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Abstract: In this paper we describe mereotopological methods to programmatically correct image
segmentation errors, in particular those that fail to fulfil expected spatial relations in digitised
histological scenes. The proposed approach exploits a spatial logic called discrete mereotopology
to integrate a number of qualitative spatial reasoning and constraint satisfaction methods into imaging
procedures. Eight mereotopological relations defined on binary region pairs are represented as nodes
in a set of 20 directed graphs, where the node-to-node graph edges encode the possible transitions
between the spatial relations after set-theoretic and discrete topological operations on the regions are
applied. The graphs allow one to identify sequences of operations that applied to regions of a given
relation, and enables one to resegment an image that fails to conform to a valid histological model
into one that does. Examples of the methods are presented using images of H&E-stained human
carcinoma cell line cultures.

Keywords: mereotopology; graph theory; histological image processing

1. Introduction

This paper is an extended version of the work presented at the 21st Conference on Medical Image
Understanding and Analysis (MIUA 2017) [1] where we describe an application of mereotopological
model-based methods for the algorithmic correction of segmentation errors. In this approach, qualitative
spatial reasoning (QSR) and constraint-satisfaction methods are integrated into image processing
routines to create context-based histological imaging algorithms. (See our project page at http://www.
mecourse.com/landinig/software/intellimic.html.) The “context” referred to here arises from: (i) an
ontological stand whereby image regions instead of pixels are considered to be the principal carriers
of histological information; and (ii) an explicit representation of the topological, and in particular,
relational information present in the histological images. The analysis and model-based constraints are
provided by a spatial logic called discrete meterotopology (DM) [2,3], which is used here to enhance
classical imaging techniques and mathematical morphology (MM) operations. This is achieved by
explicitly encoding a number of binary relations such as contact, overlap, and the part–whole relation
on pairs of image regions. These mereotopological relations are then used to model the domain and,
furthermore, act as constraints that can be exploited to firstly detect “faulty” segmentation results and
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secondly to guide algorithms in the choice of processing operators to apply potential corrections so the
region relations conform to the requirements of valid or expected histological models.

In simple terms, eukaryote cells have an organised nucleus included in a body of cytoplasm,
which in turn is surrounded by a cellular membrane (for simplicity, we will not consider the cell
membrane or multi-nucleated cells in the models presented here). Nucleus and cytoplasm are in
contact but do not overlap; instead, the nucleus can be considered to exactly fill a cavity space within the
cytoplasm. In H&E (haematoxylin and eosin)-stained images, due to the differential staining of cellular
components, and to the projection of the cellular structure on the two-dimensional imaging sensor,
the cytoplasmic region appears as a simply connected whole, lacking a cavity, and the nucleus forms a
proper part of this (see the idealised image in Figure 1b). However, in many practical applications, cell
and nucleus segmentation are achieved independently of each other, and this can result in imperfect
relations (e.g., with a nucleus region partially overlapping the cytoplasm, as in Figure 1c). Errors like
this can—to a certain degree—be corrected by a process called resegmentation, where component
regions are processed with, for example, MM operators or deformable models so that the expected
spatial relation between them holds. In Figure 1d this is accomplished by eroding the nuclear region;
in (e), by dilating the cytoplasm.

Figure 1. An example of a H&E (haematoxylin and eosin)-stained H400 cell (a) and an idealised
representation of this in (b) where the nucleus (violet) forms an expected proper-part of its host cell.
In comparison, (c) depicts an anomalous case where the nucleus overlaps but projects beyond the
cytoplasm boundary forming a partial-overlap relation, with two morphologically-based corrections of
this in (d,e) and where the original profiles of the nucleus and cytoplasm prior to the correction are
outlined in black.

