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a b s t r a c t

The increasing consumer demand for low fat foods has resulted in a need to replace fat in whipped
products with natural, readily available food ingredients. Agar fluid gels with the ability to stabilise foams
are therefore presented. Gelled particles can be used to mimic fat droplets and also stabilise foams
through localised jamming of the interstitial fluid in foam channels, which considerably slows drainage.
Innovative processing has developed fluid gels for the functionality of aeration that has built upon this
understanding. Novel particle shapes were manufactured, which enhanced particle interaction and ul-
timately improved their functionality when aerated. The properties of agar gelled particles were
controlled by altering agar concentration. Foam stability at each concentration was assessed in terms of
half-life measurements. While most exhibited a half-life of around 24 h, there was a dramatic increase at
3 wt% agar, which displayed a half-life of six days. A critical yield stress of the suspending fluid at 3 wt%
had therefore been reached, which resulted in enhanced foam stability to drainage. Interestingly, the
increased yield stress was attributed to increased particle elasticity at 3 wt% agar. Stability was provided
through the fluid gel acting as a network of particles with a finite yield stress. Particles impeded the
liquid flow in the foam, which resulted in the formation of localised plugs where particles were confined
to foam channels. Examining the internal microstructure of this novel, exceedingly stable foam using X-
ray tomography supported this mechanism.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The aeration of foods has important applications in a variety of
products, from whipped cream to aerated chocolate. The presence
of air reduces the calorific value and lowers the cost of foods whilst
at the same time provides a luxurious texture that is desirable to
the consumer. However, there is still a high percentage of fat in
some whipped products. Due to the increasing consumer demand
for low fat foods, there is a need to replace this fat with natural,
readily available food ingredients. Hydrocolloid fluid gels provide a
novel solution. Hydrocolloids are traditionally used as gelling or
thickening agents in food products. However, the development of
fluid gels has increased their functionality to fulfil a wider range of
structural requirements (Cassin, Appelqvist, Normand, & Norton,
2000). A fluid gel is a suspension of gelled particles dispersed in a
non-gelled continuous medium (Farr�es, Moakes, & Norton, 2014;
Garrec & Norton, 2012; Norton, Foster, & Brown, 1998). It is the
colloidal nature of a fluid gel that allows them tomimic fat droplets
r Ltd. This is an open access articl
(Norton et al., 1998). These gelled particles could potentially sta-
bilise foams not only by adsorbing at the air-water interface, but
also by increasing local viscosity in the foam channels (Plateau
borders and nodes) preventing liquid drainage. Lazidis et al. (2016)
previously reported the improvement of foam stability by whey
protein gelled particles, which increased local bulk viscosity.

A foam can be considered a colloidal dispersion in which a gas,
usually atmospheric air, is distributed throughout an aqueous
continuous phase (Walstra, 2003). They are thermodynamically
unstable systems that are constantly re-arranging to form lower
energy structures (Murray & Ettelaie, 2004) and have considerably
shorter lifetimes than other colloidal dispersions, such as emul-
sions. This is due to the higher surface tension of an air-water
interface than oil-water (Dickinson, 2010). The mechanisms,
which ultimately lead to the collapse of a foam, are: drainage,
disproportionation and coalescence (Weaire, 1999). The inter-
vening fluid between bubbles drains due to gravity, this results in
the close approach of bubbles and eventually coalescence. In
addition, disproportionation (the equivalent of Ostwald ripening in
emulsions) is a further problem. Diffusion of gas occurs from
smaller to larger bubbles due to the Laplace pressure difference
(Ettelaie, Dickinson, Du, & Murray, 2003). As a result, smaller
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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bubbles decrease in size whilst larger bubbles increase.
Foams are stabilised by surface-active molecules, which adsorb

