by setting the frequency of the transmission zero at
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Fig. 2. Simulated S-parameters for the CNC milled extracted pole filter. Pass-
band and stopband specifications are shown in gray and red, respectively.

Fig. 3. Diagram of WR-3 band filter formed of three SU-8 layers with the
same thickness of 432 µm. (a) Diagram of the filter structure. Dimensions
of the test ports are: ap = 864 µm, bp = 432 µm. Dimensions of the res-
onators are: a = 876 µm, b = 432 µm, l1 = l3 = 647 µm, and l2 = 589 µm.
(b) Illustration of the whole filter device including dowel holes and screw clear-
ance holes designed to match the UG-387 waveguide flange. (c) Perspective
front view of the filter structure. The blue rectangle represents the input/output
of test port. The black rectangle represents the first (or third) resonator, whereas
the cavities in the second layer are represented by red rectangles. d = 327 µm,
h = 578 µm, lc = 1100 µm, and hc = 143 µm.

317.7 GHz, which is the lower boundary of the upper stop-
band, external Q and coupling coefficients are calculated as:
Qe1 = Qe3 = 27.65, k12 = k23 = 0.031, k13 = 0.006, k11 =
k33 =0.002, k22 =−0.006. Each of the silver-coated SU-8 lay-
ers has a thickness of 432 µm and contains one resonator. As
shown in Fig. 3(a), the value of the SU-8 layer thickness de-
termines the WR-3 waveguide resonator height, b. Since the
central resonator couplings k12 and k23 are equal, layers 1 and
3 are identical and the whole structure is symmetrical. Rather
than controlling the coupling through a conventional iris, the rel-
ative positions of the resonators are shifted to obtain the desired
coupling coefficients. In other words, the horizontal displace-
ment h, shown in Fig. 3(c), determinates k12 and k23 , whereas

Fig. 4. Simulated S-parameters for the SU-8 micromachined filter. Passband
and stopband specifications are shown in gray and red, respectively.

the offset d between the test port and first/third resonators con-
trols the external coupling. The cross coupling between first and
third resonators is accomplished by a slot in the middle layer.
The frequency of the resulting transmission zero is controlled
by the width of this cross-coupling slot, hc . The above geomet-
ric design parameters, shown in Fig. 3, are optimized by the
SMEAFO method [23] using CST Microwave Studio (version
2016). Fig. 3 provides the detailed dimensions of this filter after
optimization.

The filter is designed to be inserted between standard UG-
387 waveguide flanges for measurement. As shown in Fig. 3(b),
holes to accommodate the flange dowels, thereby accurately
aligning the different SU-8 layers, are incorporated in the design.
Larger clearance holes for the waveguide flange screws are also
introduced.

The optimized S-parameter response of the filter is shown
in Fig. 4. The predicted passband insertion loss is below
0.4 dB and the rejection in the unwanted sideband is better
than 35 dB. Passband reflectivity, S11 , is below −20 dB. The
simulations predict two unexpected transmission zeros, one lo-
cated between passband and upper stopband at 302.5 GHz and
another at 326.2 GHz, just above the waveguide band’s upper
edge. These zeros are caused by unwanted cancellation effect of
the signals transmitted by different paths from the input to the
output due to the special structure of the design. That is, apart
from cross coupling accomplished by the slot on the middle
layer, there is an additional coupling path between resonators 1
and 3.

IV. FABRICATION DETAILS

The extracted pole waveguide filter was fabricated at the
Rutherford Appleton Laboratory using a high-precision Kern
milling machine and tungsten carbide cutters with diameters
down to 0.20 mm. The block material was copper alloy which
was then coated with a thin film of gold (around 3 µm) by elec-
troplating. As mentioned above, the internal corners of the filter
had a radius of 0.2 mm. Fig. 5 shows a photograph of the split
plane of the CNC machined block with its four resonators.

The fabricated layers of the SU-8 filter are shown in Fig. 6(a).
The process details for the SU-8 filter can be found in [13], [24],
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Fig. 5. Photograph of the internal cavities of the fabricated CNC milled
extracted pole filter.

Fig. 6. (a) Photograph of the three silver-coated SU-8 layers, 20 × 20 mm
for each layer with a thickness of 0.432 mm. (b) Scanning electron microscope
image of the cavity structure for the second SU-8 layer.

and [25]. In summary, a single-side-polished 100-mm-diameter
1-mm-thick silicon wafer was used as a base for forming the
SU-8. OmniCoat from MicroChem was used as a 1.5-µm-thick
sacrificial layer between SU-8 and silicon. This thickness of
OmniCoat was built up from five 300-nm-thick layers. Each
was formed from precursor spun at 350 r/min for 10 s and then
at 700 r/min for 20 s. The coating was soft baked by placing the
wafer on a hot plate at 200 °C for 120 s. It was then cooled on
a flat copper plate at room temperature for 300 s.

