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Highlights 

 A simplified flange-lip model is proposed to analyze the distortional buckling 

of CFS thin walled -section. 

 The equivalent orthotropic plate model is employed to analyze the local 

buckling of thin walled sections. 

 The simplified model can be adopted in the direct strength method (DSM). 
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ABSTRACT: In the current paper presents a simplified analytical model for 

determining the critical stress of distortional buckling of lipped channel-sections with 

stiffened web made from cold-form steel (CFS). Lipped channel-section with 

stiffened web have been shown to have a distinct advantage in resisting local buckling 

and are associated with the higher distortional buckling stress, when compared to the 

channel-section without stiffener. It is widely used as a substitution for standard 

channel-section in cold form steel construction applications. In the current work, CFS 

channel-sections with stiffened web are investigated based on the flange-lip model. In 

order to determine the stiffness of rotational springs representing the restraining effect 

of the web to the flange–lip system, the web with different type of stiffeners is 

modelled as an orthopedic plate. Using the total potential energy principle, the 

formula for calculating the local buckling stress of the stiffened web considering 

loading scenarios including a pure compression and a pure bending moment are 

derived. The stiffness of rotational spring can be obtained. Finally , the prediction of 

                                                 
*) Corresponding author. E-mail addresses: j.yang.3@bham.ac.uk (J.Yang)  
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distortional buckling critical stress of lipped channel-section with different type of 

stiffened webs is carried out, which is shown to be in good agreement with those 

calculated by the finite strip method (FSM). 

   

Keywords: Cold-formed steel, distortional buckling, stiffened web, analytical 

solution.  

1. Introduction 

  CFS sections have been widely used in the engineering practices. In order to 

improve the load bearing capacity of CFS sections, without compromising the 

material consumption, the cross-section types tend to be more diversified and 

complex. Research has shown that by using web stiffeners the load bearing capacity 

of CFS sections can be enhanced [1]. By optimizing the shape of the CFS section, it is 

shown that the loading capacity of the optimized cross-sections are higher than that of 

standard ones such as channel- or zed-sections. Leng and Schafer [2
,
3] proposed 

several optimized cross-section of types for compression members based on finite 

strip method and Direct Strength Method (DSM). The results showed that with given 

cross-section area, those optimized sections can bear higher loading than the standard 

cross-section type. 

 

  In order to meet the requirement of optimization, cross-sections can be even more 

complicated, which makes the buckling problem of such type of section even more of 

concern. Many researchers have studied this problem, particularly the distortional 

buckling of CFS member. A simplified spring model presented in literature [4] 

provided an approximate solution of distortional buckling stress in lipped channel 

sections. In the analysis of the elastic distortional buckling of CFS section, a formula 

was derived by Lau and Hancock [4], which was also adopted by Australia Steel 

Institution [5]. Later on, this model was extended by Li and Chen [6] and Zhou et al 
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[7]. In addition to studying the distortional behaviour of CFS channel-section columns 

and beams, Li and Chen [6] developed the model for CFS sigma-section and derived 

the formula for predicting the critical stress of sigma-section beam by using the 

energy method. The stiffened plate buckling model (SPBM) presented by Zhu and Li 

[8], Huang and Zhu [9]. In the SPBM, the web and flange-lip were considered as an 

integrity. In addition to the above-mentioned works were mainly based on plate theory. 

Other approaches including finite strip method (FSM) [10-13], generalized beam 

theory (GBT) [14-17], test methods [18-21] and finite elements method (FEM) 

[22-25]were also adopted in the analysis of the buckling behaviour in CFS-sections.  

 

(a) Case A  (b) Case B  (c) Case C  (d) Case D 

Fig. 1. CFS channel-section with different stiffened web  

 

    In this paper, the simplified flange–lip model is employed to analyze the 

distortional behaviour of columns and beams with channel-sections containing 

different types of web stiffeners (see Fig. 1). As shown in Fig. 1, these sections that 

are examined in this paper are marked as “Case A”, “Case B”, “Case C” and “Case D”. 

In this study, the rotational spring is adopted to represent the restraining effect of the 

stiffened web to flange-lip. In order to determine the stiffness of rotational spring, the 

stiffened web is treated as an orthogonal plate with the equivalent stiffness. Based on 

this assumption and by using the total potential energy principle, the formula used to 

calculate the distortional buckling critical stress of channel-sections with the different 

stiffened web can be obtained. In addition, the results calculated by the finite strip 

method are used to validate this simplified flange-lip model. The comparison of the 

distortional buckling critical stress obtained by the finite strip method and those 
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calculated from proposed model agrees well and proves the validity of present model.  

 

2. Flange-lip model  

  As is known, the different deformation characteristics between the local and 

distortional buckling of CFS sections is the deviation of the junction line of web and 

flange. The distortional buckling of CFS channel-sections is indicated by the 

deformation is plotted in Fig. 2a. The flange -lip can be separated from web to be used 

as a model for analyzing the distortional behaviour and the restraining effect provided 

by web to the flange–lip component can be represented by the rotational spring shown 

in Fig. 2b. The centroid of flange-lip (indicated as c in Fig. 2(b)) is defined as the 

origin of coordinate. The vertically axis which is parallel to lip is defined as yc-axis. 