at the air-water interface and lower surface tension (Saint-Jalmes,
2006). Food foams are stabilised by a variety of surfactants
including natural proteins from milk and egg, polar lipids such as
monoglycerides and synthetic surfactants such as sorbitan esters
(Kralova & Sj€oblom, 2009). Food products are also stabilised by
particles, for example whipped cream is stabilised by partially
coalesced fat droplets (Dickinson, 2010). Most commonly, particles
in foam systems provide stability by adsorbing at the air-water
interface (Hunter, Pugh, Franks, & Jameson, 2008). A rigid film is
formed which increases interfacial elasticity and viscosity, thus
providing a barrier to drainage and coalescence. Particles made
from most food-based materials are often not able to stabilise
foams on their own, mostly due to limitations in size and hydro-
phobicity. However, previous research has shown that they can
significantly aid foam stability (Lazidis, de Almeirda Parizotto,
Spyropoulos, & Norton, 2017). Particles can alternatively stabilise
foams by remaining in the continuous phase and creating a weak
gel network with a finite yield stress (Dickinson, Ettelaie, Kostakis,
& Murray, 2004; Zú~niga & Aguilera, 2008). Particles hinder the
liquid flow in the channels of the foam, which results in localised
plugs where particles are confined to Plateau borders and nodes.
Drainage is therefore reduced and foam stability is enhanced (Carn,
Colin, Pitois, Vignes-Adler, & Backov, 2009; Friberg & Saito, 1976;
Guignot, Faure, Vignes-Adler, & Pitois, 2010; Rio, Drenckhan, Salo-
nen, & Langevin, 2014). Several studies have reported this non-
classical arrest of drainage and emphasise its dependence on the
yield stress of the foamed suspension (Gonzenbach, Studart,
Tervoort, & Gauckler, 2006; Guillermic, Salonen, Emile, & Saint-
Jalmes, 2009; Lesov, Tcholakova, & Denkov, 2014).

In this study, agar fluid gel systems were investigated for their
potential as stabilised foams. The effect of added surfactant on fluid
gel formation and properties upon storage was explored, along
with processing conditions. Manufacture using a pin-stirrer pro-
duced fluid gels with advantageous particle shapes, which
enhanced their functionality when aerated. The effect of agar
concentration on the system was investigated. The effect of
increasing polymer concentration in a fluid gel system is two fold.
Firstly, increasing the concentration increases the volume fraction
and therefore particle interaction (Garrec, Guthrie, & Norton, 2013;
Norton, Jarvis, & Foster, 1999) and secondly, it increases the elas-
ticity of the particles themselves (Frith, Garijo, Foster, & Norton,
2002).
2. Materials and methods

2.1. Materials

Agar and Tween 20 were obtained from Sigma Aldrich (UK). All
concentrations were calculated as a weight percentage. Materials
were used with no further purification or modification.
2.2. Preparation of agar fluid gels using a rheometer

The required mass of agar and 0.5 wt% Tween 20 was dispersed
in deionised water heated to 90 �C, whilst stirring. Solutions were
covered to minimise water evaporation. Fluid gels were produced
in a rheometer using vane geometry (Kinexus, Malvern, UK). Ali-
quots of solutionwere transferred to the rheometer cup, pre-heated
to 90 �C. The temperature was allowed to equilibrate for 5 min and
was then decreased from 90 �C to 5 �C at a cooling rate of
2 �Cmin�1, whist the samplewas under a shear rate of 500 s�1. Each
sample was prepared in triplicate and stored at 5 �C.
2.3. Preparation of agar fluid gels using pin-stirrer

Fluid gels for the application of foaming were prepared in a
continuous process pin-stirrer as this allows larger scale produc-
tion. The required mass of agar and 0.5 wt% Tween 20 was
dispersed in deionised water heated to 90 �C, whilst stirring. The
solution was then fed into the jacketed pin-stirrer cooled to 5 �C,
through a peristaltic pump. The inlet temperaturewas controlled to
z70 �C and the outlet to 5 �C to ensure gelation occurred under
shear (gelation temperaturesz 30 �C). The speed of the pump was
set to 20mLmin�1 to achieve a retention time of 7.5 min in the pin-
stirrer resulting in a cooling rate of 8 �C min�1. The shaft rotation
speed was set to 1500 rpm as this has been previously reported by
Gabriele, Spyropoulos, and Norton (2010) to give a narrow size
distribution of particles. Fluid gels were stored at 5 �C.

