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Effects of Compensation, Connectivity and Tau in

a Computational Model of Alzheimer’s Disease.

Mark Rowan, m.s.rowan@cs.bham.ac.uk

School of Computer Science, University of Birmingham, B15 2TT, UK

Abstract—This work updates an existing, simplistic com-
putational model of Alzheimer’s Disease (AD) to investigate
the behaviour of synaptic compensatory mechanisms in neural
networks with small-world connectivity, and varying methods of
calculating compensation. It additionally introduces a method
for simulating tau neurofibrillary pathology, resulting in a more
dramatic damage profile. Small-world connectivity is shown
to have contrasting effects on capacity, retrieval time, and
robustness to damage, whilst the use of more easily-obtained
remote memories rather than recent memories for synaptic
compensation is found to lead to rapid network damage.

I. INTRODUCTION

Alzheimer’s disease (AD) is a specific form of demen-

tia, characterised biologically by neurofibrillary tau protein

tangles and beta-amyloid (Aβ) protein plaques [28], and

symptomatically by a progressive decline in memory capa-

bilities. In particular, recent memories are the first to be

lost whilst distant memories are retained, but as the disease

progresses this is followed by gradual total loss of recall, a

corresponding loss of personality, motor control, and other

bodily functions, and finally death [8].

Computational modelling of neurological disorders such

as AD is an established tool [1] but existing models of AD

such as [11], [23] can now be improved in line with better

understanding of the disease. One such model, by Ruppin and

Reggia (1995) [23], showed how simple lesions in a single-

layer associative network trained in an activity-dependent

Hebbian manner leads to loss of memory, and the addition of

a local compensation factor causes the pattern of functional

damage to mirror more closely that found in AD whereby

recently-stored memories are lost before historical memories.

Later work showed how the compensation factor can be made

biologically plausible by depending only on the post-synaptic

potential of the remaining neurons after lesioning [13].

This model remains widely cited [5], [25] even though it

could be made capable of better approximation of the lesions

representing AD pathology; currently it only either deletes

neurons and synapses at random or deletes neurons within a

specified radius on a 2-D grid [24]. Today we know much

more about connectivity strategies in the brain such as small-

world networks [30], [4] as well as the biological processes

underpinning AD, such as neurofibrillary tau pathology.

In this paper, methods are presented for enhancing the

Ruppin and Reggia model with up-to-date techniques which

may be more representative of the underlying biology. This

work is intended to examine differences in behaviour which

may occur when considering connectivity strategies, specific

details of compensatory techniques and lesioning in accor-

dance with specific pathologies, with the aim of leading to

development of more accurate representations of a range of

pathological processes underlying AD such as those involv-

ing tau, beta-amyloid, and N-amyloid precursor protein [20],

in more complex network models such as LEABRA [21],

spiking neural networks [9], and reservoir networks [17].

The remainder of this paper is organised as follows:

Section II describes the Ruppin and Reggia model in greater

detail and the updates made to it in this work, section

III presents the results of experiments characterising the

network’s behaviour with these new enhancements, and sec-

tion IV deals with concluding remarks and outlines future

directions in which this research could be taken.

II. MODEL DESCRIPTION

A. Learning rule

Ruppin and Reggia showed how a variant of an attrac-

tor network model proposed by Tsodyks and Feigel’Man

(the T-F model) [29] is capable of storing patterns in

a biologically-plausible Hebbian activity-dependent manner.

This is achieved using a repetitive-learning process whereby

each pattern to be stored “must be presented to the network

several times before it becomes engraved on the synaptic

matrix with sufficient strength, and is not simply enforced

on the network in a ‘one-shot’ learning process” [23]. An

updated version of the model [24] added Gaussian partial-

connection of the network rather than full connectivity.