The axis which is paralleled the flange is defined as horizontal axis named zc-axis. 

The displacements of the shear center in the yc-axis and zc-axis are indicated as v and 

w, respectively. Fig. 2 (b) also shows the location of the shear center, S, which is z0 

and y0 away from the centroid. The rotational angel of the flange-lip section is 

indicated as φ.  

 

(a)        (b)     

Fig. 2. (a) Distortional buckling model of CFS channel-section with stiffened web; the 

channel-section with web depth h, flange width b, lip length d, and cross-section 

thickness t. (b) Flange-lip model. 
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The potential energy of flange-lip due to bending 𝑈𝑓;𝑙 and rotation spring 𝑈𝑠 can 

be given as follows [26]: 

U𝑓;𝑙 =
1

2
∫ [𝐸𝐼𝑦 (

𝑑2𝑤

𝑑𝑥2
)

2

+ 2𝐸𝐼𝑦𝑧
𝑑2𝑣

𝑑𝑥2

𝑑2𝑤

𝑑𝑥2
+ 𝐸𝐼𝑧 (

𝑑2𝑣

𝑑𝑥2
)

2

+ 𝐺𝐽 (
𝑑𝜑

𝑑𝑥
)

2

] 𝑑𝑥
𝑙

0
,   (1) 

 

𝑈𝑠 =
1

2
∫ (𝑘𝜑𝜑2)𝑑𝑥,

𝑙

0
               (2) 

where l is the length of CFS channel-section members, a value of E =203 GPa is 

used for Young
’
s modulus and G =78.07GPa is used for shear modulus, 𝐼𝑦 is the 

inertia moment of the flange and lip about y-axis, 𝐼𝑧 is the inertia moment of the 

flange and lip about z-axis, 𝐼𝑦𝑧 is the product moment of cross-section of the flange 

and lip, 𝐽is the torsional constant of cross-section of the flange and lip system, and 

𝑘𝜑is the effective rotational spring stiffness of the flange-lip section due to the web 

constraints.  

 

The work done on the flange-lip 𝑊𝑓;𝑙 when the CFS section subjected to axial 

compression can be written as follow [26]: 

 

𝑊𝑓;𝑙 =
𝜎𝑐𝑟𝑑𝐴1

2
∫ [(

𝑑𝑤

𝑑𝑥
+ 𝑦0

𝑑𝜑

𝑑𝑥
)

2

+ (
𝑑𝑣

𝑑𝑥
− 𝑧0

𝑑𝜑

𝑑𝑥
)

2

+ (𝑟
𝑑𝜑

𝑑𝑥
)

2

]
𝑙

0
𝑑𝑥,    (3) 

where crd  is the critical stress, 𝐴1 = (𝑏 + 𝑑)𝑡 is the cross-sectional area of the 

flange-lip section, r = √
𝐼𝑦:𝐼𝑧

𝐴1
 is the polar radius of gyration. 

 

The work done on the flange-lip when the CFS channel-section subjected to pure 

bending can be written as follow [26]: 

𝑊𝑓;𝑙 =
𝜎𝑐𝑟𝑑

2
∫ *𝑡 (𝑏 + 𝑑(1 −

𝑑

ℎ
))+ [(

𝑑𝑤

𝑑𝑥
+ 𝑦0

𝑑𝜑

𝑑𝑥
)

2

+ (
𝑑𝑣

𝑑𝑥
− 𝑧0

𝑑𝜑

𝑑𝑥
)

2

+ (𝑟
𝑑𝜑

𝑑𝑥
)

2

]
𝑙

0
𝑑𝑥.

                   (4) 

The total potential energy П of the flange -lip section, is determined as： 
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Π = 𝑈𝑓;𝑙 + 𝑈𝑠 − 𝑊𝑓;𝑙              (5) 

The horizontal and vertical displacement of shear center of flange-lip section and the 

torsion angle can be assumed as follows: 

𝑤(𝑥) = ∑
𝑘<1

𝐴𝑘 sin
𝑘𝜋𝑥

𝑙
, 𝑣(𝑥) = 𝑏 ∑

𝑘<1
𝐵𝑘 sin

𝑘𝜋𝑥

𝑙
, 𝜑(𝑥) = ∑

𝑘<1
𝐵𝑘 sin

𝑘𝜋𝑥

𝑙
.   (6) 

 

It is important to note that the displacement functions of shear center given in the 

Eq. (6) satisfy the simple supported boundary condition (𝑣(𝑥) = 𝑤(𝑥) = 𝜑(𝑥) = 0at 

the position of 𝑥 = 0 and 𝑥 = 𝑙). 

