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Abstract
A multilayer deposition method has been developed with the potential to capture and process
atomic clusters generated by a high flux cluster beam source. In this deposition mode a series of
sandwich structures each consisting of three layers—a carbon support layer, cluster layer and
polymer release layer—is sequentially deposited to form a stack of isolated cluster layers, as
confirmed by through-focal aberration-corrected HAADF STEM analysis. The stack can then be
diced into small pieces by a mechanical saw. The diced pieces are immersed in solvent to
dissolve the polymer release layer and form small platelets of supported clusters.

Keywords: cluster, multilayer deposition, electron microscopy, dicing

(Some figures may appear in colour only in the online journal)

1. Introduction

Understanding and tailoring the novel properties of
nanoclusters (nanoparticles) has been a longstanding corner-
stone of nanoscience research [1–4]. Nanoclusters display
unique and highly size-dependent physical and chemical
properties, providing potential for use in, e.g., electronics,
optics, biology and catalysis applications [1–9]. There are
three major cluster production routes: physical vapour (e.g.
cluster beam) deposition, chemical synthesis, and biological
formation [5, 10–18]. Compared with many examples of
chemical and biological synthesis routes, cluster beam
deposition has several potential advantages: the possibility of
precise size control by means of a mass filter; a tunable
interaction with the deposition support (by control of the
cluster beam impact energy); and convenience in producing
multi-elemental clusters [18].

However, despite such advantages, cluster beam tech-
nology has not been industrialized on a large scale. The
greatest issue limiting the commercial exploitation of cluster
beam technology is the low cluster deposition flux, which to
date has made this route uncompetitive compared with the
chemical synthesis methods [11, 18]. To address this issue a
new cluster beam technique, the matrix assembly cluster
source (MACS), has been developed in our laboratory, which
shows significant potential for scaling up the cluster beam
flux to the milligram and eventually gram scale: or equiva-
lently, to increase conventional cluster beam currents of the
order of nanoamps or below to the microamp and milliamp
regimes [19–21]. A significant challenge arising is then how
to accommodate and process this large abundance of clusters.
The conventional cluster sources allow deposition onto planar
substrates, a few square centimetres in area [11, 18]. How-
ever, the MACS has the potential to cover with clusters an
area of square metres (and in future beyond) in a matter of
minutes. Therefore, a new deposition scheme, which is cap-
able of accommodating and exploiting the high cluster flux is
required. In particular, one wishes to collect the clusters as
individual entities without aggregation on the support.
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Here we present the proof of principle of a novel mul-
tilayer cluster deposition scheme that we believe is potentially
scalable to cope with the kind of cluster beam flux available
from high flux cluster sources such as the MACS. The key
element of this scheme is the sequential deposition of a stack
of three-layer sandwiches each comprising: (a) a thin support
film, (b) a sub-monolayer of clusters, and (c) a soluble release
layer. The stack of sandwich structures is then diced into
small pieces and immersed in a solvent to dissolve the soluble
release layers and create small platelets covered with clusters.
Polyvinyl pyrrolidone (PVP) is a water soluble polymer of
low toxicity which is also soluble in many organic solvent. It
is also a standard stabilizer in colloidal synthesis of, e.g.,
catalytic nanoparticles [22–28]. For our proof of principle
demonstration, PVP layers (either spray-deposited using a
pulse valve or evaporated) were used as release layers, the
support film was a carbon film produced using a direct-current
evaporator or an e-beam evaporator, and the cluster layer
comprised size-selected Au923 clusters generated by a mag-
netron sputtering inert gas condensation cluster source [11]
(thus in the demonstration a conventional cluster source only
is employed). The characterization of the multilayer structure
was performed using through-focal measurements with the
aberration-corrected high angle annular dark field scanning
transmission electron microscope (HAADF STEM).

2. Experimental section

The carbon support layers were produced with either a direct
current evaporator or a SPECS EBE-1 e-beam evaporator,
which were added to the deposition chamber of the mag-
netron cluster source [11]. The thickness of the carbon layer
was controlled by an integrated flux monitor. The carbon
support film was simultaneously deposited on both a 1 ´
1 cm2 silicon substrate and a 400-mesh TEM grid (for the
STEM characterization of the multilayer structure). Size-
selected Au923 clusters were deposited onto the carbon
support layer from a gas condensation magnetron sputtering
cluster source equipped with a lateral time-of-flight mass
selector [11, 29, 30]. The chosen nominal mass resolution of
the cluster source was M/ΔM ≈ 20. The deposition energy
of the clusters was set to 0.54 eV per atom by controlling the
bias applied to the substrates for deposition. The PVP
(average molecular weight 10 000 Daltons; Sigma-Aldrich)
release layer was deposited on top of the cluster layer by
either pulse valve spray deposition or thermal evaporation.
The spray deposition was performed using a First Sensor
series-9 high performance pulse valve. The thermal eva-
poration was performed using a home-built thermal eva-
porator. The dicing of the samples was performed using a
diamond saw (DAD321 Automatic Dicer). Then the diced
samples were immersed in isopropanol to dissolve the PVP
release layers to produce the small supported cluster plate-
lets. The multilayer stacks, before and after dicing, and the
final released material were analysed with a JEOL JEM
2100F HAADF STEM, equipped with a spherical aberration
corrector (CEOS GmbH). The acceleration voltage