Wij(t) = Wij(t − 1) +
γ

N
(Si − p)(Sj − p) (1)

The network learns patterns through a process of activity-

dependent learning according to the update rule in equation

1. A set of external inputs delivers activation greater than

the neural threshold to each unit of the network according

to the pattern to be learned. W is the weight matrix of

undirected connections between neurons i and j, γ is a

constant determining the magnitude of activity-dependent

changes, N is the number of neurons in the network,K ≤ N

is the number of other units to which each unit is connected,

S refers to the neuronal state {0, 1}, and p is the coding rate

denoting the proportion of 1s compared to 0s in the stored

memory patterns (p ≪ 1 as cortical networks are found to
have low coding rates [2]).



The activity-dependent learning rule for pattern storage is

based on the Hebbian principle but introduces the require-

ment for each given pair of units to remain in the same state

for a certain number of update iterations (the suggested value

is 5) before the synaptic weight between them is updated, and

requires each pattern to be presented several times in turn to

the network before it is completely stored. Thus the learning

algorithm attempts to mitigate the effects of the Hebb rule’s

ability to globally alter synaptic weights in a biologically-

unrealistic way and circumvents its method of storing each

pattern in a ‘one-shot’ process which is susceptible to the

presence of errors or noise. By presenting each pattern several

times to the network, any noise present in the inputs is

reduced and the synaptic matrix is gradually constructed

rather than being enforced in a single process by the learning

rule.

B. Performance evaluation

Patterns are recalled using a noisy version of the complete

pattern applied to the network via the same set of external

inputs used for learning with activation less than the neural

firing threshold. A measure of the recall performance the

network for a given pattern ξµ, termed the overlap between

the resulting network state and the pattern, has the effect

of counting the correctly-firing units whilst also penalising

with a lower weighting those units which fire erroneously

(equation 2) [29]:

mµ(t) =
1

p(1 − p)N

N∑

i=1

(ξµ
i − p)Si(t) (2)

C. Synaptic compensation

In the work by Ruppin and Reggia the network model

was lesioned by deleting synapses or neurons at random and

implementing a process of variable synaptic compensation,

where “the magnitude of the remaining synapses is uniformly

strengthened in a manner that partially compensates for the

decrease in the neuron’s input field” [23] by multiplying

the weights of the remaining synaptic connections by a

globally-determined (i.e. depending on knowledge of the

overall fraction of deletion) local compensation factor.

Ruppin and Reggia examined the overall degradation in

recall performance and the pattern of relative sparing of

older memories compared to recently stored patterns (as

observed in AD patients [15]) as the network was progres-

sively lesioned, and concluded that synaptic deletion and

compensation in this model can be demonstrated to reveal

similar symptoms to the cognitive decline observed in AD.

However a global synaptic compensation strategy is bi-

ologically implausible as each neuron must somehow be

aware of the global deletion rate both for itself, and for

other neurons around it. Horn et al. [13] therefore introduce a

neuronal-level compensatory mechanism which causes each

neuron to adjust its output based only on changes in the

neuron’s average post-synaptic potential (or summed input),

and which does not require the explicit knowledge of either

global or local levels of synaptic deletion.

At any given moment, each neuron has an estimate ŵi

of its total connectivity compared to the starting value

(wi = 1). It can compensate for this reduced connectivity
by multiplying the remaining incoming synapses (essentially,

lowering its firing threshold) by a value ci. This is achieved

via repetition of the following steps:

• In the pre-morbid state (i.e. before each iteration of

lesioning) a set of random noise patterns (p ≪ 1) is
presented to the network and it is allowed to fall into

a stable state. Each neuron then obtains its resulting

input field measurement, the expected value of which

is denoted 〈h2

i 〉.
• Horn et al. state that 〈h2

i (ŵi)〉 = c2

i ŵi〈h
2

i (wi = 1)〉.
Given an assumption that c2

i ŵi = 1 (i.e. the network is
currently correctly compensating for any value of w <

1), the neuron’s average “noise-state” input field value,
the expected value of which is denoted 〈R2

i 〉, is therefore
equivalent to 〈h2

i 〉.
• The same process is repeated using a set of already-

stored patterns rather than random noise patterns. Each

neuron then obtains its resulting average “signal-state”

input field strength, the expected value of which is

denoted 〈S2

i 〉 (Horn et al. speculate that this process
could occur biologically during dreaming). As with the

earlier noise term, 〈S2

i 〉 ≡ 〈h2

i 〉 as c2

i ŵi = 1.
• The network is lesioned in some way unknown to the

individual neurons (e.g. by deleting synapses).