 

The condition of the stationary of the total potential energy leads to the condition of 

vanishing partial derivatives of Π = 𝑈𝑓;𝑙 + 𝑈𝑠 − 𝑊𝑓;𝑙 calculated with respect to the 

constant Ak and Bk. This requires the following conditions: 

∂Π

∂A𝑘
=

∂

∂A𝑘
(𝑈𝑓;𝑙 + 𝑈𝑠 − 𝑊𝑓;𝑙) = 0,

∂Π

∂B𝑘
=

∂

∂B𝑘
(𝑈𝑓;𝑙 + 𝑈𝑠 − 𝑊𝑓;𝑙) = 0.  (7) 

 

Substituting Eq. (6) into Eqs. (1) - (5) and then into Eq. (7), it leads to the following 

2x2 eigenvalue equation, 

{*
𝑎11 𝑎12

𝑎21 𝑎22
+ − 𝜎𝑐𝑟𝑑 [

𝑏11 𝑏12

𝑏21 𝑏22
]} {

𝐴𝑘

𝐵𝑘
} = ,

0
0

-.         (8) 

 

In which,   

for members subjected to axial compression, 

𝑎11 = 𝜋2𝐸𝐼𝑦, 𝑎12 = 𝑎21 = 𝑏𝜋2𝐸𝐼𝑦𝑧, 𝑎22 = 𝑏2𝜋2𝐸𝐼𝑧 + 𝐺𝐽𝑙2 +
𝑙4𝑘𝜑

𝜋2 ,   (9.a) 

𝑏11 = −𝐴1𝑙2, 𝑏12 = 𝑏21 = 𝑏11𝑦0, 𝑏22 = 𝑏11(𝑟2 + (𝑏 − 𝑧0)2 + 𝑦0
2).   (9.b) 

for members subjected to pure bending,  

𝑎11 =
𝜋2𝐸𝐼𝑦

𝑙2 , 𝑎12 = 𝑎21 =
𝑏𝜋2𝐸𝐼𝑦𝑧

𝑙2 , 𝑎22 =
𝐺𝐽

2
+

𝑏2𝜋2𝐸𝐼𝑧

𝑙2 +
𝑙2𝑘𝜑

𝜋2 ,     (10.a) 

𝑏11 =
(𝑑2;(𝑏:𝑑)ℎ)

ℎ
, 𝑏12 = 𝑏21 = 𝑏11𝑦0, 𝑏22 =

𝑏11(𝑟2:𝑦0
2:(𝑏;𝑧0)2)

ℎ
.    (10.b) 
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  It is noted in the above expressions, the number of half wavelength is assumed as 

k=1, meaning that the length of CFS channel-section is equal to half-wavelength. The 

critical stress crd  in Eq. (8) can be written as follow, 

σ𝑐𝑟𝑑 =
(𝑎11𝑏22:𝑎22𝑏11;2𝑎12𝑏12)±√(2𝑎12𝑏12;𝑎11𝑏22;𝑎22𝑏11)2;4(𝑎11𝑎22;𝑎12

2 )(𝑏11𝑏22;𝑏12
2 )

2(𝑏11𝑏22;𝑏12
2 )𝑡

  

3. Local buckling of stiffened web subjected to axial 

compression or pure bending  

  In the prediction of the elastic buckling stress of a simple supported plate, a 

formula has been derived by Timoshenko [27] based on the thin plate theory. The 

estimation of critical local buckling stress of the stiffened web is an essential part of 

this process, providing the access for calculating the rotational spring stiffness which 

considers the restraint of web by modifying the rotating restraint stiffness of web 

connecting with the flange-lip (see Fig. 2b). With the presence of web stiffener, this 

formula for the flat plate can not be used directly, which has led to the necessity of 

calculating the critical buckling stress of plate with stiffeners.   

 

  The buckling analysis of the stiffened plate (see Fig. 3) usually bases on the 

assumption that the plate is anisotropic with the equivalent bending stiffness. 

Analytical approaches have been proposed to predict the critical local buckling stress 

of stiffened plates, by considering the stiffened plate as an orthopedic plate [28]. 

Easley and Mofarland [29] also presented the equivalent assumption to analyze the 

buckling of corrugated plate and derived the formulae for calculating the equivalent 

flexural stiffness.  

 

  In this paper, equivalent assumption is adopted, i.e. treating the stiffened web as an 

orthotropic rectangle plate with uniform thickness. To create a coordinate system 

whose x- and y- axis are set along the longitudinal and vertical directions of the web 
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plane respectively (see Fig. 3). Therefore, the buckling problem of stiffened web can 

be analyzed by classical plate theory. Finally, based on the equivalent assumption, the 

formula for calculating critical stress of web with sitffener can be derived by using 

total potential energy principle. 

 

Fig. 3 Coordinate system of stiffened web  

According to the classical plate theory, the strain energy of stiffened-web can be 

written as follow: 

𝑈𝑝 =

1

2
∫ ∫ [(𝑣𝑦𝐷𝑥 + 𝑣𝑥𝐷𝑦) (

𝜕2𝑤𝑝

𝜕2𝑥

𝜕2𝑤𝑝

𝜕2𝑦
) + 𝐷𝑥 (

𝜕2𝑤𝑝

𝜕2𝑥
)

2

+ 𝐷𝑦 (
𝜕2𝑤𝑝

𝜕2𝑦
)

2

+
ℎ

0

𝑙

0

4𝐷𝑥𝑦 (
𝜕2𝑤𝑝

𝜕𝑥𝜕𝑦
)

2

] 𝑑𝑦𝑑𝑥               (12) 

where: 𝐷𝑥 and 𝐷𝑦 are the flexural rigidities of stiffened web in the x- and y- 

directions, respectively, 
xyD  denotes the torsional stiffness, a value of 𝑣𝑥 = 𝑣𝑦 =

𝑣 = 0.3 is used for Poisson’s ratio of stiffened web in the x- and y- directions, 

respectively, and 𝑤𝑝 represents the displacement function of stiffened web. 