2.4. Preparation of foams and determination of foam overrun

Equal volumes of fluid gels were whipped mechanically using a
Hobart mixing unit at the highest speed setting for 5 min. The
foaming ability of the systems was investigated by determining
foam overrun (Equation (1)), measuring the amount of air incor-
porated into the system by weighing equivalent volumes of the
original fluid gel sample and the sample after whipping. Experi-
ments were carried out in three replicates.

Overrunð%Þ ¼
 
mfluid gel

mfoam

!
� 100% (1)

2.5. Determination of foam half-life

The stability of the foams was determined using foam half-life
measurements. The reduction of the foam height by half was
recorded using a CCD camera and the half-life was later calculated.
Experiments were carried out in three replicates.

2.6. Rheological methods

Rheological measurements were performed using a Kinexus
rheometer (Malvern, UK) at 25 �C and 48 h after production, to
ensure post-production particle ordering completion (Gabriele,
Spyropoulos, & Norton, 2009; Garrec et al., 2013; de Carvalho &
Djabourov, 1997). Viscosity curves were obtained by recording
shear viscosity through a range of applied shear rates (0.001e500
s�1). Amplitude sweeps were conducted at a frequency of 1 Hz as a
function of applied oscillatory strain. A cone, with an angle of 4�

and diameter of 40 mm, and plate geometry was used. To avoid slip
a serrated parallel plate geometry was used (60 mm parallel plate
and serrated bottom plate set at a 1 mm gap). Experiments were
carried out in three replicates.

2.7. Surface tension measurements

Surface tension measurements of agar fluid gels produced in the
pin-stirrer and later aerated were performed using a Kruss GmbH
K100 tensiometer (Hamburg, Germany). The Wihelmy plate
methodwas used tomeasure static surface tension at an immersion
depth of 2 mm for an equilibration time of 2400 s at 25 �C. Ex-
periments were carried out in three replicates.

2.8. Imaging fluid gel particles

The phase contrast setting of an optical microscope (Leica
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Microsystems, UK) was used to image fluid gel particles using
objective lenses up to 20� magnification. Fluid gels were diluted
with deionised water (1:4) and dropped onto a microscope slide
with a coverslip.

2.9. Texture analysis

Quiescently cooled agar gels were stored at 5 �C for 48 h to
ensure their exposure to the same conditions as fluid gels.
Compression tests were completed using a TA XT plus Texture
Analyser (Stable Micro Systems Ltd, UK). A 40 mm diameter cy-
lindrical aluminium probe was used at a compression rate of
1 mm s�1. Prepared samples of 21 mm in diameter and 10 mm in
height were compressed to 50% strain and tests were carried out in
three replicates. The force/distance data was converted to true
strain (ε) and true stress (s) in order to determine the initial
modulus. This was calculated as the gradient of the region at 0e5%
strain and relates to the stiffness/deformability of the gel matrix,
until structure failure occurs (Bradbeer, Hancocks, Spyropoulos, &
Norton, 2014).

2.10. Micro computed tomography (Micro-CT)

Foam samples were scanned using a desktop X-ray micro-CT
system (Skyscan 1172, Bruker, Belgium) at a voltage of 61 kV and
current of 100 mA. The radiograph images of each scan were
reconstructed into 582 2D images using the Nrecon software and
analysis was done using CTan software.