• Now, in order to estimate the new value of ŵ′
i in the

post-morbid state, and thus to compute a new value for

c′i, a further set of already-stored patterns is presented to

the network and the network allowed to converge once

more to a stable state. A new post-morbid value for each

neuron’s input field 〈h2

i 〉 is obtained.
• Horn et al. separate this 〈h2

i 〉 into signal and noise terms:
〈h2

i (wi)〉 = c2

i ŵ
2

i 〈S
2

i 〉 + c2

i ŵi〈R
2

i 〉. The noise term is
already known from the earlier steps, and is subtracted

from the post-morbid input field value. It is thus possible

to calculate ŵ′
2

i using equation 3, and then to derive a

new value for the compensation c′i:

ŵ′
2

i =
〈h2

i 〉 − 〈R2

i 〉

c2

i 〈S
2

i 〉
(3)

D. Unanswered questions

Whilst experimental support exists for the predicted com-

pensatory strengthening of synapses in AD [25], one un-

explained result drawn from this model is that significant

neuronal deletion (around 50%) in the model is required
before memory function is seriously impaired. This rate of

deletion is much larger than the rate observed clinically in the

latest stages of Alzheimer’s disease (between 10% and 30%
reduction of volume in the hippocampal regions in severe

cases of AD [18] and certainly far more than the 10% general
cerebral atrophy reported at initial diagnosis of the disease

[22]), implying that there must be other factors additionally

affecting cognitive decline.



A further limitation of the model is that lesioning is

performed only by deleting a number of randomly-selected

neurons or connections at each step, which does not necessar-

ily represent the subtleties of the underlying pathology. The

authors present a method of applying lesions in a localised

spatial manner by deleting all of the neurons and/or con-

nections within a circle or rectangle of a given area [24], but

this does not incorporate any of the known neurodegenerative

mechanisms such as tau or amyloid pathology.

During the synaptic compensation process previous studies

have not examined the differences in performance when using

recent versus remote memories to calculate the signal term.

Finally, the method in which the network is interconnected

(either fully, or using an arbitrary number of connections per

neuron in a localised Gaussian manner) is again simplistic

and does not represent biologically realistic connection strate-

gies such as small-world networks [30] or neural Darwinism

(pruning of weaker synapses during development) [12].

E. Implementing different connectivity strategies

Biological neural networks such as those found in the

hippocampus are generally sparsely connected [16], [4]. It

has been shown that in Alzheimer’s disease, small-world

clustering (as measured by the clustering coefficient) is

significantly reduced at a global level, resulting in large

changes to the local organisation of the network [27].

Connection dilution mechanisms for associative networks

include connecting each unit over a flat random distribution,

wiring each unit in a spatial manner to those immediately

surrounding it with Gaussian probability, and using a ran-

domised small-world network connection strategy [30].

Small-world networks in this model are constructed in

the form prescribed by Watts and Strogatz [30] by firstly

connecting each neuron to its closest K neighbours. Then,

according to a probability of re-wiring p(rewire), the con-
nections between each unit and its two immediate neighbours

are randomly assigned to other units in the network. Once

each unit in the network has been considered, the neighbours

two places away from each unit are then considered, and then

those three places away, until each connection in the network

has finally been randomly re-wired or left in place.

It has been shown that a process of diluting the synaptic

weight matrix of a Hopfield network such that it is no

longer fully-connected still causes it to behave in much the

same manner as a fully-connected network when stored state

vectors are generally of low activity [6].

