
 
 

University of Birmingham

Water use of the UK thermal electricity generation
fleet by 2050: Part 1 identifying the problem
Quinn, Andrew; Murrant, Daniel; Chapman, Lee; Heaton, Chris

DOI:
10.1016/j.enpol.2017.05.011

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Quinn, A, Murrant, D, Chapman, L & Heaton, C 2017, 'Water use of the UK thermal electricity generation fleet by
2050: Part 1 identifying the problem', Energy Policy, vol. 108, pp. 844-858.
https://doi.org/10.1016/j.enpol.2017.05.011

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 01. May. 2024

https://doi.org/10.1016/j.enpol.2017.05.011
https://doi.org/10.1016/j.enpol.2017.05.011
https://birmingham.elsevierpure.com/en/publications/fcb59b01-ec7f-4b3f-9dba-d0272b9402ec


Contents lists available at ScienceDirect

Energy Policy

journal homepage: www.elsevier.com/locate/enpol

Water use of the UK thermal electricity generation fleet by 2050: Part 1
identifying the problem

Daniel Murranta,⁎, Andrew Quinna, Lee Chapmanb, Chris Heatonc

a School of Civil Engineering, University of Birmingham, Birmingham, West Midlands B15 2TT, UK
b School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, West Midlands B15 2TT, UK
c Energy Technologies Institute, Loughborough, East Midlands LE11 3UZ, UK

A R T I C L E I N F O

Keywords:
Water-energy Nexus
UK energy policy
Water resources
Climate change
Power station cooling

A B S T R A C T

The effects of increasing water and energy demand pose a growing threat to national infrastructure strategies.
Within the UK there is concern that a future lack of water will compromise the UK's current energy policy to
meet an increasing demand for electricity by more thermal generation. This paper investigates this by modelling
the water demand of the UK's thermal generation in 2030 and 2050 for several future electricity generation
pathways. Unlike previous studies this paper has obtained water abstraction and consumption figures specific to
the UK.

While the water demands were heavily pathway dependent this study finds for the thermal generation
pathways there is a serious mismatch between the assumed freshwater available at 2030 and 2050, its expected
actual availability, and an understanding of the implications this has for future generation costs. It is shown that
a solution is to make greater use of the UK's seawater resource. This study finds the emphasis UK energy policy
gives to the competing poles of low cost electricity generation and environmental protection will have significant
impacts on the cost and make-up of the UK's future electricity generation portfolio. A companion paper will
consider the generation cost issues if seawater is not available.

1. Introduction

The interdependencies between the availability of water and the
generation of electricity are increasingly posing a threat to many
national infrastructure systems (Gu et al., 2014; Hussey and Pittock,
2012; Pacsi et al., 2013; Tran et al., 2014). This is the result of an ever-
increasing demand for water and electricity generation associated with
a decreasing availability of freshwater for power station cooling water.
This reduction in freshwater availability is the result of climate change,
increasing demographic issues, and increasingly stringent environ-
mental regulation.

Byers et al. (2014) estimates that up to 90% of water abstracted by
power stations is for cooling therefore the cooling method used by
power stations dictates their water demand. Once-through cooling uses
water to cool a power station's exhaust heat directly and is recognised
as the Best Available Technique (BAT) due to its relatively high
efficiency, and therefore low cost and CO2 burn (European
Commission, 2001). Of the cooling methods it by far withdraws the
greatest volumes of water. There are alternative cooling methods which
withdraw less but these are more inefficient and consume more (Byers

et al., 2014, 2015; Murrant et al., 2015). Evaporative cooling uses
cooling towers and recycles its cooling water, air cooling uses no/
negligible water, hybrid cooling systems are a combination of evapora-
tive and air cooling. Although these cooling methods are less water
intensive they do carry significant cost penalties (Turnpenny, 2010;
Macknick et al., 2011).

For the UK a number of studies have looked at this water-energy
nexus issue and the unanimous view was from 2010, through to the
2050s a scarcity of freshwater will increasingly compromise UK
thermal power stations’ ability to generate electricity (Byers et al.,
2014, 2015; Murrant et al., 2015; Schoonbaert, 2012; The Royal
Academy of Engineering et al., 2011). From 2010–2050 UK electricity
demand is predicted to grow from 384 TW h to a potential 610 TW h
(HM Government, 2011; Macleay et al., 2011), with Government policy
seeing the means being predominantly an increase in thermal genera-
tion (Committee on Climate Change, 2015; DECC, 2015; Government,
2011).

Byers et al. (2014) produced a model framework to quantify the
operational water demands of different electricity generation pathways
in terms of their water abstraction and consumption demand, per
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generation technology, per cooling method, per timeframe. The frame-
work could also distinguish between different cooling water resources;
the options being freshwater, estuarine and sea water. To obtain
information on the water demands of different generation pathways
the Byers’ framework was used to model the water demands of six
possible future UK electricity generation pathway options, see 2.2
Carbon Plan Pathways.

For Byers et al. (2014) the water abstraction and consumption
figures used were based on a study carried out by the USA's National
Renewable Energy Laboratory (NREL) (Macknick et al., 2011). The
authors of this paper obtained access to UK specific water abstraction
and consumption figures compiled by the Joint Environmental
Program (JEP), and made available by the Environment Agency
(EA). For this paper this data is referred to as the UK abstraction
and consumption figures.

The aim of this paper is to consider how the future water demands
of UK thermal electricity generation in a freshwater scarce environ-
ment could impact UK energy policy. This was achieved by using the
Byers et al. (2014) framework, and the UK abstraction and consump-
tion figures to attribute, relative to 2010, national abstraction and
consumption water demands to the Energy Technology Institute's
(ETI) Energy Systems Modelling Environment (ESME) pathways (see
2.1 Energy Systems Modelling Environment (ESME) model) for 2030
and 2050. Given the importance of the Carbon Plan in setting out how
future UK energy policy will aim to achieve decarbonisation (HM
Government, 2011), the opportunity will also be taken to update the six
2030 and 2050 pathways analysed by Byers et al. (2014).

2. Background to electricity generation pathways modelled

2.1. Energy Systems Modelling Environment (ESME) model

The ETI is a collaboration between industry and the public sector,
formed in 2007, to promote the UK's transition to a low carbon
economy (Heaton, 2014). The ETI developed the internationally peer-
reviewed ESME model to identify technologies likely to be important
for creating an affordable, secure, and sustainable energy system. In
addition it was also required to meet the UK's 2050 Greenhouse Gas
(GHG) emissions reduction target of 80% from their 1990 levels
(Heaton, 2014; Energy Technologies Institute, 2016). Besides being
used by the ETI's members and academic institutions ESME was used
by the Department of Environment and Climate Change (DECC) when
developing the UK's Government's Carbon Plan, and by the Committee
on Climate Change (CCC) for their review of carbon budgets (Day,
2012; Heaton, 2014).