 

The work done on the stiffened web can be given as follows: 

for members subjected to axial compression,  

𝑊𝑃 =
1

2
𝑡𝜎𝑐𝑟𝑤 ∫ ∫ (

𝜕𝑤𝑝

𝜕𝑥
)

2

𝑑𝑦 𝑑𝑥,
ℎ

0

𝑙

0
            (13) 

where crw  is the buckling critical stress of stiffened web plate, 

for members subjected to pure bending, 
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𝑊𝑃 =
1

2
𝑡𝜎𝑐𝑟𝑤 ∫ ∫ (1 −

2𝑦

ℎ
) (

𝜕𝑤𝑝

𝜕𝑥
)

2

𝑑𝑦 𝑑𝑥,
ℎ

0

𝑙

0
          (14) 

 

The total potential energy of stiffened web Π𝑝 can be given as follow: 

Π𝑝 = 𝑈𝑝 − 𝑊𝑝.              (15) 

 

The displacement function of stiffened web with the simple-support can be 

assumed as follow: 

𝑤𝑝 = ∑
𝑚𝑛

𝐴𝑚𝑛 sin (
𝑚𝜋𝑥

𝑙
) sin (

𝑛𝜋𝑥

ℎ
) ,            (16) 

for members subjected to axial compression (m =1; n =1,), 

𝑤𝑝 = 𝐴11 sin (
𝜋𝑥

𝑙
) sin (

𝜋𝑦

ℎ
),            (17.a) 

for members subjected to pure bending (m =1; n =1, 2), 

𝑤𝑝 = 𝐴11 sin (
𝜋𝑥

𝑙
) sin (

𝜋𝑦

ℎ
) + 𝐴12 sin (

𝜋𝑥

𝑙
) sin (

2𝜋𝑦

ℎ
),      (17.b) 

where 𝐴𝑚𝑛  (m = 1, 2….; n = 1, 2…) is coefficient, m is the number of 

half-wavelength along the x-axial. l represents the length of the channel-section, and 

the formulae for l are obtained in section 5. Note that the length of plate is equal to the 

half-wave length, when m =1. 

 

 The condition when the buckling occurs is the total potential of the system to have 

a stationary condition with respect to the coefficient Amn: 

∂Π𝑃

∂𝐴11
=

𝜕

𝜕𝐴11
(𝑈𝑝 − 𝑊𝑝) = 0,             (18) 

substituting Eqs. (12,13, 17.a) into Eq. (18), it leads to the formula for calculating the 

critical stress of stiffened web under axial compression: 

𝜎𝑐𝑟𝑤,𝑙<𝑙𝑐𝑟
= (

ℎ𝜋4𝐷𝑥

4𝑙𝑐𝑟
3 +

𝜋4𝐷𝑥𝑦

ℎ𝑙𝑐𝑟
+

𝑙𝑐𝑟𝜋4𝐷𝑦

4ℎ3 +
𝜋4(𝐷𝑦𝑣𝑥:𝐷𝑥𝑣𝑦)

4ℎ𝑙𝑐𝑟
) ×

4𝑙𝑐𝑟

ℎ𝜋2𝑡
.    (19) 

 

Then, the critical stress of stiffened web under pure bending is obtained by 

substituting Eqs. (12, 14 and 17.b) into Eq. (18) and yields 
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∂Π

∂𝐴11
=

𝜕

𝜕𝐴11
(𝑈𝑃 − 𝑊𝑃) = 0,

∂Π

∂𝐴12
=

𝜕

𝜕𝐴12
(𝑈𝑃 − 𝑊𝑃) = 0,      (20) 

{*
𝑎11

𝑎12
+ − 𝜎𝑐𝑟𝑤 [

𝑏11

𝑏12
]} {

𝐴11

𝐴12
} = ,

0
0

-,            (21.a) 

𝜎𝑐𝑟𝑤,𝑙<𝑙𝑐𝑟
= √

𝑎11𝑏12

𝑎12𝑏11
,               (21.b) 

in which 

𝑎11 = (
ℎ𝐷𝑥

4𝑙𝑐𝑟
2 +

𝑙𝑐𝑟
2 𝐷𝑦

4ℎ3 +
𝐷𝑦𝑣𝑥:𝐷𝑥𝑣𝑦:4𝐷𝑥𝑦

4ℎ
),            (22.a) 

𝑎12 = 𝑏11 =
8ℎ𝑡𝜎𝑐𝑟𝑤

9𝜋4 ,                (22.b) 

𝑏12 = (
ℎ𝐷𝑥

4𝑙𝑐𝑟
2 +

4𝑙𝑐𝑟
2 𝐷𝑦

ℎ3 +
𝐷𝑦𝑣𝑥:𝐷𝑥𝑣𝑦:4𝐷𝑥𝑦

4ℎ
),           (22.c) 

 