employed was 200 kV. The convergence angle of the elec-
tron probe was 19 mrad. The HAADF detector utilized a
62 mrad inner angle and 164 mrad outer angle. To minimize
the effect of the sample’s roughness level on the through-
focal HAADF STEM analysis, the through focal analysis
was performed in a region smaller than 31 nm ´ 31 nm.

3. Results and discussion

A schematic of the multilayer deposition process is shown in
figure 1. The method results in the production of a stack of
carbon–cluster–PVP sandwiches. To test the method, an
8-sandwich sample was produced (using identical deposition
conditions for each sandwich trilayer) on a TEM grid for
aberration-corrected STEM analysis. This measurement
technique has been successfully employed to obtain 3D
information on dopants, buried defects and even single atoms
using through-focal analysis [31–34]. An illustrative sche-
matic of the through-focal method and the corresponding
experimental HAADF STEM images are shown in figure 2. In
a sample comprising two carbon–cluster–PVP sandwiches,
when the electron beam is focused on the upper Au cluster, an
image of a clear upper Au cluster and blurry lower Au cluster
is obtained. Then, the electron beam is focused on the lower
cluster. Assuming the focal planes are located at the centre of
the clearly imaged clusters, the focal difference between these
two focal planes can be considered as the thickness of one
carbon–cluster–PVP repeat unit.

In the analysis of our 8-sandwich sample, six distinct
layers of Au clusters were observed by the through-focal
HAADF STEM, as shown in figure 3. The focal range was
from −28–13 nm. The focal differences between the neigh-
bouring layers were 9, 9, 9, 8 and 6 nm, moving from the low
defocus to high defocus values. These values indicate the
corresponding thicknesses of the sandwiches. This result
shows the reliable deposition of the different layers: the
thickness of each sandwich is quite uniform, especially in
the case of the first four layers. We note that the influence of
the carbon and PVP deposition on the clusters seems to be
minimal. We can see that the sizes and shapes of most clusters
are preserved from aggregation, even for clusters that close to
each other in the same layer (e.g. the two clusters circled in
figure 3(d)); see also below.

It was not possible to identify clusters from all eight
discrete cluster layers in a single STEM image. At most, it
was only possible to identify clusters from six discrete layers
in one image. The reason for this may be the relatively small
lateral region we used for the through-focal analysis. The
sample cannot be aligned exactly normal to the electron
beam, so to minimize the effect of this the analysis region is
set to be no larger than 31 nm´ 31 nm. In this small region,
due to the modest lateral cluster density, it is hard to find
clusters from all eight layers. Evidence of the missing layers
can be found in other series of the through-focal HAADF
STEM images. For example, in a second series, only four
layers of Au clusters were identified, but the focal difference
between the highest and lowest cluster layers is 47 nm, which
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Figure 2. Schematic of the through-focal HAADF STEM analysis on the multilayer sample. The electron beam was focused on (a) the upper
cluster and (b) the lower cluster. The cluster centres were estimated from their corresponding focal plane 1 and 2. Therefore, the defocus
difference between these two planes corresponds to the thickness of one complete carbon–cluster–PVP sandwich.

Figure 1. Schematic of the multilayer deposition process: (a) the carbon layer was deposited onto the substrate by e-beam evaporation, (b) the
Au clusters were deposited on top of the carbon layer, (c) the polymer (PVP) layer was formed on top of the cluster layer by either pulse
valve spray deposition or thermal evaporation. Then (d) a carbon–cluster–PVP sandwich was formed. This process was repeated to form (e) a
multilayer stack of carbon–cluster–PVP sandwiches.

3
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is even larger than the 41 nm difference in the 6-layer series.
This suggests that there may be three more layers in this
second series that have not been identified by the through-
focal analysis due to the limited number of Au clusters hap-
pening to lie within any given lateral region for imaging.

The process of dicing of the multilayer films was carried out
by an automatic mechanical dicer with a diamond saw. This
method has been successfully employed previously to produce
powder-supported size-selected clusters [35]. To check the effect
of the dicing process on the multilayer sample, the multilayer

Figure 3. (a)–(f) Through-focal HAADF STEM images of a multilayer sample comprised of eight carbon–cluster–PVP sandwiches each
deposited under the same conditions. The clusters in focus are marked by the red circles. (g) A schematic diagram of the 3D structure of the
multilayer sample with the thickness values determined from the through-focal STEM analysis.