ESME is a design tool rather than a forecasting tool and adopts a
least-cost optimisation Monte Carlo approach to modelling the UK
energy system whilst still adhering to a number of specified targets and
constraints. These include emission targets, resource availability,
technology build rate, and meeting the projected energy demand. It
should be noted that ESME is only constrained by CO2 emissions
rather than all GHG emissions, although the expected pathway of all
GHG emissions are taken into account when determining the levels of
CO2 allowed (Heaton, 2014).

When modelling the future UK energy system ESME adopts a whole
system scope which includes all the major flows of energy: electricity
generation, fuel production, energy use for heating, industrial energy
use, and transportation of people and freight. A range of technology
options are available encompassing all the energy flows above, includ-
ing power stations, vehicle and heater type, each with a number of
input parameters such as available resources, fuel prices and technol-
ogy costs (Energy Technologies Institute, 2016).

ESME then uses the least cost optimisation method to analyse the
various permutations of technology choices. It selects those which
produce the least cost energy system out to 2050 whilst still meeting
and adhering to the specified targets and constraints. ESME can model

its energy system in either five, or 10 year, time steps from 2015 to
show the progression to 2050.

Unlike similar UK energy system models such as MARKAL, rather
than providing only national outcomes, ESME can model demands and
resources at the UK regional level, and show the regional location of its
modelled electricity generation infrastructure (HM Government,
2011). As UK energy demand, water demand, and water availability
vary regionally, this regional functionality is an advantage that the use
of the ESME model brings to this study. Although for the purpose of
this paper, and to provide a starting point for this research, only the
2030 and 2050 national outcomes relative to 2010 will be considered
here. The key results and outcomes developed using the modelling
analysis described in this paper are then built upon in the companion
paper to enable analysis on a regional scale to be undertaken (Murrant
et al., 2016).

While at the national and regional level ESME is able to provide
least-cost and CO2 emissions optimised generation pathways it is not
able to consider the associated water demand of the modelled path-
ways. With thermal generation being the major ‘intended’ electricity
generator for many ESME pathways, and with future water avail-
ability increasingly an issue, this limits ESME's usefulness as a
strategic modelling tool. This is a matter which was resolved at the
regional scale by this study and is described in more detail in the
companion paper.

2.1.1. Monte Carlo approach
Any model has inherent uncertainties particularly one as complex

and broad as ESME. Whilst it is impossible to entirely remove these
uncertainties ESME uses the Monte Carlo technique to manage and
quantify them. Rather than producing a single perturbation ESME
produces hundreds, or even thousands, where the input parameters
(e.g. energy resources, fuel prices, technology costs) are varied for each
according to the probabilistic distribution of the parameter. This was
developed by the ETI in consultation with industry experts. As well as
showing the range of individual results a final result is produced by
taking the mean average of this range.

This approach allows a range of possible future energy systems to
be considered. Besides identifying technologies which appear highly
likely to contribute to the future energy system, it also identifies those
which may depending on how the input parameters change in the
future. This approach was felt to be a further benefit of using the ESME
model as it helps to identify the range of uncertainty that policymakers
have to consider when taking decisions.

2.1.2. ESME pathways
The results produced by ESME, as with any model depend upon the

inputs. When ESME is perturbed with standard probabilistic distribu-
tion for each input parameter using the Monte Carlo approach the
result is referred to as the Monte Carlo (ESME.MC) pathway. It
represents ESME's best design make-up of a 2050 UK electricity
generation pathway. When modelling the 2050 pathway it focuses on
achieving the UK's CO2 emission reduction, and electricity generation
targets at least-cost. As a result the generating technologies selected are
found to favour additional nuclear generation, then CCGT +CCS plant
supported by renewables, Fig. 1. The ESME.MC pathway finds a large
adoption of nuclear generation results in the cheapest overall energy
system because it reduces the need for intermittent renewable energy
generation which requires expensive storage and balancing infrastruc-
ture. This may appear counter intuitive given that a number of
proposed nuclear power stations in Europe including Hinkley Point C
are over-budget, however this new generation of nuclear power stations
are effectively First Of A Kind and therefore costs can be expected to
reduce in the future (Csereklyei, 2016). Furthermore by using its’
Monte Carlo approach the ESME.MC pathway does consider a range of
capital costs for nuclear power stations, some of which foresee budget
overspends of almost 50%.
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ESME can be perturbed in a deterministic way where just a single
run is undertaken allowing ‘what-if’ scenarios to be tested. The ETI has
two such published scenarios; they are the Clockwork and Patchwork
pathways. The Clockwork storyline assumes that well-coordinated, long
term investment, allows new energy infrastructure to be installed like
clockwork. It too favours additional nuclear, CCGT +CCS plant and
renewable energy (Milne and Heaton, 2015), Fig. 2. This pathway
resembles the ESME.MC pathway, nevertheless, as it is a recognised
distinct ESME pathway it has been included. The Patchwork storyline
sees central government taking less of a leading role and envisages a
patchwork of distinct energy strategies developing at the regional level.
Decarbonisation is achieved by the adoption of ad hoc renewable
energy technologies including onshore and offshore wind (Milne and
Heaton, 2015), Fig. 3.

2.2. Carbon plan pathways

The analysis carried out by Byers et al. (2014) modelled the water
demands of six possible future electricity pathways by 2050, four taken
directly from the UK Government's Carbon Plan (HM Government,
2011), [High Nuclear, High Renewables, High CCS, UK MARKAL

3.26], and two modified versions of the Carbon Plan pathways [CCS+
and UKM+], defined in Table 1.

3. Methodology

3.1. General methodology

An in-depth description of the (Byers et al., 2014) model frame-
work, and the assumptions it makes are extensively described in that
paper and will not be repeated here. However, an overview of the
framework's principles is necessary, as are the additional assumptions
and modifications that are made by this study (see 3.2 Applying the
model).

The model framework defines a generation pathway as a series of
generation outputs given in TW h for a number of given generation
technologies for a number of given years. This is represented using a
matrix G with elements ntg, where G =[n n×t g], t= a given year, g =
generation technology, and ng= eight generation technologies (defined
in 3.2.1 Technologies) and nt= three yearly periods (2010, 2030 and
2050). The generation pathways used for this analysis are the ESME
and Carbon Plan pathways already discussed for 2030 and 2050. For

Fig. 1. ESME.MC Electricity Generation Pathway (Energy Technologies Institute 2014).