3. Results and discussion

3.1. Preparation and characterisation of agar fluid gels

Agar fluid gels were produced using a rheometer, as this method
allows the kinetics of fluid gel formation to be monitored (Fig. 1).
The viscosity increase was measured whilst cooling through the
ordering and gelation temperature under an applied shear. The
viscosity increased gradually as the temperature was decreased,
until a sharp rise was observed atz 30 �C, indicating the beginning
of gelation. Norton et al. (1999) described the formation of small gel
nuclei, which upon further cooling continue to grow to an equi-
librium particle size determined by the shear rate. The effect of
shear rate on final fluid gel particle size has been previously studied
by Gabriele (2011) and particle size was found not to significantly
Fig. 1. Viscosity profiles during fluid gel production at 3 different agar concentrations.
change above a critical shear rate (and at the shear rates used in this
study). Agar concentration, however, is a significant parameter and
so its effect on fluid gel formation is evaluated here. From Fig. 1, the
temperature of ordering can be observed to increase with agar
concentration. This is a result of quicker gelation due to a higher
number of particles (Norton et al., 1998). A higher concentration of
agar therefore relates to a higher volume fraction and consequently
increased viscosity.

The aim of this studywas to produce fluid gels with the ability to
be aerated. Therefore, a non-ionic surfactant, Tween 20, was
incorporated into the fluid gels at a fixed concentration. Tween 20
has the highest water-solubility of all the Tweens and forms a
mobile monomolecular layer when stabilising foams (Patino, Ni~no,
& G�omez, 1997). The effect of incorporating this non-ionic surfac-
tant into agar fluid gels at various agar concentrations was inves-
tigated (Table 1). Firstly, it is likely some Tween 20 was entrapped
within the fluid gel particles, however, it has been reported that if
interactions do occur between agar and non-ionic surfactants they
are likely to be weak (Prasad, Siddhanta, Rakshit, Bhattacharya, &
Ghosh, 2005). Secondly, gelation temperatures appear to decrease
in the presence of Tween 20 (Table 1) however this is by less than
10% and is unlikely to be statistically different. A potential expla-
nation is the effect of solvent quality, as the addition of Tween 20
leaves less water available for structuring. In addition, the viscosity
of the agar fluid gels weremeasured after 48 h storage (Table 1) and
the presence of Tween 20 did not appear to significantly affect their
rheological behaviour. Furthermore, the material properties were
investigated. The initial moduli of quiescently cooled gels at the
same agar concentration were measured. The initial modulus re-
flects the stiffness/deformability of the gel matrix, until structure
failure occurs (Bradbeer et al., 2014) and has been reported by Frith
et al. (2002) to reflect the elasticity of the fluid gel particles
themselves. The addition of Tween 20 did not significantly affect
the initial moduli of quiescently cooled agar gels (Table 1) and is
therefore inferred not to significantly affect the elasticity of agar
fluid gel particles.

In order to produce larger quantities of fluid gel for aeration
purposes, a continuous process pin-stirrer was used to manufac-
ture fluid gels (described in Section 2.3). Production parameters
were less easily controllable than in the rheometer set-up. The
maximum rotational speed of 2000 rpm corresponds to z200 s�1

(Gabriele, 2011) and the cooling rate varied slightly depending on
the inlet and outlet temperatures. However, suitable parameters
were found which produced fluid gels with advantageous
properties.

The conformation of gel particles is highly important as this
directly affects foam stability. Fluid gels were therefore diluted and
imaged using phase contrast microscopy. Agar fluid gels at 1 wt%
agar produced by different methods are shown in Fig. 2. These
micrographs show that particle shape was significantly affected by
the production method. This trend was also observed for other
concentrations of agar tested. Fluid gels produced using a vane
geometry in the rheometer appeared as previously reported by
Norton et al. (1999); individual “hairy” anisotropic particles
(Fig. 2a). Agar fluid gels manufactured in the pin-stirrer, however,
appeared as fibrous particles, which formed spherical structures
with denser cores (Fig. 2b). The difference in particle shape
occurred due to the effect of shear environments on the kinetics of
gelation and consequently particle formation and shape. Fluid gel
particles form through the growth of initial gel nuclei to an equi-
librium particle size. Fluid gels produced on the pin-stirrer expe-
rienced a different shear profile, which resulted in the formation of
small fibrous particles (due to fast gelation kinetics) that subse-
quently collided together in the flow to produce larger spherical
structures. The shear environment experienced in the rheometer



Table 1
The effect of Tween 20 addition on the gelation temperatures and material properties upon storage of fluid gels at 3 different agar concentrations.