Figure 4. HAADF STEM images of the diced sample edge produced by diamond saw dicing with (a) low magnification and (b) medium
magnification, showing the successful dicing with good edge morphology preservation of the multilayer structure after dicing. The inset in
(b) shows two clusters whose profiles overlapped without coalescence, indicating that different layers are preserved even close to the
dicing edge.

4
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sample deposited on the TEM grid was diced by a diamond saw
into 0.5mm ´ 0.5mm pieces. Such pieces were then placed
between two copper TEM grids without any additional support
layer. The HAADF STEM images of the dicing edge are shown
in figure 4, we can see that the dicing appears to leave good
straight edges. The clusters were uniformly distributed across the
sample even at the very edge of the diced pieces. Most sig-
nificantly, it can be clearly seen in figure 4(b) that profiles of two
(vertically separated) clusters overlap each other without aggre-
gation, which indicates that the multilayer structure was still
conserved after dicing (i.e. the clusters are in different layers).

In order to demonstrate the release process after dicing of
the multilayers, samples comprised of a stack of ten carbon–
cluster–PVP sandwiches were prepared on a silicon substrate
using the method described above. These samples were diced
and then placed in isopropanol for 2 h to dissolve the PVP
layers and thus produce small carbon platelets bearing the Au
clusters. After the platelets were released, they were deposited
onto a TEM grid for imaging by HAADF STEM. The results
are shown in figure 5, where it can be seen that the supported
Au cluster platelets were successfully released from the

multilayer samples. However, they do not appear to have
been released as single layer platelets. Platelets comprising
one, two and three layers can be seen in figures 5(a)–(c),
respectively. The number of layers was obtained by char-
acterization of clusters in different focal planes. It seems that
some of the carbon layers remained bound in small stacks
after the ‘release’ step. In figure 5(d), platelets with both
single layer regions and double layer regions are observed.
These results illustrate the principle that small Au cluster
bearing carbon platelets can be released from the multilayer
carbon–cluster–PVP stacks. The surviving double and triple
sandwich platelets suggest that more vigorous dissolution of
the polymer layers is needed to generate single layers of
clusters on carbon. In this case it seems the PVP release layers
were not completely dissolved, e.g., because the PVP release
layers deposited by pulse valve spraying may not be com-
pletely homogeneous.

Does the multilayer deposition process affect the cluster
significantly, so as to diminish the advantages of the cluster beam
deposition? Does the deposition of carbon and PVP layers and
the release process change cluster size distribution? The

Figure 5. The HAADF STEM images of platelets with single, double and triple layers are shown in (a)–(c), respectively. A platelet with part
single layer (upper) and part double layer (lower) is shown in (d).
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geometric sizes of Au clusters from an unreleased multilayer
sample and a released multilayer sample are compared with Au
clusters after normal cluster deposition with the same cluster
source experimental conditions in figure 6. We see that the peak
diameters are basically the same. The Au clusters in the multi-
layer sandwich stack show nearly the same distribution as the
normal deposited clusters, suggesting that the carbon and PVP
layers have little influence on the nanoclusters. In the released
sample, the Au clusters have a somewhat wider size distribution,
with the appearance of some aggregation, showing some influ-
ence of the release process on the clusters, probably due to some
aggregation during the dissolution step. But the main peak of the
size distribution is still reasonably narrow (3.4 ± 0.2 nm), and in
many cases the effect of the release process will probably be
acceptable.

4. Conclusions

In summary, a novel method for the collection of deposited
clusters has been demonstrated, which should in future be
scalable to high cluster beam fluxes simply be extending the
lateral and vertical dimensions of the samples generated. The
method is based on the creation of multilayer stacks of carbon–
cluster–PVP sandwiches. The clusters survive the multilayer
deposition with size and shape conserved. Through-focal
aberration-corrected HAADF STEM measurements were

employed to confirm the multilayer structure of the stacks and
successfully measure the thickness of the carbon–cluster–PVP
sandwiches. Dicing of the stacks can be accomplished without
very significant effect on the clusters. Carbon platelets bearing
supported Au clusters can be released from the multilayer
stacks by dissolving the PVP layers in isopropanol. The mul-
tilayer deposition method that has been developed here has
promise for applications including large-scale supported cata-
lyst production with the next generation of high flux cluster
beam sources such as MACS. The multilayer stacks produced
can be regarded as a new architecture for storing supported
catalyst particles, and may offer better interim protection for
the clusters than direct deposition onto powder supports. Future
work may address the morphology of the PVP layer in part-
icular, with the aim of achieving closer to 100% release of
single supported cluster layers after release, as well as auto-
mation of the whole multilayer deposition process, and espe-
cially the dicing step, to increase the process speed radically.
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