F. Implementing tau lesioning

1) Medical background: The tau hypothesis refers to the

neurodegenerative effects of a modified (or hyperphosphory-

lated) form of the tau protein which aggregates with other

fibres of tau and eventually forms the neurofibrillary tangles

(NFTs) inside neurons which are prevalent in brains with

AD. It proposes that the cognitive decline in AD is due

primarily to loss of synapses and neurons (via a toxic form

of the modified tau), and the subsequent loss of connectivity

experienced [26].

The normal function of tau is disrupted in AD: “tau

is essential for establishing neuronal cell polarity and ax-

onal outgrowth during development and for maintaining

axonal morphology and axonal transport [of neurotransmitter-

containing vesicles along the axon] in mature cells” [7],

[14] and in both constructing and stabilising microtubules

which, in developing neurons, are important for establishing

neuronal cell polarity and outgrowth, and in adult neurons

are essential for proper structure, function and viability [7].

Instead of binding to the microtubules, tau in AD becomes

sequestered into NFTs within the neurons [3] and as the

level of normal tau in the brain is reduced the microtubules

disintegrate, causing further neuronal dysfunction. The ex-

istence of NFTs could also present a toxic gain-of-function

by physically obstructing the transport of vesicles within the

neuron (leading to cognitive impairment) and also by further

sequestration of normal tau into the modified form as part of

a cascade of neurodegeneration [3].

Although the amyloid hypothesis provides a possibly more

widely encompassing view of AD, it has a number of

significant unexplained problems, not least that “the number

of amyloid deposits in the brain does not correlate well

with the degree of cognitive impairment” [10], and so the

tau hypothesis and its relationship to the amyloid hypothesis

remain an important subject for further research.

2) Computational implementation: Whilst it is possible

to delete either neurons or the connections between them

as shown in earlier studies [23], these processes can be

considered essentially the same: if all the incoming synapses

of a particular neuron are deleted, the neuron is no longer

able either to receive activation from surrounding neurons,

nor is it able to have any excitatory effect on its neighbours.

This neuron might just as easily be considered to have

been deleted, as it is effectively removed from the network

completely.

Hopfield-type networks (including the T-F network) also

suffer from the inherent problem that the output layer is

essentially the only layer of the network. That is, whenever

lesions are applied to the network by deleting neurons,

this necessarily results in the inability of the network to

completely recover a cued pattern regardless of the effects

the removal of these neurons may have had on the underlying

pathology of the network, as the ‘output layer’ is now only

partially complete and can no longer map with full accuracy

to every given pattern, resulting in a perceived decrease in

network performance.

So it is suggested that results more representative of the

underlying pathology could be obtained by the introduction

of a subtle shift from synaptic loss to neuronal atrophy,

whereby whole groups of synapses with a single neuron

at their centre are affected in a similar way at the same

time, but without fully removing the synapses or any neurons

from the resulting output patterns used for evaluating network

performance.

With this in mind, neurofibrillary tangles (NFTs) of hy-

perphosphorylated tau are known to result in direct block-

ing of axonal transport [3] and collapse of microtubules
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Fig. 1: Characteristic plot of neural damping levels after

spatial tau lesioning.

also supporting axonal transport [7]. In order to model

more specifically the pathological effects of tau NFTs it

is suggested that, rather than simply deleting neurons or

connections at random or in areas of a certain radius [23],

[24], the output of selected neurons could be partially muted

to simulate the effects of axonal blocking by NFTs.

To simulate the sequestering of hyperphosphorylated tau

and the subsequent cascading spread of damage, neigh-

bouring neurons could also be muted by a slightly smaller

amount, with new tau lesion centres subsequently formed

near to existing lesions, and the resulting distributed damage

occurring in less of a severe ‘binary’ manner as with random

deletion of synapses or neurons.

In computational terms, lesioning can be performed in

steps of size z. The locations of the centres of the first set of

lesions (the tau seeds) are chosen at flat random from across

all neurons and are assigned to set D. Subsequent lesioning

steps proceed as follows:

• A subset d ⊆ D of size z locations are chosen at

flat random. With Gaussian probability centred on each

element in d, a new set d′ of neighbours is chosen.