Concentration of agar (wt%) Concentration of Tween 20 (wt%) Gelation temperature (�C) Viscosity at 1 s�1 (Pa s) Initial Modulus (kPa)

0.5 0 27.3 (±0.3) 1.1 (±0.0) 5.3 (±0.5)
0.5 25.2 (±0.4) 0.9 (±0.1) 5.1 (±0.4)

1 0 31.7 (±0.2) 1.7 (±0.2) 30.7 (±2.0)
0.5 30.8 (±0.3) 1.4 (±0.0) 31.0 (±4.4)

1.5 0 33.0 (±0.2) 2.1 (±0.1) 62.3 (±5.3)
0.5 32.3 (±0.3) 1.9 (±0.2) 66.6 (±11.7)

Fig. 2. Micrographs of 1 wt% agar with Tween 20 fluid gels produced in (a) a
rheometer with vane geometry and (b) in a pin-stirrer.

Fig. 3. Storage modulus (G0) as a function of stress during oscillatory strain sweeps of
agar fluid gels produced on both the rheometer and pin-stirrer, 48 h after production.
Yield stress is calculated as the stress required to decrease G0 from the LVR by 5%.
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resulted in more segregated gel nuclei, which grew to a bigger,
more spherical particle size.

In order to investigate how particle shape affected the in-
teractions between particles, yield stress values were evaluated.
These were determined from amplitude sweeps on a rheometer, as
seen in Fig. 3. Yield stress was calculated as the stress required to
decrease G0 by 5% from the linear viscoelastic region (LVR). The
yield stress of 1 wt% agar fluid gel prepared on the rheometer was
0.17 (±0.06) Pa whilst on the pin-stirrer it was 0.63 (±0.13) Pa. Fluid
gels manufactured on the pin-stirrer had higher yield stress values
and, therefore, more particle interaction. It is thought that the
branched nature of the particles caused them to interact to a higher
extent than the more spherical, less branched rheometer made
particles. Manufacture using the pin-stirrer provided a different
shear profile that therefore resulted in kinetically trapping gelled
regions into these novel-shaped particles, which resulted in
enhanced particle interaction.

3.2. Rheological properties

The bulk viscosity of foams affect the mobility of the continuous
phase and therefore drainage velocity (Saint-Jalmes, 2006). The
viscosity profiles of agar fluid gel systems at various agar concen-
trations were measured (Fig. 4). All systems showed shear thinning
behaviour as expected for interacting particulate systems (Saha &
Bhattacharya, 2010). Unsurprisingly, shear viscosity increased
upon raising agar concentration. However, viscosity profiles of fluid
gels at 2.5 wt% and 3 wt% agar (coloured in grey in Fig. 4) over-
lapped; this suggests that a maximum packing fraction had been
reached.

The viscoelastic behaviour of the fluid gel systems was assessed
using oscillatory rheological data (Fig. 5). At each concentration, the
storage modulus (G0) dominated over the loss modulus (G00) which
is indicative of interconnected structures (Ross-Murphy, 1994). G0

increased with agar concentration due to an increase in volume
fraction and particle elasticity (Garrec et al., 2013). The linear
viscoelastic region (LVR) continued to a critical strain, where par-
ticle interactions were then disrupted. This causes the system to
flow which can be seen by a decrease in G0 (Fig. 6). The yield stress
of fluid gels at different concentrations were determined from the
strain sweeps as the stress required to decrease G0 in the LVR by 5%



Fig. 4. Viscosity profiles of agar fluid gels produced at different concentrations, 48 h
after production. The viscosity curves of 2.5 wt% and 3 wt% agar overlap and are
therefore highlighted for clarity.

Fig. 5. Storage (G0) and loss (G00) moduli as a function of applied oscillatory strain of
agar fluid gels, 48 h after production.