Fig. 2. ESME Clockwork Electricity Generation Pathway (Milne and Heaton, 2015).
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2010 actual generation figures were used, these were taken from the
Digest of UK Energy Statistics (DUKES) which provided 2010 total UK
generation values per technology type (Macleay et al., 2011).

The framework then requires the distribution as a percentage of
cooling water source and the distribution as a percentage of cooling
method used, for each generation technology for each year to be
identified. This is represented using a 4-D array S with elements ntgwm,
where S =[n n n n× × ×w m t g], w = water source, m = cooling method,
nw= three cooling water sources (freshwater, estuarine and seawater),
nm = four cooling methods (once-through, evaporative, hybrid, air
cooling).

Known water abstraction and consumption figures, given in ML/
TW h (although this is equivalent to L/KWh), per generation technol-
ogy, per cooling method can then be introduced and are represented by
matrices A and C respectively with elements nmg, where A =[n n×m g].
For this paper matrices A and C are populated by the UK abstraction
and consumption figures.

Element-wise multiplication of the arrays GSA and GSC gives total
water abstraction and consumption results for each water source and
cooling method combination, per generation technology for the year in
question: (Atotal GAS=w m g t, , , , Ctotal GCS=w m g t, , , ), where; Atotalwmgt =
Total abstraction for any given combination of water source, cooling
method combination, generation technology and time period,
Ctotalwmgt= Total consumption for any given combination of water
source, cooling method combination, generation technology and time
period.

Summation of the relevant combinations will allow total water
abstraction and consumption of any given pathway generation technol-
ogy, for any time period, to be calculated (Atotal Atotal= ∑w g t m

n
w m g t, , =1 , , ,

m ,
Atotal Atotal= ∑g t w

n
w g t, =1 , ,

w , Ctotal Ctotal= ∑w g t m
n

w m g t, , =1 , , ,
m , Ctotal =g t,

Ctotal∑w
n

w g t=1 , ,
w ), where Atotalw g t, , = total abstraction of all cooling

methods for any given combination of water source, generation technol-
ogy and time period. Atotalg t, = total abstraction of all cooling methods
and water sources for any given combination of generation technology
and time period.Ctotalw g t, , = total consumption of all cooling methods for
any given combination of water source, generation technology and time
period. Ctotalg t, = total consumption of all cooling methods and water
sources for any given combination of generation technology and time
period.

Similarly, summation of all combinations would produce the total
pathway water abstraction and consumption for any given time period
(Atotal Atotal= ∑t g

n
g t=1 ,

g , Ctotal Ctotal= ∑t g
n

g t=1 ,
g ). Where Atotalt= total

abstraction of all generation technologies using all cooling methods and
water sources for any given time period. Ctotalt= total consumption of
all generation technologies using all cooling methods and water sources
for any given time period.

3.2. Applying the model

3.2.1. Technologies
The thermal generation technologies considered by this analysis are

those present in 2010 and those the ESME model and Carbon Plan
pathways include in their thermal generation portfolios, namely,
Nuclear (includes all large scale nuclear power plant variants),
Nuclear Small/Medium Reactors (SMR), Gas (CCGT), Coal/biomass
(assumed to be sub-critical), Gas CCS, Coal CCS (assumed to be super-
critical unless it is IGCC), Waste Gasification and Waste Gasification
CCS. Oil represents only 1.3% of all thermal generation in 2010
(Macleay et al., 2011); the ESME and Carbon Plan pathways predict
by 2050 it will have been phased out. ESME also identifies geothermal
technology as providing 0.25% of the UK's energy by 2050. On this
basis both these technologies have been omitted from this study. ESME

Fig. 3. ESME Patchwork Electricity Generation Pathway (Milne and Heaton, 2015).

Table 1
Carbon Plan Pathways.

High Nuclear A low uptake of energy efficiency measure and CCS not being commercially viable lead to a large adoption of nuclear generation.
High Renewables Increased uptake of renewable energy due to reduction in cost as well as increased use of energy efficiency measures, result in a generation mix of wind,

solar, marine and back-up gas generation.
High CCS CCS proves to be commercially viable resulting in a large uptake of CCS generation, largely driven by natural gas imports and exploitation of shale gas.

Also assumes negative emissions through biomass CCS.
UK MARKAL 3.26 Least-cost optimised model results in a large uptake of energy efficiency measures and subsequent reduction in demand as well as a balanced generation

mix including renewable energy, CCS and nuclear.
CCS+ Similar to High CCS with nuclear now replaced with further coal CCS, biomass and renewable energy.
UKM+ Similar to UK MARKAL 3.26 but with an increased energy demand met by a balanced generation mix of renewable energy, CCS and nuclear.
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identifies three gas generating technologies; CCGT, anaerobic diges-
tion, and hydrogen turbines. After email consultation with the ETI gas
team (Gammer, 2015), it was agreed that the water use of these
technologies would be similar. They are therefore treated as one
technology, namely CCGT.

Nuclear Small/Medium Reactors (SMR) are a new technology,
being smaller than traditional nuclear power stations they are antici-
pated to attract less rigorous siting constraints. For this reason they are
classed as a separate technology.

3.2.2. Distribution array
To produce the array S for 2010, which defines how the cooling

methods and water sources are distributed for a given generation
technology, DUKES was first used to find the installed capacity of
thermal generation power stations in the UK for 2010 > 15 MW
(Macleay et al., 2011).

Neither DUKES, nor any official source, provides cooling method
and water source information by power station for UK thermal
generation. This was a problem Schoonbaert (2012) and Byers et al.
(2014) had to resolve. This was achieved for those studies by consulting
satellite imagery, online records, site visits, and contacting generation

companies. Their results were now revisited and, with only minor
changes, produced Table 2. Appendix A shows the raw power station
data obtained. In the absence of generation information for specific
power stations, their water demands were attributed relatively by using
power station installed capacity. So if a CCGT power stations’ rated
power capacity represented 10% of the UK's total CCGT capacity, then
knowing the total annual electricity generated by UK CCGT power
stations it was assumed that 10% of this was generated by the power
station in question, which is operated with the cooling method and
water source identified-. As this assumes across each technology each
power station had the same annual runtime this clearly has the
potential to introduce error. In this respect it was felt that while there
well may be significant errors on an individual power station basis, on
average the methodology's assumption was reasonable. There was also
the knowledge that a validation of the water demand methodology used
for 2010 was to be carried out.