  The dimensions of stiffened web plate are shown in Fig. 4. For the Case A and 

Case C, the angle of stiffener is 90  . Whereas for the Case B and Case D, the angle 

of stiffener is 90  .The CFS section with stiffened-web (Case A and Case B) are 

known as sigma-section. The equivalent flexural and torsional stiffness of stiffened 

web (see Fig. 4) can be estimated as follows [29]: 

𝐷𝑥 =
ℎ

𝑠

𝐸𝑡3

12
, 𝐷𝑦 =

𝐸𝐼𝑦𝑤

ℎ
, 𝐷𝑥𝑦 =

𝐸𝑠𝑡3

6ℎ(1:𝑣)
,           (23.a) 

𝐼𝑦𝑤 = 2 (ℎ𝑤𝑡
ℎ𝑠

2

4
+

ℎ𝑤𝑡3

12
+

(ℎ𝑠/ sin 𝜃)3𝑡

12
sin2 𝜃),          (23.b) 

for Case A and Case B: 

𝑠 = 2ℎ𝑜𝑤 + 2(ℎ𝑠/ sin 𝜃) + ℎ𝑤,            (24.a) 

for Case C and Case D: 

𝑠 = 2ℎ𝑜𝑤 + 4(ℎ𝑠/ sin 𝜃) + 2ℎ𝑤 + ℎ𝑚𝑤 ,         (24.b) 

 

 

 

 
hw

hs θ

h h

hwhw

θt

hs

s

s

how
howhmw
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(a)Cases A (𝜃 = 90°) and Case B (𝜃 < 90°))   (b) Cases C (𝜃 = 90°) and 

Case D (𝜃 < 90°) 

Fig. 4 Dimension of web with different stiffeners；hw and hs represent the height and 

width of the stiffener, respectively, how is the outer web, and s is the full-length of 

stiffened web. 

 

4. Determination of rotation spring stiffness in 

channel-section with stiffened web  

  The rotational spring shown in Fig 2b represents the effect of the web’s restraint to 

the rotation of the flange-lip section. The value of the rotational spring stiffness can 

be considered by introducing a reduction factor of critical stress of web plate which 

is assumed as a simply supported plate, as observed by Lau and Hancock [4]. The 

rotational spring stiffness of Lau and Hancock model is extended by Li and Chen [6] 

by considering the influence of the local buckling. Zhou et al [7] also presented the 

formulae to calculate the value of the rotational spring by introducing the reduction 

factor to take into account the web bending. Ajeesh and Jayachandran [30] proposed 

an empirical expression for the rotational stiffness, k , by comparing the results 

calculated from the proposed formula with those from finite strip results. 

Furthermore, Zhao et al [31] proposed the hand calculation method to determine the 

rotational stiffness due to at the sheeting-purlin connection. In this study, based on 

the Li [6] and Zhou [7] model, the rotational spring coefficient considering the effect 

of different web stiffeners is presented. 

 

The rotational spring coefficient of CFS section members subjected axial 

compression can be defined as follows:  

 

for Case A and Case B, 
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𝑘𝜑 =
2𝐷𝛼

ℎ
(1 −

𝜎𝑐𝑟𝑑
∗

𝜎𝑐𝑟𝑤
),              (25.a) 

α =
𝑏(0.03ℎ𝑠:0.32:0.1 cos 𝜃)

𝑑(1:2ℎ/𝑏)
,             (25.b) 

where α is the regression model of extensive parametric analysis using the Finite 

Strip Method (FSM).  

 

The rotational spring coefficient of CFS channel-section members subjected pure 

bending can be defined as follows:  

for Case A and Case B, 

𝑘𝜑 =
(1:0.006ℎ𝑠)4𝐷

ℎ
(1 −

𝜎𝑐𝑟𝑑
∗

𝜎𝑐𝑟𝑤

ℎ

ℎ:𝑧0
),           (26) 

for Case C and Case D, 

𝑘𝜑 =
(1:0.02ℎ𝑠)4𝐷

ℎ
(1 −

𝜎𝑐𝑟𝑑
∗

𝜎𝑐𝑟𝑤

ℎ

ℎ:𝑧0
),            (27) 

 

where,
crw is the buckling stress of the web of a member subjected to compression 

or pure bending defined by Eqs. (19), (21.b), *

crd  can be defined in Eq. (11) with 

𝑘𝜑 = 0.  

5. Comparison of the present model with finite strip method  

  According to the investigated example, stiffeners provides an effective way of 

enhancing the local buckling resistance of CFS channel-section and achieving higher 

efficiency in the cross-sectional resistance. The comparison of the critical stress is 

made between the CFS channel-section with stiffened web and without stiffener 

analyzed by CUFSM [32]. By observing the buckling curves showed in Figs.5 and 6, 

it is easy to see that the critical stresses of local and distortional buckling of 

channel-sections with stiffened web are higher than those of channel-section without 

stiffener under axial compression or pure bending.  