Fig. 6. Storage modulus as a function of stress during oscillatory strain sweeps of agar
fluid gels, 48 h after production.
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(Fig. 6). Yield stress increased with agar concentration due to
enhanced particle interaction caused by higher phase volumes and
an increase in particle stiffness (Garrec et al., 2013). Fluid gels at
2.5 wt% and 3 wt% agar still observed differences in their G0 and
yield stress despite their similar viscosity profiles, which had
indicated a maximum packing faction. G0 increased from 498 (±27)
Pa at 2.5 wt% agar to 695 (±32) Pa at 3 wt% agar and the yield stress
increased from 2.0 (±0.2) Pa to 3.3 (±0.2) Pa (Fig. 6). This can
therefore be attributed to the difference in particle elasticity; agar
particles at 3 wt% were less deformable and so a greater stress was
required to facilitate the movement of particles past one another
and, hence, initiate flow.
3.3. Foaming capabilities

The functionality of agar fluid gel systems to produce stabilised
foamswas investigated. The ability of the systems to incorporate air
was determined using foam overrun. Despite the reported difficulty
of whipping air into particulate systems (Murray & Ettelaie, 2004),
the soft elastic nature of the particles ensured foam overrun was
high. Overrun was observed to decrease upon increasing agar
concentration (Table 2). The surface tension of the fluid gels was
similar at all agar concentrations (Table 2). This suggests that when
aerated, Tween 20 saturates the air-water interface in all cases.
3.4. Foam stability mechanism

The foam stability at each concentration was assessed in terms
of half-life measurements (Table 2). The addition of agar into the
system (from 0 wt% to 0.5 wt% agar in Table 2) improved foam
stability by a factor of eight. This was due to the presence of par-
ticles providing a mechanism of stability against drainage. Foams
Table 2
Foam properties of aerated fluid gels at various agar concentrations.

Agar concentration
(wt%)

Surface tension
after 2400 s (mN m�1)

Foam
overrun (%)

Foam half-life
(hours)

0 36.2 (±0.15) 2045 (±52) 1.0 (±0.3)
0.5 39.3 (±1.4) 1270 (±27) 8.6 (±1.6)
1 39.7 (±1.5) 820 (±28) 17.8 (±2)
1.5 39.5 (±0.9) 671 (±13) 20.8 (±0.5)
2.5 37.2 (±1.7) 448 (±61) 24.1 (±1.9)
3 38.7 (±2.4) 281 (±37) 136 (±13.9)

Fig. 7. Yield stress of agar fluid gels as a function of foam half-life.



Fig. 8. Micro-CT images of aerated 3 wt% agar with Tween 20 fluid gel (a) 30 min after
aeration and (b) 6 days after aeration.

Fig. 9. Micrograph of a node formed from shaken 1 wt% agar with Tween 20 fluid gel
with confined agar particles.
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produced at 0.5 wt% to 2.5 wt% agar exhibited a half-life of 24 h or
less; stability was dramatically enhanced at 3 wt% agar, which
displayed a half-life of six days. At this concentration, agar particles
appeared to cease drainage for a considerable amount of time.
Similar observations of particulate systems have been reported,
where particles form a weak gel network, which results in a non-
classical arrest of drainage. Several studies relate this to an
increased yield stress of the foamed suspension. For example,
Guillermic et al. (2009) showed that the yield stress of Laponite-
stabilised foams increased upon suspension ageing, causing an
enhanced stability of the foam to drainage. In addition, Guignot
et al. (2010) described the retention of aggregated pyrogenic sil-
ica particles in foam channels due to the intrinsic yield stress of the
system. Other studies reported a complete arrest of drainage at a
system-specific threshold yield stress (Gonzenbach et al., 2006;
Lesov et al., 2014).
In order to investigate the mechanism of foam stability, rheo-
logical properties of the suspending fluid i.e. the fluid gel systems
were therefore considered. As discussed in Section 3.1,
manufacturing fluid gels using the pin-stirrer produced uniquely
shaped particles that provided systems with high particle interac-
tion. Increasing agar concentration, further increased particle
interaction as well as particle elasticity. These effects were
observed by an increase in systemyield stress (Fig. 6). Foam half-life
increased gradually from 0.5 wt% to 2.5 wt% agar until stability
dramatically improved at 3 wt% agar. This behaviour was a result of
the yield stress of the suspending fluid increasing to a critical point
at 3 wt% agar (Fig. 7), which resulted in considerably slowed
drainage. Agar fluid gels therefore provided stability when aerated
through acting as a network of particles with a finite yield stress.
Particles impeded the liquid flow in the foam through steric hin-
drance, which resulted in the formation of localised plugs (Guignot
et al., 2010). Particles were subsequently confined to foam channels
(Plateau borders and nodes) and as a result of fluid gel particle
interaction providing the existence of a wider network, drainage
was considerably slowed. The enhanced foam stability at 3 wt%
agar can be attributed to increased particle elasticity (as discussed
in Section 3.2) which was manipulated by increasing agar con-
centration whilst at the maximum packing fraction.