SU-8 50 negative photoresist from MicroChem was then spin
coated onto the OmniCoat. The thickness of the SU-8 layer is
calculated by measuring the mass of the coating [13]. A mass
of 5.20 g on a 100-mm-diameter wafer corresponds to a thick-
ness of 432 µm. The coated wafer is left on a leveled copper
plate at room temperature for 1 h for self-planarization. Then
it was soft baked at 65 and 85 °C for 40 and 240 min, re-
spectively. In order to reduce the thermal stresses during soft
bake, the temperature was increased at 5 °C/min from room
temperature during heating. During cooling, the hotplate and
wafer cooled naturally to room temperature after switching off
the power. UV photolithography was carried out in Cannon
PLA-510 mask aligner. The resist was exposed for 4 cycles of
40 s, with a 2-min interval between each cycle to allow the
resist to stabilize. A PL 360 filter was placed over the chrome
mask during UV exposure, which effectively blocked UV ra-
diation with a wavelength below the 365-nm i-line [26]. The
exposed wafers were baked at 70 °C for 30 min, which helps
the acid-assisted cross linking of the exposed structures. Af-
ter this bake, the SU-8/Si wafer was developed for 15 min in
MicroChem EC at room temperature with constant magnetic

Fig. 7. Comparison of the simulated and measured results of the filter pro-
duced by CNC milling. (a) Response over whole WR-3 band. (b) Expanded
view of S21 showing the passband. The simulations are performed assuming a
material conductivity corresponding to that of bulk gold.

stirring. The patterned SU-8 layers were released by dissolving
the sacrificial layer in tetramethylammonium hydroxide-based
MFCD26 solution from MicroChem at room temperature for
5 h. The released SU-8 pieces were cleaned with propan-2-ol
and dried by nitrogen gas. Layers of 30 nm of chromium, and
subsequently 1500 nm of silver, were deposited by sputtering
and thermal evaporation, respectively. This was done on both
sides of the patterned SU-8 layers without breaking the vacuum.
A purpose-built sample-tilted-rotating rig allowed the metal to
reach the inner walls of the waveguides and cavities.

V. MEASUREMENT AND DISCUSSION

The S-parameter measurements for the CNC milled extracted
pole filter were carried out using a Keysight PNA network an-
alyzer with a pair of VDI (Virginia Diodes, Inc.) WR-3.4 ex-
tension heads. For the measurement, the CNC machined block
was fixed between the waveguide flanges of two frequency ex-
tension heads. The insertion loss for the 20-mm length of WR-3
waveguide in the same block was also measured. The results are
shown in Fig. 7. The filter has an average passband insertion
loss of around 0.65 dB and greater than 30-dB rejection in the
upper stopband. As shown in Fig. 7(b), the insertion loss for
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TABLE I
COMPARISON BETWEEN DESIGNED AND MEASURED RESONATOR DIMENSIONS

FOR THE CNC MILLED EXTRACTED POLE FILTER

Designed (µm) Measured (µm)

Cavity # a × b × l a × b × l
Resonator 1 864 × 432 × 510 874 × 438 × 521
Resonator 2 864 × 432 × 567 874 × 438 × 574
Resonator 3 864 × 432 × 510 874 × 438 × 519

Fig. 8. Simulated response of the CNC milled extracted pole filter with mea-
sured dimensions shown in Table I.

Fig. 9. Comparison of the simulated results and measured results of the filter
based on SU-8 photoresist technology. (a) Response over whole WR-3 band.
(b) Expanded view of S21 over passband. The simulations are performed in
CST assuming a material conductivity equal to that of silver.

TABLE II
COMPARISON BETWEEN DESIGNED AND MEASURED RESONATOR DIMENSIONS

FOR THE SU-8 FILTER

Designed (µm) Measured (µm)

Side 1 Side 2

Cavity # a × l a × l a × l
Resonator 1 876 × 647 863 × 623 869 × 638
Resonator 2 876 × 589 861 × 576 874 × 584
Resonator 3 876 × 647 855 × 630 873 × 641

Fig. 10. Simulated response of the SU-8 filter with measured dimensions in
Table II.

TABLE III
COMPARISON OF MEASUREMENTS BETWEEN CNC MILLED EXTRACTED POLE

FILTER AND SU-8 MICROMACHINED FILTER

CNC extracted
pole filter

SU-8 filter

Passband insertion loss 0.41 dB 0.45 dB
Passband frequency shift −5 GHz 7 GHz
Stopband attenuation >32 dB >33 dB
Size of filter device 20 mm × 20 mm

× 4 mm
19 mm × 19 mm ×

0.432 mm (three layers)

20 mm of waveguide is measured to be 0.3 dB, giving the
waveguide a loss of 0.015 dB/mm. Allowing for a total of 16
mm of waveguide connecting the filter to the flanges, the loss
of the 4-mm-long filter structure is thus 0.41 dB.

The measurements are in very good agreement with simula-
tions except that center frequency of the filter is shifted down-
wards by around 5 GHz. This frequency shift is mainly due
to larger-than-designed dimensions of resonators, which have
been measured with results shown in Table I. Generally dimen-
sions are within a few micrometers of designed values, except
for the width of the waveguide which is about 15 µm larger than
assumed in the simulations. When the filter is resimulated with
CST using the measured dimensions, excellent agreement with
measurements is obtained as shown in Fig. 8.

