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This editorial is part of a series that seeks to highlight
the commercial potential of microbiome research. Such
translation of scientific advances into jobs that improve
the environment or human well-being is an ethical
imperative. It is also a scientifically selfish imperative
as returning taxpayers’ investments into science will
also pay off for us scientists. Moreover, it is important
scientifically because the ultimate test of scientific ideas
and understanding is whether they can be put into
practice.

It has long been known that germ-free animals are
poorly creatures, but it has taken until the explosion of
research on the gut microbiota, mostly driven by the
next-generation sequencing revolution over the last dec-
ade, that we have begun to realize the profound effects
that the microbes we contain have on us. Discussing
these effects could fill a book, so a few examples have
to suffice. The presence of a particular strain of Enter-
obacter cloacae can cause obesity by stimulating chronic
inflammation (Zhao, 2013). Several Ruminococcaceae
OTUs, as well as fibre intake and gut microbiota diver-
sity, are linked to lower long-term weight gain in a cohort
of twins after adjusting for calorie intake (Menni et al.,
2017). Microbes can be expected to have evolved to
manipulate us into eating what they like (Alcock et al.,
2014). We have to realize that to successfully treat a
patient, we will often need to consider the patient’s
microbiota. Yet, we are far from understanding the multi-
tude of interactions going on. The commonly used word
‘dysbiosis’ is an admission of our lack of causal under-
standing of diseases involving the microbiota.

Crucially, the microbiota is complex, the diet is com-
plex, the host is complex and the interactions between
members of the microbiota as well as between the

microbiota and host are complex. | would like to argue
that this poses a formidable scientific challenge that
requires a massive effort with mathematical modelling at
its core to overcome. Mathematical models on their own
will not suffice, but without them, there is little hope for a
rational engineering of the microbiota and investing into
new products will be a gamble. Investing into staff and
developing mathematical modelling platforms should pay
off for biotech companies, as it should at least eliminate
those product leads that have little chance of success in
clinical trials.

For example, probiotics, despite considerable research
efforts over decades, have not been the huge success
that one would expect, given that the gut microbiota is
implicated in many increasingly common diseases that
the right probiotics should be able to cure. The limited
success is partially due to a lack of mechanistic under-
standing that could be used in predictive mathematical
models to select better (combinations of) probiotics and
partially due to an inability of the typically used strains to
colonize the gut. Having evolved in different environ-
ments, they are outcompeted by the indigenous
microbes. We have been betting on the wrong probiotic
horses. This is why beneficial effects, if found at all, have
typically been found in underpowered studies that are
likely to come up with false positives. One recent suc-
cess, a large Indian study of a Lactobacillus strain specif-
ically chosen for its ability to attach to epithelial cells, is a
notable exception (Panigrahi et al., 2017).

Moreover, it is becoming more and more clear that
increasing the diversity of the microbiota is beneficial for
our health, implying that consuming only a few strains of
probiotics is simply not enough. This is corroborated by
the success of faecal microbiota transplants (FMT),
which contain thousands of strains. Another reason for
improving microbiota diversity is the increased protection
against infections provided by a more diverse microbiota,
which will contribute to reducing the use of antibiotics for
treating animal and human disease and thereby help
reduce antibiotic resistance.
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There are several ways in which hiring mathematical
modellers or cofunding external research could benefit
probiotics companies. The research programme could
start with identifying indigenous human gut microbes
associated with health by comparing the gut community
compositions of healthier humans with those who have
various metabolic or gut issues while trying to remove
confounding effects. Such efforts have moved on from
the initial underpowered and overly generalizing studies
that were focussed on phylum-level comparisons
towards more detailed analysis. Nevertheless, these
studies already identified potential new probiotics,
although it would be wise to stratify people by age, sex,
diet and ethnicity, for example, as it is likely that the fate
and benefits of probiotics depend on these factors
(Menni et al., 2017). Alongside identifying probiotic can-
didates, one could determine positive and negative asso-
ciations of these candidates with other candidates or
other community members to combine individual candi-
dates into cocktails of potentially health-promoting
microbes. Most studies to date take snapshots of the
microbiota composition, sometimes with another snap-
shot at a later time, but rarely time series that are
immensely valuable for understanding dynamical sys-
tems. For example, if time series are available, one can
use generalized Lotka—Volterra models to infer the
strength of positive and negative interactions between
microbes by fitting such models to time series data
(Stein et al., 2013). A great example of applying this
approach is the identification of a relative of Clostridium
difficile that inhibits C. difficile by converting a bile acid
(Buffie et al., 2014). Another ignored aspect of the gut
microbiota is its spatial organization, usually destroyed
when extracting DNA, although spatial structure has
been extensively shown to have profound effects on
population dynamics and ecosystems (Hellweger et al.,
2016). Notably, bottom-up mathematical models can pre-
dict the self-organization of microbes into spatial clusters
and the effects these emergent structures can have on
function (Hellweger et al., 2016).