Table 2 also shows the cooling method and water source distribu-
tion for technologies not yet operational in the UK but predicted to be
by 2050; they are Waste Gasification, Nuclear SMR, CCGT CCS, Coal
CCS and Waste Gasification CCS. The assumptions made for these
distributions are shown as a footnote to Table 2.

Table 2
Distribution of cooling method and water source, derived from (Byers et al., 2014, Schoonbaert, 2012).

Cooling Method

Generation Technology 2010 Installed Capacity
(MW)

Water Source Once-through
(%)

Closed (%) Hybrid (%) Air (%)a

Nuclear 10,125 Freshwater 0 0 0 0
Estuarine Water 15.84 0 0 0
Sea Water 84.16 0 0 0
Air 0 0 0 0

Nuclear SMRb N/A Freshwater 0 17 0 0
Estuarine Water 0 41 0 0
Sea Water 42 0 0 0
Air 0 0 0 0

CCGT (including H2 Turbines and Anaerobic
Digestion)

32,169 Freshwater 0.48 11.91 5.19 0
Estuarine Water 20.56 13.28 19.62 0
Sea Water 5.58 0 0 0
Air 0 0 0 23.38

Waste Gasificationc N/A Freshwater 0 68.07 0 0
Estuarine Water 0 0 0 0
Sea Water 0 0 0 0
Air 0 0 0 31.93

Coal (including Biomass) 28,971 Freshwater 0 34.50 0 0
Estuarine Water 18.32 34.00 1.38 0
Sea Water 11.25 0 0 0
Air 0 0 0 0.55

CCGT CCSd N/A Freshwater 0.48 11.91 5.19 0
Estuarine Water 20.56 13.28 19.62 0
Sea Water 5.58 0 0 0
Air 0 0 0 23.38

Coal CCSe N/A Freshwater 0 34.50 0.00 0
Estuarine Water 18.32 34.00 1.38 0
Sea Water 11.25 0 0 0
Air 0 0 0 0.55

Waste Gasification CCSe N/A Freshwater 0 34.50 0 0
Estuarine Water 18.32 34.00 1.38 0
Sea Water 11.25 0 0 0
Air 0 0 0 0.55

a Air cooling only requires negligible volumes of water; this was assumed to be freshwater due to air cooling’s use when water is scarce.
b Nuclear SMR distribution based on discussion with ETI and informed by ETI (2015).
c Waste gasification distribution calculated from all operational and consented sites as well as those in the planning process.
d CCGT CCS distribution the same as CCGT.
e Waste Gasification CCS distribution the same as Coal CCS which in turn is the same as Coal.
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To determine the 2030 and 2050 cooling methods and water
sources that would become used to mitigate the increasing lack of
freshwater both Byers et al. (2014) and Murrant et al. (2015) accepted
that one, or a combination of two possible options would from 2010
likely apply. They were either a greater use of the less water intensive
cooling methods that incur higher costs and CO2 emissions, or a
greater adoption of estuarine and seawater sources would take place.

With such uncertainty it was reasoned that any UK national
comparison of water demands of the study's selected pathways at 2030
and 2050 relative to 2010 can only identify an order of potential national
water demand issues. In reality the availability of freshwater and
seawater resource, as does the demand for power, varies significantly
regionally (Mitchell and McDonald, 2015) and it is at this level of detail
the real issues lie. On this basis applying the 2010 cooling distribution
array relatively to 2030 and 2050 serves this paper's purpose.

3.2.3. The abstraction and consumption figures
This paper uses the abstraction and consumption figures for UK

power stations, compiled by the JEP and made available by the EA. The
JEP is made up of nine of the UK's leading electricity generators. The
JEP has a research and development objective to understand and
expand the knowledge of the environmental science and its impacts
related to the generation of fossil fuel electricity (Gasparino, 2012). A
specific interest is to better understand the water use of UK power
stations.

Macknick et al. (2011) discusses at length the wide ranging
variability found in the published subject data when attempting to
consolidate the literature of water use by various electricity generation
technologies in the United States. The research objective was to obtain
figures that could “be incorporated into energy-economic models to
estimate generation-related water use under different projected elec-
tricity portfolio scenarios”. It was found that despite significant
differences in the methodologies used to compile the data it invariably
resulted in wide-ranging high and low values for water abstraction and
consumption. But the cooling method employed invariably produced
significantly different, and definitive, water demand magnitudes. This
identified that water demands of thermal power stations should be
categorised by cooling method rather than generation technology.

The UK abstraction and consumption figures compiled by the JEP
were based upon the Resource Efficiency Physical Index Data for 2010
and the data previously prepared for the DG Environment Blueprint.
The Combustion Industry Sector and the UK Water Working Group
were also consulted to help improve the quality of the data. The water
use figures provided were in the form of lower and upper limits for
abstraction and consumption for various generation technology and
cooling method combinations. The CCS water rates provided were
based on Parsons Brinckerhoff (2012). The data provided is acknowl-
edged to be wide ranging and heavily caveated and for the purpose of
this paper was not comprehensive. The variability present in the UK's
abstraction and consumption data supports the view of Macknick et al.
(2011) that variability in power station's water abstraction and con-
sumption data would inevitably be found to be systemic irrespective of
the country.

The UK abstraction and consumption figures shown (Tables 3a and
3b) are those required by either the ESME or Carbon Plan pathways.
Some are for yet-be-developed technologies. In practice the values in
the standard font are the abstraction and consumption mid-point
values calculated from the range of the JEP data provided. The values
in bold are calculated figures where the JEP did not provide values. The
basis for calculating these unknown values was the conclusion of
Macknick et al. (2011) that power station water demands are cate-
gorised by their cooling methods rather than generation technology.
The JEP provided a sufficient distribution of known cooling method
water demands, across a sufficient number of known generation
technologies, that a ratio for different cooling methods, and different
technologies across adjacent rows in Tables 3a and 3b could be found.

This ratio could then be used to attribute the unknown water demands
shown in bold in Tables 3a and 3b.

Waste gasification is a relatively new technology (Lightowlers,
2012), and there are no ‘working’ abstraction and consumption figures
available, however the JEP do provide a value for Coal (HLF) IGCC +
CCS Coal for evaporative cooling. Discussion with the ETI gas team
confirmed in the absence of an actual value this would be a reasonable
value to use for evaporative waste gasification + CCS (Gammer, 2015).
Using the ratios now available this permits this technology's water
demand under the remaining cooling methods to be determined. For
waste gasification without CCS with once-through cooling, abstraction
and consumption figures were determined by finding the ratio between
the known non-CCS technologies and their CCS equivalents’ values; as
(CCGT +Coal(HLF))÷(CCGT+CCS +Coal(HLF) IGCC CCS1). By apply-
ing the values so obtained (abstraction: 0.72, consumption: 0.88) to the
Waste Gasification + CCS with once-through cooling abstraction and
consumption values, the unknown water demand for Waste
Gasification with once-through cooling could be obtained. This tech-
nology's water demand under the remaining cooling methods were
then once again determined using the ratios shown in Tables 3a and 3b.