 The half wavelength-buckling stress curves of CFS channel-section member 

which are subjected to axial compression and pure bending are respectively shown in 
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Figs. 5. Under the axial compression, the buckling half-wavelength of CFS channel 

-section with the stiffened web is longer than those of CFS section without stiffener 

(see Fig 5(a)). Formula have been presented for calculating the half-wavelength of 

CFS section with stiffened web based on the channel-section without stiffener, 

namely,  

𝑙𝑐𝑟 = (1 + 0.15ℎ/𝑏)4.8 (
𝐼𝑦𝑏2ℎ

𝑡3
)

0.25

. It can be applied to approximately estimate 

the half-wavelength of the buckling mode of CFS channel-section columns with 

stiffened webs when the height of web is greater than the width of flange. Similar to α 

in Eq. (25b), lcr is obtained by performing regression analysis based on the extensive 

parametric analysis by FSM (see Fig 6). It is found that a 20% error from the 

calculation results for the half-wavelength produces only a maximum of 7% error in 

the critical stress [4]. Then half-wavelength can be obtained from the above formula. 

For the beams with the stiffened web, the stiffener has negative effect on the 

half-wavelength (see Fig 5(b)). Therefore, the half-wavelength of CFS 

channel-section beams with the stiffened web can be defined by𝑙𝑐𝑟 = 4.8 (
𝐼𝑦𝑏2ℎ

𝑡3
)

0.25

.  
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    (a)          (b) 

Fig. 5. Comparison of the critical stresses between the CFS channel-section with 

stiffened web and without stiffener. (a) For members under axial compression 
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(h-b-d-t-hs-hw-θ: 200-100-24-2.0-16-100-90°; unit: mm); (b) For members under pure 

bending (h-b-d-t-hs-hw-θ: 225-62.5-20-2.0-16-110-45°, unit: mm). 

 

Fig. 6. Comparisons of half-wavelengths of channel sections with stiffened web 

between the formulae and FSM. 

 

  The formula 𝑙𝑐𝑟 = 4.8 (
𝐼𝑦𝑏2ℎ

𝑡3
)

0.25

 used to estimate the half-wavelength of CFS 

channel- and Z-section without stiffener is developed by Lau and Hancock[4]. The 

formula 𝑙𝑐𝑟 = (1 + 0.15ℎ/𝑏)4.8 (
𝐼𝑦𝑏2ℎ

𝑡3 )
0.25

 is used to estimate the half-wavelength 

of CFS channel-section with stiffened web. The channel-sections with different 

height/width ratio (h/b) show in Table 1 and Table 2 are selected as example.  

 

5.1 Simplified flange-lip model for CFS channel-section with stiffened 

web under axial compression  

Comparing the buckling curves between the channel- and sigma-section subjected 

axial compression, Li and Chen [6] indicated that for CFS sigma-section columns 

with a narrow flange, the distortional buckling mode may not triggered. For axial 
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compression channel-section column (Case C and Case D) , the buckling curves 

plotted in Fig. 7, where only local and lateral torsional bucking are observed. In this 

paper, for channel-section members subjected to axial compression, we will focus on 

the range of sections that will experience the distortional buckling, e.g. Case A and 

Case B. Cases C and Cases D are not particularly considered. 
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Fig. 7. Buckling curves of CFS channel-section with stiffened web under axial 

compression (Case C and Case D) (h-b-d-t-hs-hw-θ: 200-62.5-20-2.0-16-55-60°or 

300-75-20-3.0-20-90-90°, unit: mm) 

 

  The results calculated by the finite strip method (FSM) have been used to 

demonstrate the validity of the simplified flange-lip model proposed above. The 

dimensions of CFS channel-section with stiffened web are shown in Tables 1 and 2. 

The critical stresses of Case A with the stiffener widths of 16 mm and 20 mm are 

given in Table 1. Meanwhile, Table 2 also reports critical stresses for Case B(θ =45
 
) 

with the stiffener widths of 16sh mm  and 20sh mm . The comparisons results 

between the presented model and FSM are plotted in Fig 8.  For the proposed model, 

the mean value and standard deviation of σcrd,model/σcrd,FSM are 1.004 and 0.036, 

respectively. By observing the results presented in Fig 8, it can be seen that the 
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proposed flange-lip model can be used to accurately predict the distortional buckling 

critical stress for Case A and Case B. 

 

Table1 Distortional buckling critical stresses of channel-section using FSM and the 

presented model (Case A:ℎ𝑠 = 16𝑚𝑚,𝜃 = 90°; ℎ𝑠 = 20𝑚𝑚,𝜃 = 90°. ) 

 

Section 

dimensions, 

 mm 

Thickn

ess 

mm 

σcrd,FSM 

(hs =16) 

MPa 

σcrd,model  

 (hs =16) 

MPa 

σcrd,FSM 

(hs=20) 

MPa 

σcrd,model 

(hs=20) 