• Each neuron’s activation is dampened by multiplying by

a value drawn from a Gaussian distribution as a function

of the neuron’s proximity to the lesion centre (i.e. x −
µ), and with lesion width σ (suggested as 2), such that
those neurons closest to the lesion centres in d′ are most

heavily diluted, and those distant from the elements of

d′ are relatively unaffected.

• d′ is added to D and the process is repeated with the

new, larger set of lesion centres D. This results in

characteristic lesioning as seen in figure 1.

III. RESULTS

Unless otherwise stated, all experiments were performed in

a network with the following parameters: network size N =
1600, connections per unit K = 200, neural threshold θ =
0.048, noise T = 0.005, learning rate γ = 0.025, external
input strength (learning mode) el = 0.065, external input
strength (retrieval mode) er = 0.035, coding rate p = 0.1,
deletion step ∆d = 0.01. Results were averaged over 10 runs
and the number of patterns stored on each run was 10.

A. Random deletion and local field-dependent compensation

In the first experiment, an attempt was made to replicate

the results of Ruppin and Reggia [23] using the improved

neural field-dependent compensation rule of Horn et al. [13],

in which compensatory mechanisms extended the working

life of the network during repeated synaptic deletion. A set

of 10 patterns was stored in the network and the average
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Fig. 2: Performance over synaptic deletion without com-

pensation (leftmost curve) and with (rightmost curve). The

deletion step size ∆d is larger for the curve without compen-

sation, but this does not affect the overall result as deletion

step size-sensitivity is only introduced with compensation.

retrieval success rate (overlap) after various levels of deletion

was plotted. The results shown in figure 2 are comparable

with those achieved by Horn et al. [13] and can be used as

a performance baseline for later experiments. The network

was connected with a Gaussian connection strategy.

B. Compensation using recent versus remote memories

Ruppin and Reggia observed a gradient of damage by

repeating a process of learning a set of patterns then sub-

sequently deleting a proportion of the connections between

units [23]. Their results, based on a fixed synaptic compensa-

tion strategy, showed a clear decrease in recall performance

for patterns learned recently compared with those learned

earlier in the process. These results were replicated, and are

shown in figure 3.

As the local field-dependent compensation strategy of Horn

et al. [13] works by using the retrieval of stored memories for

comparing average post-synaptic potentials before and after

damage, the choice of memories which should be used for

this purpose becomes significant due to the different retrieval

success rates of patterns stored early in the lesioning process

compared to those stored more recently.

As shown in figure 3a, if only remotely-stored patterns

are used during the compensatory process (dotted line) the

performance of the network is severely degraded even at

a relatively low level of deletion, whilst use of the most

recently-stored patterns during compensation is almost in-

distinguishable in performance from the results when using

a random set of patterns drawn from all those previously

stored (dot-dash and dashed lines, respectively).

In these cases, a clear gradient of learning has been

observed such that patterns stored most remotely are recalled

more successfully than those stored more recently (note that

this is a distinct phenomenon from serial-position effects in

which recency and primacy of items within a list correlate

with greater recall, as the network is storing time-separated

sets of patterns in between periods of damage rather than

a single list of items). At higher, catastrophic levels of

deletion (figure 3b), compensation using randomly-selected

patterns slightly outperforms compensation using only the

most recently-stored patterns, but within the margins of error.
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Fig. 3: Performance on separately stored sets of memories.

The network was alternately presented with sets of 6 patterns

then subjected to a process of deletion with compensation

using only the first set of patterns stored (dotted line), only

the last set of patterns stored (dot-dash line), or using a

random set of 6 patterns drawn from all those previously

stored (dashed line). By the final round, the total proportion

of deletion was either 0.35 (fig 3a) or 0.45 (fig 3b).
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Fig. 4: Average performance on all learned sets (5 sets of 10

patterns, N = 1200, K = 200) after different final levels of
deletion. First-set compensation (dashed line) performance

declines significantly earlier than latest-set compensation

(dotted line), which itself is marginally less robust than

random-set compensation (solid line).