Nuclear SMR is also a relatively new technology and also has no
available abstraction and consumption data although IEA (2012)
suggests that due to reduced efficiency water use may increase by
around 5%. They also state that precise figures are not available. With
this uncertainty and with the difference being relatively small it was felt
more appropriate to assume that the abstraction and consumption
figures would be the same as those for traditional nuclear generation.

3.3. Validation

To confirm the methodology employed does not produce unaccep-
table inaccuracies when modelling pathway water demands, a valida-
tion of the results obtained was carried out. The EA receives data
annually showing the water abstracted but not consumed from fresh-
water and estuarine (not seawater) sources for power stations in
England and Wales. Figures for Scotland and Northern Ireland were
not available. This data for the years 2006–2010 was obtained with the
main interest being 2010, the year for which the UK abstraction and
consumption figures obtained apply.

Not all the EA data provided could be used as in some instances it
was incomplete. The twenty-three power stations used had a total
generating capacity of 29,215 MW, Table 4. This is a 42% sample of the
England and Wales total installed capacity of 70,040 MW in 2010
(Macleay et al., 2011).

When matching generating technology with water demand the
question arises whether for 2010 the correct choice for coal was coal
Low Load Factor (LLF, capacity factor < 46%), or coal High Load
Factor (HLF, capacity factor ≥ 46%). This has a profound effect on
water demand. In an exchange of correspondence with the EA their
opinion was that with the large number of operational mode influences
that a generating plant has to respond to (on a daily basis) with the
information available there could be no definitive answer (Brierley,
2014). In line with this opinion it was decided to show the validation
with both the coal LLF and coal HLF values. The results obtained for
the years 2006 – 2010 are shown, Table 5.

The closest correlation for the years tested is seen to be for coal
HLF, with the error for 2010, for which the UK abstraction figures
relate, being just 3.23%, Table 5. When considering the HLF result over
the whole validation period it is felt that whilst the error varies
significantly, with the large changes in operational mode known to
occur this could be expected. This result it was felt validates the

1Waste gasification is only selected by ESME, all coal CCS selected by ESME is IGCC
pre-combustion; for consistency IGCC pre-combustion was used for this calculation
rather than coal post-combustion.
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methodology's use of the UK abstraction figures to attribute, relative to
2010, the national water demands at 2030 and 2050 to the ESME and
Carbon Plan pathways assessed in this study. For the 2030 and 2050
pathways both the ESME and Carbon Plan pathways provide their load
factor; for ESME it is Coal LLF, for the Carbon Plan pathways it is Coal
HLF (DECC, 2013). Their respective factors have been used.

With no actual consumption figures available it was not possible to
validate the methodology used in regards of consumption. The
consumption figures used in this analysis were provided from the same
dataset as the abstraction figures and applied using the same metho-
dology, and therefore given the validation of the abstraction figures it
was felt appropriate to accept the use of the consumption figures
despite being unable to directly validate them.

4. Results and discussion

4.1. ESME and Carbon Plan pathways 2030 and 2050 Water
Demand

With thermal generation being the favoured means of electricity
generation the current preferred technologies are Nuclear and fossil
fuels +CCS, supported by renewables. For the UK the water demands
this incurs at 2030 and 2050 for this study's electricity generation
pathways, relative to 2010, are shown by Figs. 4–7. Regarding these
figures Total Water demand refers to all water sources including
freshwater, but is predominantly sea and estuarine water due to their
reliance on once-through cooling. Interpreting Figs. 4–7 knowing at
2050 there will be no physical shortage of Total Water, but there will be
a serious shortage of UK freshwater this clearly identifies a potential
problem. In this respect it is noticeable that the ESME.MC and
Clockwork pathways are Total Water intensive, while the Carbon
Plan thermal generation pathways are on balance more freshwater
intensive.

As would be expected the Carbon Plan's High Renewables and the
ESME Patchwork pathways have lower water demands. This underlines
the success high renewable pathways have in avoiding a need for large
volumes of water in 2030 and 2050. In this context it should, however,
be noted that even high renewable pathways have water demands that
also have to be met.

4.2. Sensitivity analysis

The ESME.MC pathway with its Monte Carlo approach to uncer-
tainty (Section 2.1.1) rather than producing a single result produces a
range of possibilities known as simulations, normally 100. Each
simulation's input is from a probabilistic range reflecting a parameter's
uncertainty over the form a future UK energy system could take
(Heaton, 2014). These individual simulations are then averaged to
provide the mean average ESME.MC electricity generation results of
Fig. 1 from which the corresponding water demands in Figs. 4–7 were
calculated using this paper's methodology. The spread of the simula-
tions is indicative of the level of uncertainty that an averaged result
hides. In order to quantify this level of uncertainty a sensitivity analysis
was carried out. This was achieved by calculating, as per this papers
methodology, the 2030 and 2050 water abstraction and consumption
demands of each of the ESME.MC pathway's simulations and showing
the results in a box and whiskers form, Figs. 8–11.

Table 3a
Abstraction Factors (L/KWh),derived from (Environment Agency, 2014).

Cooling Method Nuclear Nuclear
SMR

CCGT Coal
(HLF)

Coal
(LLF)

Waste
Gasification

CCGT +
CCS

Coal (HLF)
IGCC+CCS

Coal CCS post-
combustion (HLF)

Waste
Gasification CCS

Ratio

Once-through 172.85 172.85 79.85 160.90 217.75 138.61 141.35 191.83 259.05 191.83 N/A
Evaporative 7.00 7.00 2.33 3.85 5.25 4.05 4.13 5.60 7.56 5.60 0.03
Hybrid 4.35 4.35 1.45 2.39 3.27 2.52 2.57 3.48 4.70 3.48 0.62
Air 0.45 0.45 0.15 0.25 0.34 0.26 0.27 0.36 0.49 0.36 0.10

HLF: High Load factor (capacity factor ≥ 46%), LLF: Low Load Factor (capacity factor < 46%), IGCC: Integrated Gasification Combined Cycle.

Table 3b
Consumption Factors (L/KWh),derived from (Environment Agency, 2014).