MPa 

h=200 

b=100 

d=24 

hw=110 

1.5 

1.8 

2.0 

2.5 

3.0 

160.47 

195.72 

219.74 

282.09 

347.21 

164.25 

199.61 

223.70 

285.81 

350.74 

176.65 

215.02 

241.17 

308.53 

378.75 

181.59 

220.48 

246.92 

314.90 

385.67 

h=225 

b=100 

d=20 

hw=115 

1.5 

1.6 

1.8 

2.0 

3.3 

2.5 

149.12 

159.20 

181.10 

203.44 

237.81 

262.42 

144.09 

154.46 

175.50 

196.98 

230.03 

252.64 

168.48 

180.56 

205.05 

229.96 

268.14 

294.13 

160.06 

171.52 

194.78 

218.47 

254.86 

279.69 

h=240 

b=100 

d=24 

hw=110 

1.6 

1.8 

2.0 

2.5 

3.0 

154.99 

176.05 

197.58 

252.88 

310.64 

150.56 

170.91 

191.63 

245.20 

301.38 

173.11 

196.33 

219.89 

280.33 

342.94 

166.78 

189.19 

211.98 

270.68 

331.95 

h=265 

b=100 

d=24 

hw=135 

1.6 

1.8 

2.0 

2.3 

2.5 

2.8 

143.28 

162.93 

182.73 

213.07 

235.51 

265.34 

139.04 

157.90 

177.12 

206.65 

221.66 

257.84 

158.09 

179.11 

200.41 

232.88 

254.87 

292.44 

154.17 

174.97 

196.14 

228.60 

245.93 

284.64 

h=300 

b=105 

d=24 

hw=150 

 

2.0 

2.3 

2.5 

2.8 

3.0 

157.48 

183.49 

201.19 

228.19 

246.71 

147.88 

172.71 

189.70 

215.85 

233.74 

175.91 

204.64 

223.85 

253.09 

272.86 

173.70 

202.40 

221.95 

251.92 

272.35 
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Table 2 Distortional buckling critical stresses of channel-section using FSM and the 

presented model (Case B: ℎ𝑠 = 16𝑚𝑚,𝜃 = 45° ; ℎ𝑠 = 20𝑚𝑚,𝜃 = 45°.) 

Section 

dimensions, 

mm 

Thickness 

mm 

FSM 

(hs=16) 

MPa 

Present 

model(hs=16) 

MPa 

FSM 

(hs=20) 

MPa  

Present 

model(hs=20) 

MPa 

h=140 

b=80 

d=20 

hw=50 

1.5 

1.8 

2.0 

2.5 

3.0 

244.72 

298.91 

336.02 

432.24 

533.43 

248.46 

302.36 

339.17 

434.39 

534.38 

264.99 

323.17 

362.92 

465.76 

573.45 

272.64 

333.55 

373.85 

477.78 

586.45 

h=200 

b=100 

d=24 

hw=100 

1.5 

1.8 

2.0 

2.5 

3.0 

166.38 

202.96 

227.96 

292.64 

360.44 

173.69 

210.89 

236.21 

301.38 

369.36 

180.82 

220.21 

247.08 

315.64 

388.96 

191.12 

231.87 

259.54 

330.61 

404.46 

h=230 

b=100 

d=24 

hw=120 

1.5 

1.8 

2.0 

2.5 

3.0 

152.00 

185.35 

208.13 

267.02 

328.69 

154.53 

187.77 

210.40 

268.76 

329.76 

168.38 

204.9 

229.83 

293.94 

360.76 

170.24 

206.70 

231.49 

295.22 

361.57 

h=260 

b=100 

d=24 

hw=150 

1.5 

1.8 

2.0 

2.5 

3.0 

134.63 

164.13 

184.28 

236.33 

290.79 

139.88 

170.08 

190.67 

243.81 

299.43 

149.5 

181.86 

203.94 

260 

319.59 

154.27 

187.46 

210.05 

268.21 

328.84 

h=300 

b=100 

d=24 

hw=170 

 

1.8 

2.0 

2.3 

2.5 

2.8 

3.0 

138.47 

155.39 

181.35 

199.03 

226.15 

244.61 

148.05 

165.94 

193.38 

212.09 

240.80 

260.39 

155.68 

174.39 

205.49 

224.96 

254.70 

274.79 

163.70 

183.41 

213.59 

234.13 

265.59 

287.00 
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Fig 8. Comparisons of critical stresses of CFS columns (Case A and Case B). The 

calculated results of the proposed model and FSM are listed in Table 1 and Table 2. 

5.2 The simplified flange-lip model for CFS channel-section with 

stiffened web under pure bending   

  Under the pure bending, the distortional buckling mode of CFS channel-section 

with stiffened web often appears. The CFS channel-section beams of Case A and Case 

B which are produced by a UK manufacturer Albion [33] are employed in the 

verification. The geometric parameters of Albion CFS sections are cited in Table 3. 

The dimensionless stresses of the comparison are performed in Figs. 9 to 11. It is 

worth-noting that, the height of stiffener (hs) hs =16mm and hs =20mm are considered. 

The angle of stiffener ( ) is varied as 45º, 60º, and 90º.. In Figs.9-11, the vertical and 

horizontal axes in the figures stand for σcrd,m/σy and σcrd,FSM /σy ,respectively.  

Fig.9 shows the distortional buckling critical stresses of Case A calculated by the 

FSM and the flange-lip model. It can be found that the critical stresses derived by the 

flange- lip model agree well with those obtained from FSM. For the Case B, Figs. 10 

and 11 represent the values of σcrd,m/σy vs. that of σcrd,FSM/σy of the channel-section 

beams subjected to the pure bending. Fig. 10 is for the channel-section beam with   
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𝜃 = 60°; whereas Fig. 11 is for CFS beam with stiffener width of hs =16mm, 20mm 

and the angel of stiffener 𝜃 = 45°. It can be found that the analyzed modeling results 

and numerical results (FSM) are in a good agreement. 