Despite the greater accuracy of their recall within a func-

tioning network, using only remotely-stored patterns during

compensation results in much earlier decline of the network

performance as deletion progresses (figure 4). Conversely,

compensation using the most recently-stored patterns, or sets

of patterns drawn at random, results in greater robustness

to damage. This could be due to the effect of decreased

variance in the patterns used to calculate the signal term

during compensation when using only a small, fixed set of

patterns, resulting in increased noise during the compensatory

process. Any noise arising from using only the first learned

set during compensation is multiplied on each compensatory

step due to the lower input variance. When using the latest

set of stored patterns or a random set at each compensatory

step, the variance of the data is increased and this helps to

keep noise to a minimum.

This has implications for sufferers of Alzheimer’s disease.
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tering coefficients. Flat-random, Gaussian and representative

small-world networks are indicated individually.
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clustering coefficients.

If the network is damaged to such an extent that the gradient

observed in figure 3a (the uppermost dashed and dot-dash

lines) is evident, but the network is not yet catastrophi-

cally damaged, then there may be a greater likelihood that

compensatory mechanisms will use remotely-stored patterns

compared to recently-stored ones due to their higher recall

success. As this experiment has shown, this could actually

lead to earlier overall decline of cognitive abilities, and

a cycle of correspondingly worse recent memory retrieval

performance and thus continued use of remote memories

during compensation. Additionally, this finding places the

deletion threshold of the model (beyond which all recall

is severely affected) closer to the reported 10-30% atrophy

levels seen before the symptomatic damage evident in AD.

C. Connection strategies

1) Effects on network capacity: Next, the effects on net-

work capacity and robustness to damage of various connec-

tion strategies were compared. Firstly, networks were created

with N = 800 units with connection density K = 0.125N .

The networks were wired with Gaussian, flat-random, and

small-world (with various values for p(rewire)) connectivity.
Patterns were stored in each network according to equation 1

and retrieved immediately after storage. The average retrieval

success rate was plotted against the small-world clustering

coefficient of the network’s connection matrix, and when the

average overlap measure dropped continuously below 0.8, the
network was assumed to have reached its capacity (figure 5).

The results indicate that specific network connectivity gen-

erally has little effect on capacity, with the random and Gaus-

sian networks appearing on the same trend as the small-world

networks, but it appears that network capacity is significantly

reduced in more highly-ordered networks with high clustering
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Fig. 7: Connection matrices of networks connected in a small-

world manner (N = 1600, K = 200, p(rewire) = 0.01, 0.9,
only every fourth connection plotted for clarity).

coefficients such as small-world networks with low values

for p(rewire). Although each network structure contains
the same number of connections as the others and should

therefore have effectively the same capacity, the difference

becomes clear when examining the layout of the connections

and the related small-world clustering coefficients. Compare

figures 7a and 7b, both of which were constructed using

the small-world algorithm. The majority of connections in

the network with p(rewire) = 0.01 are located incredibly
densely within the local neighbourhood of each neuron, with

only a few projections to more distant parts of the network,

resulting in a clustering coefficient of 0.73.

This appears to have two effects: the first becomes clear

when considering the pattern recall times in figure 6, which

shows that in highly-regular networks the number of itera-

tions required for the network to fall into a stable state is

higher. This is likely to be due to the lack of distant pro-

jections to other parts of the network: activation is ‘slowed-

down’ by having to flow through a closely-linked chain of

units from one extent of the network to the other, whilst

a network with less regularity and more distant projections

(as seen in figure 7b) can effectively take short-cuts when

activation to distant parts of the network is required. If this

activation degrades over time as it traverses the network

in small steps, or if there is a limit to the permitted time

between cueing and retrieval of a pattern, it is clear to see

that these effects could result in greater retrieval failure rates

(and thus lower effective capacity) than in a network with

less regularity in its connection matrix.