Cooling Method Nuclear Nuclear
SMR

CCGT Coal
(HLF)

Coal
(LLF)

Waste
Gasification

CCGT
+CCS

Coal (HLF)
IGCC+CCS

Coal CCS post-
combustion (HLF)

Waste
Gasification CCS

Ratio

Once-through 0.15 0.15 0.10 0.15 0.30 0.16 0.10 0.18 0.15 0.18 N/A
Evaporative 3.00 3.00 0.96 1.20 1.55 1.55 0.96 1.75 1.44 1.75 9.58
Hybrid 1.88 1.88 0.60 0.75 0.97 0.97 0.60 1.10 0.90 1.10 0.63
Air 0.47 0.47 0.15 0.19 0.24 0.24 0.15 0.27 0.23 0.27 0.25

HLF: High Load factor (capacity factor ≥ 46%), LLF: Low Load Factor (capacity factor < 46%), IGCC: Integrated Gasification Combined Cycle.

Table 4
Power Stations Used in Validation Process.

Power Station Installed
Capacity
(MW)

Fuel
Type

Water
Source

Cooling
Method

Little Barford 714 CCGT FW Evaporative
Glanford Brigg 260 CCGT FW Evaporative
Medway 688 CCGT EW Evaporative
Roosecote 229 CCGT EW Open loop
South Humber

Bank
1285 CCGT EW Open loop

Killingholme A 665 CCGT EW Hybrid
Killingholme B 900 CCGT EW Hybrid
Great Yarmouth 420 CCGT EW Open loop
Barking 1000 CCGT EW Open loop
Keadby 710 CCGT EW Open loop
Ironbridge 940 Coal FW Evaporative
Eggborough 1960 Coal FW Evaporative
Ratcliffe 1960 Coal FW Evaporative
Rugeley 1006 Coal FW Evaporative
Drax 3870 Coal EW Evaporative
Kingsnorth 1940 Coal EW Open loop
Cottam 2008 Coal EW Evaporative
West Burton 2012 Coal EW Evaporative
Ferrybridge C 1960 Coal/

Biomass
FW Evaporative

Fiddler’s Ferry 1961 Coal/
Biomass

EW Evaporative

Tilbury B 1063 Biomass EW Open loop
Hartlepool 1180 Nuclear EW Open loop
Oldbury 434 Nuclear EW Open loop
Total Capacity 29,165 N/A N/A N/A

FW: Freshwater, EW: Estuarine Water.

D. Murrant et al. Energy Policy 108 (2017) 844–858

850



Figs. 8–11 show the simulations are spread more widely for 2050
than 2030 which expectedly shows there is greater uncertainty at the
longer timeframe. With the exception of freshwater abstraction the
distribution of all the other 2050 datasets has a wider range between
the median and the minimum rather than the median and maximum.
For all 2030 datasets and 2050 freshwater abstraction the opposite is
the case. Therefore, for the ESME.MC pathway the mean result is more
likely to be an underestimate of the 2050 datasets excluding freshwater
abstraction, and an overestimate of the 2030 datasets, and the 2050
freshwater abstraction.

Table 6 shows how the first and third quartile of each dataset varies
from the median. With the exception of the third quartiles of the 2030
and 2050 freshwater abstraction datasets ( < 14%), all are within 10%
of the median, with the majority < 7%. Table 6 then shows that the
difference between the ESME.MC modelled average generation water
demands of Figs. 4–7, and the median values of the data shown in
Figs. 8–11, are in even closer agreement. This confirms that using the
ESME.MC pathway's Monte Carlo approach of producing an average
generation result from numerous simulations does provide a water
demand that is representative of the individual simulations.

4.3. Comparison of USA and UK abstraction and consumption figures

Previous studies (Byers et al., 2014; Schoonbaert, 2012), that look
at how the scarcity of cooling water may compromise future UK
thermal energy generation used the United States’ NREL data
(Macknick et al., 2011). With UK abstraction and consumption
figures now being available a comparison with the NREL figures used

by Byers et al. (2014) is appropriate. This comparison will identify if
using UK specific figures does in fact make any meaningful difference
to the results obtained, Tables 7a and 7b achieve this. Due to limited
NREL data for air cooling this technology's figures were not com-
pared.

Table 7a finds for abstraction the NREL figures for the once-
through, evaporative and hybrid cooling processes, underestimate the
UK demand and, with the exception of nuclear generation, the
difference is significant. The extent this underestimation of non-
nuclear thermal generation's true abstraction water demands contrib-
uted to it being thought possible to be built inland, with freshwater
cooling, is not known but this paper's results now corrects any such
assumption. Table 7b shows for water consumption in most instances
the opposite is found to be the case with the relative differences, while
being large, relating to very much lower levels of demand.

5. Conclusions and policy implications

The aim of this paper was to use the identified ESME and Carbon
Plan pathways to attribute a national water demand to the UK's
predicted 2030 and 2050 thermal electricity generation policy relative
to 2010. The future water demands were found to be heavily pathway
dependent but, with the significant increase in the 2050 electricity
demand not surprisingly the majority of pathways were found to show
a significant increase in their Total and/or Freshwater demands.

This increase in water demand has policy implications and has to be
judged bearing in mind that for the years to 2050 it is forecasted there
will be less inland freshwater available (Hussey and Pittock, 2012;

Table 5
Validation Results; percentage error between modelled results and Environment Agency validation data.

Validation using Coal HLF Validation using Coal LLF

Freshwater (%
error)

Estuarine Water
(% error)

Freshwater +Estuarine
Water (% error)

Freshwater (%
error)

Estuarine Water
(% error)

Freshwater +Estuarine
Water (% error)

2010 −3.01 3.39 3.23 2010 28.80 17.08 17.37
2009 3.52 14.90 14.62 2009 37.26 29.06 29.26
2008 23.57 −6.16 −5.58 2008 64.10 7.40 8.51
2007 2.12 −0.16 −0.10 2007 36.15 15.11 15.66
2006 12.98 19.65 19.46 2006 51.37 38.67 39.03
Average 7.83 6.32 6.33 Average 43.53 21.47 21.97

HLF: High Load factor (capacity factor ≥ 46%), LLF: Low Load Factor (capacity factor < 46%).

Fig. 4. 2030 and 2050 Total Water Abstraction per Pathway.
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Bouckaert et al., 2014; Wong and Johnston; , 2014). To meet the need
for increased generation there is an intention to build additional
thermal generation. If policymakers do not adequately recognise that
thermal generation is water intensive, and that low cost generation
depends on the optimum cooling water being available, then this new
build has the potential to increase the UK's future generation costs.
This in turn will be reflected in reducing the UK's ongoing global
commercial competiveness. That the extent of this cost increase could
be significant is indicated by the fact it has been shown there is already
no UK inland thermal generation with a capacity greater than 150 MW
that can operate with optimum cooling water (Murrant et al., 2015).