The next step could be to reconstruct the genomes of
these candidate probiotics from shotgun metagenomic
sequences. This is not an easy task, but there has been
great progress with binning of contigs based on co-abun-
dance or sequence signatures or a combination of both
(Albertsen et al.,, 2013; Alneberg et al., 2014; Nielsen
et al, 2014). Annotating these reconstructed genomes
could indicate carbon and nitrogen utilization pathways
and culturing conditions that should help to enrich these
species and bring them into pure culture. This strategy
facilitated the isolation of a Succinivibrionaceae strain
that is dominant in the Tammar wallaby, of particular
interest due to the reduced methane emission of walla-
bies compared with ruminants (Pope et al., 2011).

Moreover, the statistical associations and dynamic
model inferred interactions between species could be
integrated with mechanistic predictions of interactions
based on genome-scale metabolic models. Starting with
reconstructed genomes or genomes obtained from pure
cultures, one can build stoichiometric matrices (essen-
tially lists of enzyme reactions potentially carried out by
these species) and use flux balance approaches to pre-
dict metabolic phenotypes and which metabolites could
be utilized and produced by each species, thus predict-
ing metabolic interactions such as competition or cross-
feeding (Shoaie et al., 2015; Magnusddéttir et al., 2017).
Together, this information would be very useful in picking
an optimal mix of probiotic microbes for a particular
group of humans.

In addition to inferring and predicting interactions and
metabolic properties, mathematical modelling can be
hugely beneficial when used to reduce the complexity of
a system, e.g. by lumping isolates or sequence OTUs
with similar metabolism into functional groups and then
checking whether this simplified system is sufficient to
explain the key characteristics of the system one is inter-
ested in. For example, Kettle et al. (2014) compared a
mathematical model with ten metabolic groups to data
from an in vitro model inoculated with human gut micro-
biota. Their results suggest that ten functional groups
are sufficient to describe the fermentative metabolism in
the colon.

In contrast to probiotics, FMT has been a huge suc-
cess (van Nood et al., 2013), likely due to the high diver-
sity of transferred microbes compared with probiotics.
However, it is only a question of time before the faecal
microbiota transferred from a healthy donor contains
bacteria or viruses that prove to be pathogenic in the
recipient — a different environment. Synthetic microbial
communities should therefore substitute for donor faeces
once they have been shown to be effective, e.g., in stim-
ulating regulatory T cells or providing colonization resis-
tance to Salmonella infection in the mouse (Narushima
et al., 2014; Brugiroux et al., 2016). Judging pathogenic
potential, however, is tricky because, as Casadevall and
Pirofski (2014) have argued, there is no such thing as a
‘pathogen’ as the outcome of the interaction depends on
the environment, for example, on the immune response
of the host, which will vary according to the current phys-
iological state of the host, its microbiota and diet. In
other words, it is not just about the microbe but about
the interactions in this complex system. Mathematical
models that describe the activities of the ‘pathogen’ and
other microbes and the host cells should be able to
predict how they will interact. This could be used to eval-
uate under which physiological conditions of the host—
microbiota holobiont a given microbe or set of microbes
could cause disease and used to recommend that a
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particular patient should not be treated with a particular
donor’s or synthetic microbiota.

Mathematical models have been hugely successful in
theoretical physics where predictions such as the exis-
tence of gravitational waves or particles like the Higgs
boson are trusted to an extent that enormous efforts are
funded to test these predictions. Theoretical biology has
not yet had similar success, because biology is so
diverse and complex and therefore more challenging to
model and predict. Nevertheless, the ever-increasing
computational power, improvement of suitable tools for
developing and simulating computational models and
massive growth in available data will see this change
over this century. The rise of mathematical approaches
is now mainly hindered by the lack of a modelling tradi-
tion in biomedical and biological fields, where ‘model’
usually refers to animal or in vitro models, and mathe-
matical models are ignored or met with scepticism
despite a growing number of successful applications. For
example, Cremer et al. (2017) have developed a mathe-
matical model that provides insight into the microbiota
interaction with pH and water flow in the gut. McLoughlin
et al. (2016) have used models to examine how the host
can favour beneficial over detrimental bacteria by differ-
entially manipulating adhesion. Other successful exam-
ples come from biofiim modelling, which started in
engineering — a field with a strong tradition of predictive
modelling. Biofilm modelling has helped design a num-
ber of novel processes for wastewater treatment plants
that have generated jobs in research-driven engineering
companies such as Paques B.V. in the Netherlands.
Nadell et al. (2013) discuss mathematical approaches
commonly used in bioengineering that would help biolo-
gists make sense of complex communities of microbes.
We have argued that individual differences between cells
should be considered in mathematical models to better
represent the distribution of characteristics and to
account for the effects of individuality on ecosystem
function (Hellweger et al., 2016). In conclusion, microbial
community research can replicate the success of physics
if it takes mathematical modelling on board — it will be
both challenging and rewarding (Widder et al., 2016).
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