For the SU-8 filter, the measurement is performed on an Ag-
ilent E8361A network analyzer using a short-open-load-thru
calibration. The SU-8 filter is placed between two waveguide
flanges of the network analyzer and the layers aligned by the
high precision dowels on the waveguide flanges.
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TABLE IV
COMPARISON OF RECENTLY PUBLISHED WAVEGUIDE BANDPASS FILTER OPERATING IN FREQUENCY RANGE FROM WR-3 TO WR-1.5 BAND

Waveguide
band

f0 (GHz) FBW Micromachining
techniques

Filter response n IL (dB) RL (dB) Reference (year)

WR-3 257.7 8.77% CNC (H-plane split) Quasi-elliptical, one TZ at lower stopband
and one upper stopband

4 0.7 >14 [6] (2017)

WR-3 256.3 9.83% CNC (H-plane split) Quasi-elliptical, one TZ at lower stopband
and one upper stopband

4 0.5 >15 [6] (2017)

WR-3 309.35 4.4% SU-8 (three layers) Chebyshev, one TZ at lower stopband 3 0.4 >15 [12] (2013)
WR-3 286.6 5.58% CNC (E-plane split) Chebyshev, one TZ at upper stopband 3 0.41 >14 This work
WR-3 298.6 5.36% SU-8 (three layers) Chebyshev, three TZs at upper stopband 3 0.45 >16 This work
WR-1.5 570 8.77% DRIE (two pieces) Chebyshev, no TZ 3 0.9 >10 [9] (2012)
WR-1.5 671 7.91% SU-8 (three layers) Chebyshev, one TZ at lower stopband 3 0.65 >11 [13] (2013)

Note: f0 : center frequency of the filter; FBW: fractional bandwidth; TZ: transmission zero; n: filter order; IL: passband insertion loss; RL: passband return loss.

The measured results for the SU-8 filter are shown in Fig. 9.
It can be observed from Fig. 9(b) that there are significant rip-
ples in the measured S21 response. A different network ana-
lyzer was used in these measurements to those of the CNC
filter and the ripple is attributed to a poor match in the receiver
head which has a transmit-only module at Port 2. This problem
is discussed in detail in [27]. The measured insertion loss is
around 0.45 dB in the passband and a larger than 30-dB rejec-
tion within the upper stopband. However, the center frequency
of this filter is shifted upward by around 7 GHz from the sim-
ulation. Because the layer thickness determines the resonator
height b, simulations show that the center frequency of the fil-
ter does not strongly depend on the layer thickness. So, the
difference in center frequency of the filter between measure-
ment and simulation may be due to inaccurate dimensions in
the layer plane. The dimensions of the SU-8 filter cavities were
measured using a scanning electron microscope. The image in
Fig. 6(b) shows the cavity within the second layer and Table II
shows the measured resonator dimensions. Measured dimen-
sions in the plane are around 1% smaller than designed values
on one side of the SU-8 layer and 3% smaller on the other side,
which means that the frequency shift may be caused by both
changed dimensions and nonvertical sidewalls. After insert-
ing the measured dimensions in CST simulations, a much im-
proved agreement with measurements is obtained, as shown in
Fig. 10.

Table III shows a comparison of measurements on the CNC
extracted pole filer and the SU-8 micromachined filter. Both fil-
ters comfortably achieve the requirements of a lower than 0.6-dB
passband insertion loss, with measured values of 0.41 and 0.45
dB for the metal and SU-8 devices, respectively. The require-
ments for over 30-dB stopband attenuation are also achieved.
The CNC milled extracted pole filter offers a better low fre-
quency rejection, whereas the SU-8 device provides a steeper
roll-off on this high frequency side of the passband and a smaller
overall volume.

Table IV shows the comparison between waveguide filters re-
ported in open literature and two filters described here. These fil-
ters operate in the frequency range from WR-3 band to WR-1.5
band. A comparison of some WR-10 band waveguide filters can
be found in [14]. All of the filters summarized in Table IV are
based on coupled rectangular resonant cavities, but fabricated

using different micromachining techniques. Care must be taken
with the comparisons as the filters have different specifications.

VI. CONCLUSION

A CNC milled extracted pole waveguide filter and a SU-8 mi-
cromachined filter working in WR-3 band have been designed
to best exploit the characteristics of the fabrication processes.
It is the first demonstration that a CNC milled filter with a
steep rejection characteristic beyond 300 GHz and a SU-8 mi-
cromachined filter with novel cross-coupling topology working
at WR-3 band. The measured performance of the filters is in
very good agreement with the numerical predictions once the
latter have been corrected for the small errors in manufacturing.
The two filters show no significant difference in performance
despite the two alternative fabrication processes and designs.
Both filters achieve an insertion loss of below 0.5 dB in a
∼10-GHz-wide passband and a rejection of more than 30 dB
in the stopband. Either of these two micromachined waveguide
filters can therefore be potential replacements of FSS filters used
in spaceborne radiometers for unwanted sideband rejection.
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