In this respect this paper's findings, especially for 2050, identifies
that a future lack of water presents serious problems which generators
and policy makers have to recognise. The Carbon Plan's thermal
generation pathways are generally far more dependent on freshwater
than those of the ESME model, with the Carbon Plan's high nuclear
pathway being the exception. This higher freshwater demand is
predominantly caused by a greater reliance on CCGT, or Coal with
CCS. These are often seen to be inland and with a need therefore to use
freshwater cooling. These stations will have to rely on the more

expensive, less abstraction intensive, more consumptive evaporative
and hybrid cooling methods, as well as air cooling. The ESME.MC and
Clockwork pathways, with their cost optimisation goals, instead favour
the cheaper coastal nuclear generation using the abstraction intensive,
least-consumptive, once-through cooling method as does the Carbon
Plan's high nuclear pathway. This results in high Total water, but low
freshwater demand. If large volumes of Total Water were not available
at the coast then the scarcity of freshwater will present policymakers
with a major nuclear feasibility rethink, that is, if cost of generation
remains a consideration.

While there will inevitably be scarcity issues for any 2030 and 2050
thermal generation policy that envisages employing freshwater cooling,
insofar as Total Water abstraction is concerned its physical availability
cannot be a limiting factor. Nevertheless, there are other considera-
tions that can. Environmental and ecological regulation (e.g. The WFD,
EU Habitats Directive) is limiting new thermal power station site
availability. Under the EU Habitats’ Directive thermal power stations
are required to demonstrate that their activities such as, but not limited
to, abstraction and discharge, do not have unacceptable impacts upon
protected UK Natura 2000 sites (Environment Agency, 2012; Morris

Fig. 5. 2030 and 2050 Freshwater Abstraction per Pathway.

Fig. 6. 2030 and 2050 Total Water Consumption per Pathway.
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et al., 2014). Historically UK nuclear power stations have been required
to reduce their load to comply with discharge thermal temperature
standards (EDF Energy PLC, 2011).

Ginige et al. (2012) considered nuclear development on the Severn
estuary. It found that impingement and entrainment of fauna on
cooling water screens could have a significant impact on the estuary's
marine ecology that could affect that water body's WFD status

(Greenwood, 2008). Following a Strategic Siting Assessment the UK
Government could with 7000 miles of English and Welsh coastline only
identify 8 potential sites suitable for the development of nuclear power
(DECC, 2011). A subsequent study undertaken by Atkins for the
Department of Energy and Climate Change considered an additional
270 possible areas in England and Wales, but found only another 3
worthy of further consideration (Atkins, 2009).

Fig. 7. 2030 and 2050 Freshwater Consumption per Pathway.

Fig. 8. ESME.MC Total Water Abstraction - Box and Whiskers Plot.

Fig. 9. ESME.MC Total Water Consumption - Box and Whiskers Plot.

Fig. 10. ESME.MC Freshwater Abstraction - Box and Whiskers Plot.

Fig. 11. ESME.MC Freshwater Consumption - Box and Whiskers Plot.
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In respect of coastal planning applications, objections over visual
pollution are also seen to apply to much of the UK's coastline (Boyle,
2015). It has been shown that in total these environmental and
planning regulations are limiting any form of coastal thermal genera-
tion, almost everywhere. This has ominous connotations for any 2050
progressive energy policy that has to satisfy the high water intensity
demands of the envisaged nuclear, or fossil fuel CCS generation, with
little or no freshwater available, restricted access to sea and estuarine
water resources, and still with an affordability objective. UK policy-
makers must recognise all of this when they set the environmental and
planning regulations thermal power stations must adhere to if they
want to be sited in coastal locations.

Both the ESME Patchwork and the Carbon Plan's High Renewable
pathway's generation demand at 2030 and 2050 are of the same order as
for the ESME.MC and Clockwork pathways. However, their relative
water demands (Figs. 4–7) find they are far less dependent on water. To
this extent they provide an alternative solution to any lack of required
cooling water. Their Achilles’ heel, however, is at 2050 they need support
from fossil fuel CCS generation, both as complimentary generation to
help cover their intermittency, and to provide base load. Any renewable
approach allied water intensive fossil fuel +CCS generation with fresh-
water would have to factor-in a high level of expensive air cooling that
would quickly lead to questions about the real cost credentials of these
potentially crucially important renewables’ pathways.

This study uses the cooling method and water source trends of
thermal power stations in 2010 to attribute national, water demands to
the 2030 and 2050 ESME and Carbon Plan generation pathways. Both
have pathways that are indicative of the UK's energy policy to 2050. On
a comparative basis the methodology this paper used now provides an
order of the increase in water demand relative to 2010 that the selected
pathways at 2030 and 2050 would have. It finds that there is a serious
mismatch between the current assumptions of the freshwater there will
be available in the future and the likely actual availability. This
mismatch will have implications for future generation costs.

This study suggests that the solution to the UK's future energy policy
mismatch between thermal generation and freshwater availability is to
make greater use of the UK's seawater resource. A companion paper will
now consider the issues involved in doing this. It brings this paper's
national generation and pathway water demands to the regional level. A
methodology is developed to assess how the UK's electricity generation
portfolio will change in terms of the technologies adopted, and their cost,
as access to seawater is varied under Q70 and Q95 freshwater condi-
tions. It finds the emphasis UK energy policy gives to the competing
poles of low cost electricity generation and environmental protection will
have significant impacts on the cost and make-up of the UK's future
electricity generation portfolio.
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Appendix A. UK power stations 2010