The advantage of a particulate gel system over weak gels is their
ability to recover faster upon shear. Biopolymer gels at low con-
centrations can also reduce liquid drainage through possessing the
required yield stress (Blom et al., 2016) however, most weak gels
cannot recover upon shear. Gel particulate systems can therefore
show benefits in some practical applications that require robust
system performance upon shearing.

The microstructure of the aerated fluid gel at 3 wt% agar was
investigated using X-ray tomography. Fig. 8 shows a 2D slice of the
foam 30 min after aeration (a) and six days after aeration (b) at the
foam half-life. Both images were taken at the same cross-section. X-
ray images probe the internal microstructure of the foam. The size
of foam components such as air cells and foam channels can
therefore be observed. Initial air cells were polydispersed; bubbles
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ranged in size fromz50 mm to 1.8 mm. The number of air cells had
decreased greatly and their size increased when the foam reached
its half-life, due to disproportionation and coarsening. Despite this
high increase in air cell size, the foamwas considerably stable. This
highlights the importance of the particle “plugging” effect at
slowing drainage, despite disproportionation. In addition, the
Micro-CT images demonstrate that agar particles of z50 mm
(Fig. 2b) could be confined to foam channels. 1This was further
supported in Fig. 9, where a sample of aerated 1 wt% agar fluid gel
was observed using phase contrast microscopy. The video shows
particles clearly confined to Plateau borders and nodes. It also il-
lustrates the soft elastic nature of the particles through their
movement around the air cells.1

Supplementary video related to this article can be found at
http://dx.doi.org/10.1016/j.foodhyd.2017.06.038.

4. Conclusions

Agar fluid gels have been shown to enhance foam stability and a
strong dependence on themicrorheology of the systems was found.
Tween 20 was incorporated into agar fluid gels without affecting
rheological and material properties but allowing foam production.
Manufacturing these systems using a pin-stirrer produced novel
particle shapes (a result of faster gelation kinetics) which increased
particle interaction, indicated by yield stress. All systems showed
good foaming properties. Foam stability was affected by the yield
stress of the fluid gels, which was influenced by particle interaction
and elasticity, manipulated by agar concentration. A substantial
increase in stability was observed for systems from2.5 wt% to 3wt%
agar. Both formulations had very similar viscosities; the increase in
foam stability was therefore caused by an increase in particle
elasticity. When 3 wt% agar particles were confined to foam
channels during drainage, as well as being part of a greater network
with a finite yield stress, theywere less deformable and so provided
a strong barrier to drainage.

This research has demonstrated that the use of fluid gels pro-
vides a novel solution to the increasing need to replace high levels
of fat in food products with natural, readily available food in-
gredients. Agar fluid gels provide stability in foams, whilst also
holding the potential to deliver desired textural properties of fat
droplets. In addition, the properties of fluid gels can be further
controlled and manipulated to meet additional requirements and
further exciting applications.
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