2) Effects on redundancy and robustness: The second

effect concerns the information capacity of the connections

in the network. The high density of local connections in the

regular network leads to synaptic redundancy, as activation

between any two nearby neurons can take multiple paths

between them. Necessarily, redundancy where more than

one connection carries the same information results in a

reduction in information capacity elsewhere in the network,

as previously shown, but increased redundancy should also

lead to networks which are more robust to damage.

To test this prediction, a profile of deletion (without com-
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Fig. 8: Deletion without compensation in random (star mark-

ers) and highly-ordered (dot markers) networks.

pensation) was obtained for networks connected with small-

world (p(rewire) = 0.01) and flat-random connectivities in
1600-unit networks with connectivity K = 0.125N . The

resulting plot in figure 8 shows a marginally smoother rate

of decline and greater longevity of performance in the small-

world network (dot markers) than in the random network (star

markers), indicating that the high local connectivity density

does indeed lead to redundancy and hence greater robustness

to damage, but at the expense of lower capacity. Nevertheless,

the effects are relatively small overall.

D. Tau lesioning

To identify the changes in behaviour when more dis-

tributed, variable-rate tau damage occurs within the network,

a network with N = 800 units was connected in a Gaussian
manner and tau lesioning was performed according to the

method described in section II-F, with random-set compen-

sation. Two rates of tau lesioning were inspected: in addition

to the standard rate in which the neuronal outputs were

muted by an inverse Gaussian probability as a function of

the neuron’s distance from the lesion centre, a second rate

was tested in which the muting amount was squared so as to

increase the speed with which the lesions resulted in full

neuronal blocking, and the width of the distribution used

for choosing new nearby tau lesion centres was doubled.

Examples of the resulting comparable increase in lesioning

can be seen in figure 9. A further, currently untested, method

of altering the tau lesioning rate would be to consider each

unit more than once until full blocking of all units occurs.

The results in figure 10 show a very different profile to

basic deletion (see figure 2). Rather than a smooth decline

in performance which tails off towards zero, a sudden catas-

trophic decline in performance occurs during a single step

of tau lesioning. The performance then steadily recovers,

but only to a fraction of the original performance, as the

compensatory mechanisms attempt to “catch up” with the

sudden decrease in activation. As seen in figure 9, there are

still areas of the network which are undamaged (transmission

remains at 1), and it is likely that it is these areas which

contribute to the above-zero final performance of the network.

Although the precise timing of the sudden decline varies

randomly between test runs, each line on the graph traces

essentially the same shape. Indeed, it was found that the

differing rates of neuronal damping shown in figure 9 resulted
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(a) Standard-rate tau lesioning
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(b) Enhanced-rate tau lesioning

Fig. 9: Lesions applied to example networks after every unit

has been considered once. In the second graph, the rate

of reduction of neural transmission in each lesioning step

has been squared and the horizontal spreading speed of the

lesioning has been doubled.
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Fig. 10: Performance plotted against number of units consid-

ered for lesioning with tau (enhanced rate). Due to the large

differences in the time of onset of impairment, individual test

runs have been plotted for easier comparison.

in exactly the same profile of altered performance during

lesioning, except that the performance drop-off was experi-

enced correspondingly earlier or later with faster or slower

tau lesioning rates.

To test that the observed gradient of learning in sets of

patterns over time (figure 3) still occurs with tau lesioning,

the experiment in section III-B was re-run in a Gaussian-

connected network with tau lesioning instead of deletion.

The patterns used for compensation were drawn at random

from all those previously stored. The results in figure 11

are comparable with those in figure 3, indicating that tau

lesioning in this way does not destroy the effect of reduced

retrieval of recent compared to remote patterns.

IV. CONCLUSIONS AND FURTHER WORK

This work has presented updates to a long-standing and

widely-cited computational model of Alzheimer’s Disease

[23], including first successfully replicating, and then ex-

tending, the experiments of Horn et al. [13] on the effects

of local, field-dependent synaptic compensatory mechanisms

within the model.