Station Name Capacity (MW) Type Cooling source Cooling type Location

Aberthaw B 1586 Coal SW Open loop Wales
Aberthaw GT 51 GT/OCGT AC Air cooled Wales
Baglan Bay 510 CCGT EW Evaporative Wales
Ballylumford B 540 GT/OCGT AC Air cooled Northern Ireland
Ballylumford B OCGT 116 GT/OCGT AC Air cooled Northern Ireland
Ballylumford C 616 CCGT SW Open loop Northern Ireland
Barking 1000 CCGT EW Open loop London
Barry 230 CCGT AC Air cooled Wales
Blackburn Mill 60 CCGT FW Hybrid North West
Burghfield 47 CCGT FW Open loop South East
Castleford 56 CCGT FW Open loop Yorkshire & the Humber
Charterhouse St Citigen London 31 GT/OCGT AC Air cooled London
Chickerell 45 GT/OCGT AC Air cooled South West
Cockenzie 1152 Coal SW Open loop Scotland
Connahs Quay 1380 CCGT EW Hybrid Wales
Coolkeeragh 408 CCGT EW Open loop Northern Ireland
Coolkeeragh 53 GT/OCGT AC Air cooled Northern Ireland
Corby 401 CCGT AC Air cooled East Midlands
Coryton 800 CCGT AC Air cooled East
Cottam 2008 Coal EW Evaporative East Midlands
Cottam Development Centre 390 CCGT EW Hybrid East Midlands
Cowes 140 GT/OCGT AC Air cooled South East
Damhead Creek 800 CCGT AC Air cooled South East
Deeside 515 CCGT EW Hybrid Wales
Derwent 228 CCGT CHP FW Evaporative East Midlands
Didcot A 1958 Coal FW Evaporative South East
Didcot B 1430 CCGT FW Hybrid South East
Didcot GT 100 GT/OCGT AC Air cooled South East
Drax 3870 Coal EW Evaporative1 Yorkshire & the Humber
Drax GT 75 GT/OCGT AC Air cooled Yorkshire & the Humber
Dungeness B 1040 Nuclear SW Open loop South East
Eggborough 1960 Coal FW Evaporative Yorkshire & the Humber
Elean 38 Biomass AC Air cooled East
Enfield 408 CCGT AC Air cooled London
Fawley GT 68 GT/OCGT AC Air cooled South East
Fellside CHP 180 CCGT CHP FW Hybrid North West
Ferrybridge C 1960 Coal/Biomass FW Evaporative Yorkshire & the Humber
Ferrybridge GT 34 GT/OCGT AC Air cooled Yorkshire & the Humber
Fiddler's Ferry 1961 Coal/Biomass EW Evaporative North West
Fiddler's Ferry GT 34 GT/OCGT AC Air cooled North West
Glanford Brigg 260 CCGT FW Evaporative Yorkshire & the Humber
Grain 1320 CCGT CHP EW Once-through South East
Grain 1300 GT/OCGT AC Air cooled South East
Grain GT 55 GT/OCGT AC Air cooled South East
Great Yarmouth 420 CCGT EW Open loop East
Hartlepool 1180 Nuclear EW Open loop North East
Heysham 1 1160 Nuclear SW Open loop North West
Heysham 2 1220 Nuclear SW Open loop North West
Hinkley Point B 870 Nuclear SW Open loop South West
Hunterston B 890 Nuclear SW Open loop Scotland
Immingham CHP 1240 CCGT CHP EW Hybrid Yorkshire & the Humber
Indian Queens 140 GT/OCGT AC Air cooled South West
Ironbridge 940 Coal FW Evaporative West Midlands
Keadby 710 CCGT EW Open loop Yorkshire & the Humber
Keadby GT 25 GT/OCGT AC Open loop Yorkshire & the Humber
Killingholme A 665 CCGT EW Hybrid Yorkshire & the Humber
Killingholme B 900 CCGT EW Hybrid Yorkshire & the Humber
Kilroot 520 Coal SW Open loop Northern Ireland
Kilroot OCGT 142 GT/OCGT AC Air cooled Northern Ireland
King's Lynn 99 CCGT AC Air cooled East
Kingsnorth 1940 Coal EW Open loop South East
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Kingsnorth GT 34 GT/OCGT AC Air cooled South East
Knapton 42 GT/OCGT AC Air cooled Yorkshire & the Humber
Langage 905 CCGT AC Air cooled South West
Little Barford 714 CCGT FW Evaporative East
Little Barford GT 17 GT/OCGT AC Open loop East
Littlebrook GT 105 GT/OCGT AC Air cooled South East
Longannet 2304 Coal EW Open loop Scotland
Marchwood 842 CCGT EW Open loop South West
Medway 688 CCGT EW Evaporative South East
Oldbury 424 Nuclear EW Open loop South West
Peterborough 405 CCGT AC Air cooled East
Peterhead 1180 CCGT SW Open loop Scotland
Ratcliffe 1960 Coal FW Evaporative East Midlands
Ratcliffe GT 34 GT/OCGT AC Air cooled East Midlands
Rocksavage 810 CCGT FW Evaporative North West
Roosecote 229 CCGT EW Open loop North West
Rugeley 1006 Coal FW Evaporative West Midlands
Rugeley GT 50 GT/OCGT AC Air cooled West Midlands
Rye House 715 CCGT AC Air cooled East
Saltend 1200 CCGT EW Evaporative Yorkshire & the Humber
Sandbach 50 CCGT FW Evaporative North West
Seabank 1 812 CCGT EW Hybrid South West
Seabank 2 410 CCGT EW Hybrid South West
SELCHP (South East London CHP) 32 Waste AC Air cooled London
Severn 848 CCGT AC Air cooled Wales
Shoreham 400 CCGT EW Open loop South East
Shotton 210 CCGT CHP AC Air cooled Wales
Sizewell B 1191 Nuclear SW Open loop East
Slough 61 Biomass FW Evaporative South East
South Humber Bank 1285 CCGT EW Open loop Yorkshire & the Humber
Spalding 880 CCGT AC Air cooled East Midlands
Staythorpe C 1724 CCGT FW Evaporative East Midlands
Steven's Croft 50 Biomass AC Air cooled Scotland
Sutton Bridge 819 CCGT AC Air cooled East
Taylor's Lane GT 132 GT/OCGT AC Air cooled London
Teeside CCGT 1875 CCGT EW Evaporative North East
Teeside Power station 45 CCGT FW Evaporative North East
Thetford 39 Biomass AC Air cooled East
Thornhill 50 CCGT FW Open loop Yorkshire & the Humber
Tilbury B 1063 Biomass EW Open loop East
Tilbury GT 68 GT/OCGT AC Air cooled East
Torness 1190 Nuclear SW Open loop Scotland
Uskmouth 363 Coal/Biomass EW Hybrid Wales
West Burton 2012 Coal EW Evaporative East Midlands
West Burton CCGT 1270 CCGT EW Evaporative East Midlands
West Burton GT 40 GT/OCGT AC Air cooled East Midlands
Wilton 10 38 Biomass EW Hybrid North East
Wilton GT 2 42 GT/OCGT AC Air cooled North East
Wilton Power Station Coal/biomass 150 Coal/Biomass FW Evaporative North East
Wilton Power Station Gas 130 GT/OCGT FW Air cooled North East
Wylfa 960 Nuclear SW Open loop Wales

FW: Freshwater, EW: Estuarine Water, SW: Seawater, AC: Air Cooling.
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