 

Table 3 Dimensions of CFS channel-sections (Case A & Case B) (unit: mm) 

 

Section 

code 

Web depth, 

h 

Flange 

width, b 

Lip length, 

d 

Outer 

web, how 

Thickness, t 

 

Case A & Case B 

 

ASB200 

 

200 

 

62.5 

 

20 

 

45 

1.2,1.3,1.4,1.5,1.

6,1.8,2.0,2.3,2.5 

 

 

ASB225 

 

225 

 

62.5 

 

20 

 

45 

1.2,1.3,1.4,1.5,1.6

,1.8,2.0,2.3,2.5 

 

ASB240 

 

240 

 

62.5 

 

20 

 

50 

1.5,1.6,1.8,2.0,2.3

,2.5,2.8 

 

ASB265 

 

265 

 

62.5 

 

20 

 

60 

1.5,1.6,1.8,2.0,2.3

,2.5,2.8 

 

ASB300 

 

300 

 

75 

 

20 

 

60 

1.8,2.0,2.3,2.5,2.8

,3.0 
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Fig. 9. Comparison of critical stresses of channel-section beams with stiffened web 

(Case A, 𝜃 = 90°) between the proposed model and FSM.  
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Fig. 10. Comparison of critical stresses of channel-section beams with stiffened web 

(Case B, 𝜃 = 60°) between the proposed model and FSM.  
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Fig. 11. Comparison of critical stresses of channel-section beams with stiffened web 

(Case B, 𝜃 = 45°) between the proposed model and FSM.  

 

The details of geometric parameters of CFS channel-sections with stiffened web 

(Case C and Case D) are listed in Table 4. Fig. 12 compares the dimensionless of 

critical stresses of CFS channel-section with different stiffener width (hs =16mm and 
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hs =20mm) with the same value of angle 𝜃 = 90°. The average value of σcrd,m/σcrd,FSM 

is 1.003 and standard deviation is 0.035. 

 

For Case D, the CFS channel-sections with stiffener width of hs=16mm, 20mm and 

angle of 𝜃 = 60°, 𝜃 = 75°are considered in the current investigation. Figs. 13-14 

report the ratio of critical stress to yield stress from both methods. For Case D with 

the angle of 𝜃 = 75°, the average value of σcrd,m/σcrd,FSM and standard deviation are 

0.991 and 0.034, respectively(see Fig. 13). For Case D with the angle of 𝜃 = 60°, the 

average value of σcrd,model/σcrd,FSM and standard deviation are 0.985 and 

0.035,respectively. As revealed in Figs. 13-14, a good agreement is found between the 

flange-lip model and finite strip method (FSM). 

 

Table 4 Dimensions of CFS channel-sections (Case C & Case D) (unit: mm) 

 

   

Section code h b d hw hr t Case C & Case 

D 

ADSB200 200 62.5 20 55 16,20 1.2,1.3,1.4,1.5,1.6

,1.8,2.0,2.3,2.5 

 

ADSB225 225 62.5 20 65 16,20 1.2,1.3,1.4,1.5,1.6

,1.8,2.0,2.3,2.5 

ADSB240 240 62.5 20 70 16,20 1.5,1.6,1.8,2.0,2.3

,2.5,2.8 

ADSB265 265 62.5 20 80 16,20 1.5,1.6,1.8,2.0,2.3

,2.5,2.8 

ADSB300 300 75 20 90 16,20 1.8,2.0,2.3,2.5,2.8

,3.0 

b

d
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h
w
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θ
t

hs

h
o
w

h
m
w



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23 

 

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

Mean:
crd,m

/
crd,FSM

=1.003

SD=0.035

 

 

 hs=16;;=90
°

 hs=20;=90
°


cr

d
,m

/
y
;m

o
d

el


crd,FSM

/
y
;FSM

 

Fig. 12 Comparison of critical stresses of channel-section beams with stiffened web 

(Case C: 𝜃 = 90°) between the proposed model and FSM.  
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Fig. 13 Comparison of critical stresses of channel-section beams with stiffened web 

(Case D: 𝜃 = 75°) between the proposed model and FSM.  
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Fig. 14 Comparison of critical stresses of channel-section beams with stiffened web 

(Case D: 𝜃 = 60°) between the proposed model and FSM.  

 

6. Conclusions 

  The distortional buckling behaviour of CFS section with stiffened webs subjected 

to axial compression or pure bending is investigated in this paper. The analytical 

model for calculating the critical stress of the web plate with different stiffener is 

proposed by assuming it as the orthotropic plate. Based on that, the formulae for 

calculating the rotational spring stiffness is derived. A design-oriented analytical 

formulae for predicting the distortional buckling critical stress of CFS section with 

different stiffened webs are developed based on the principle of minimum potential 

energy. In order to validate the proposed model, the analyzed results are compared 

with the numerical examples calculated by finite strip method. Excellent agreement 

can be observed indicating the high accuracy of the proposed model in this paper. The 

model can be easily used in the engineering design using simple spread sheet. 
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