The differing effects of using recent, remote, and random

sets of memories to calculate compensatory signal terms
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Fig. 11: Gradient of performance on sets of patterns stored

at different stages of lesioning with tau.

has been shown, revealing that the network is sensitive

to the choice of which set is used. Using only remote

memories to calculate the signal term results in greater

noise within the compensatory mechanism, and an earlier

decline in performance as synapses are deleted (much closer

to the 10 − 30% range seen in AD patients [18]). The

implications for AD patients are shown in the context that

initial retrieval of remote memories at early stages of damage

is actually more reliable than with recent memories: if the

brain makes use of this effect and uses the more readily-

available remote memories to calculate compensation, not

only do the recently-stored memories continue to become

less reliable than the remote memories, but the noise in the

system leads to earlier onset of catastrophic decline.

Speculatively, if the biological realisation of synaptic

compensation via memory retrieval could be considered as

dreaming (as postulated by Horn et al. [13]), these results

are consistent with the idea that the greatest compensatory

success is likely to be found by using memories and states

acquired throughout an individual’s lifetime in the compen-

satory mechanism, or by using those memories most recently

obtained, rather than primarily memories from early life.

Further studies to examine any potential link between this

effect and any reported fixation during dreaming on remote

memories in AD patients (either prior to, or after, onset of

symptoms) could yield important results.

It has also been shown that network capacity and resilience

is related to the regularity of connections within the network.

High small-world clustering coefficients lead to redundancy

within the network, meaning greater resilience to damage

but at the expense of lower capacity, as well as longer

pattern retrieval times. This is consistent with the findings

of Supekar et al. [27] who examined small-world functional

networks in the brain and found a key correlation between

loss of small-world connectivity and onset of AD symptoms.

Further examination of the relationships between small-world

clustering, robustness, retrieval speed and network capacity

could be revealing, as well as studies into how this operates

within the principle of neural Darwinism (pruning of weaker

synapses during brain development).

Lesioning with simulated tau rather than standard synaptic

deletion has been shown to create a very different profile of

damage by allowing all neurons and synaptic connections to

remain present (so output patterns are not artificially altered)

and instead damping inter-neuronal transmission. Whilst ini-

tially offering a much more graceful decline in performance



due to the persistence of synaptic connections and output

units, consistent with the slow degradation seen in AD, the

drop-off in performance when it finally occurs is much more

severe with tau lesioning than with synaptic deletion despite

some later compensatory recovery of performance.

Further work will be needed to ascertain whether this

deletion profile offers a more plausible explanation of AD

symptoms and whether the observed temporary improvement

in recall after some level of catastrophic damage can be

medically corroborated, but it must be borne in mind that

tau pathology represents only a subset of the processes

underlying AD. It would be beneficial to extend this con-

cept and show in a similar way the effects of alternative

AD pathologies. Of particular interest are the beta-amyloid

mechanism and its extension, the N-APP hypothesis, in which

a fragment of the amyloid precursor protein (N-APP) is found

to be capable of binding to the DR6 cell-death receptors of

neuronal cell bodies and axons, with the effect of accelerating

apoptopic cell death. The apoptopic mechanism involves

the release of caspases, of which caspase 6 is capable

of cleaving the N-APP fragment from existing β-amyloid

deposits, leading to a cascade of neurodegeneration [19].

The Tsodyks and Feigel’Man model studied in this work

is only a basic associative network with limitations in pro-

cessing ability and a relatively constrained range of be-

haviour. More sophisticated artificial neural network-based

models such as LEABRA [21], spiking neurons [9], and

reservoir networks [17] are available and could provide

further insights into the effects highlighted in this paper. In

particular, it would be interesting to examine the effects of

synaptic compensation and connectivity strategies within a

reservoir computing framework due to the large potential

for exploration of the currently poorly-understood dynamics,

and the greater computational power (potentially offering the

representation of more varied symptoms of AD than simple

pattern recall) of these systems.
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