The method described in this paper may be summarised as follows. We use discrete mereotopology
to jointly define exhaustive pair-wise disjoint sets of binary relations defined on arbitrary sets of pixels,
which we call regions. These relations capture the modes of overlap or connection between regions;
a smaller set of five relations only handles relations definable in terms of parts and wholes; a larger
set of eight additionally handles relations definable in terms of contact. A further set of set-theoretic
and discrete topological operators are defined, and both the relations and operators are implemented
using the ImageJ image processing platform. We use the relations and operators to define a set of
20 neighbourhood graphs, where each node represents a member of the eight-element relation set,
and a directed edge connecting two nodes (“neighbours”) represents a possible transition from one
relation to another achieved through the application of the operator encoded by the graph. Node–node
paths through the graphs can be modelled as sequences of operations on regions, which enables
one to define segmentation corrections satisfying an assumed histological model. The graphs cover
the standard set of set-theoretic and topological operators defined on a discrete space. Examples of
segmented H400 H&E-stained images are given to show how the underlying logic can be used both to
model the domain and to algorithmically quantify and correct segmentation errors. The advantage of
the method is that the underlying topology is made explicit, where subsets of segmented regions can
be extracted and their associated relations reconstructed. The method also enables one to to integrate
extra-logical empirical constraints relating to region morphology and geometry or staining patterns
into segmentation algorithms.
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While the potential of spatial reasoning in imaging has been suggested before (e.g., [4]), the novel
aspects of our contribution are firstly on the role of mereotopology to enable systematic context-based
processing of regions and their relations, and secondly their application to quantitative histological
imaging where a systematic hierarchy of ontological levels [5] is essential to enable an in-depth
interpretation of histological scene contents.

2. Related Work

This paper builds on previous works that apply DM to the interpretation and analysis
of histological images [6–9]. DM first appeared in [2] as a discrete domain counterpart of the
mereotopological region connection calculus (RCC) defined on a continuous space and its well-known
eight-element relation set RCC8 [10]. An alternative way to model the discrete domain using
mereotopology is the generalised region connection calculus) [11]. In the biological domain,
mereotopology was used to model spatio-temporal cellular processes such as phagocytosis and
exocytosis [12], and an example of DM used in a constraint-based graph traversal problem is given
in [13]. In general, however, while RCC8 has been used extensively in the development of efficient
constraint-based algorithms (for deciding the consistency of a set of constraints), the algorithms are
typically restricted to operations on symbolic state–state models and not grounded in interpreted
digital images as done here. A introduction to QSR and its methods is given in [14].

This paper extends the method that was originally reported in [9] and developed in [1]. Specifically,
eight graphs are added to the twelve defined in [1] to cover the set theoretic operators: sum, prod, diff,
compl, xor (denoting union, intersection, relative difference, complement, and symmetric difference)
and the discrete topological operators intD, clD, extD, and bndryD (denoting the discrete interior,
closure, exterior, and boundary). The method is generic and does not favour any one particular image
segmentation method over another, and all that is assumed is that pairs of regions can be represented
as instances of binary relations. Those relations can be used to test whether or not the segmented
regions conform to a histological model. Where they fail to conform to a histological model, they may
either be rejected completely, or corrected by applying one of several operations on the regions in
question. This approach goes beyond the use of gold-standard images used to compare and analyse
results (though of course this could be done). We discuss this further below by considering a set of
possible topological segmentations satisfying an assumed histological model. While there is a large
body of literature on evaluation methods (e.g., [15,16]), none of those frameworks adopt the topological
framework assumed here, nor do they address systematic methods of resegmentation to bring the
results of initial segmentation into line with the expectations of histological theory, which is the main
focus of the present paper.

3. Discrete Mereotopology (DM)

While different variants of DM have been proposed, we adopt that described in [2,9]. The domain
is a set of possibly empty regions which are defined as sets of pixels. Regions are denoted by lower-case
letters (x, y, . . .); pixels are denoted x̂, ŷ, . . . . Set inclusion is defined in the standard way, the part–whole
relation (Part) defined as inclusion restricted to non-null regions, and overlap (O) between regions
restricted to regions sharing a part in common. Adjacency between pixels is axiomatised as a reflexive
symmetric relation. This is used to define the contact relation (C) between regions. The set of all pixels
is defined as the universal region u and the null set as ∅. Singleton pixel-sized regions are treated as
atoms. The neighbourhood N(x̂) of pixel x̂ is defined as the set of pixels in u that are adjacent to x̂.
In our application domain, u is a rectangular pixel array, and N(x̂) a 3 × 3 pixel array centred on x̂.
Implemented in MM, the function N(x̂) maps to a morphological 3 × 3-pixel, 8-connected structuring
element which we now assume by default.
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As is common practice in QSR when developing these spatial logics and algebras, subsets of
dyadic relations forming jointly exhaustive and pairwise disjoint (JEPD) sets are singled out. In DM, two
JEPD relation sets are used: first, the eight-element set RCC8 comprising DC, EC, PO, TPP, NTPP, TPPi,
NTPPi and EQ, respectively disconnection, external connection, partial overlap, tangential proper part,
non-tangential proper part, with their inverses, and equality, and second, the five-element relation
set RCC5 comprising the relations DR (=DC|EC), PO, PP (=TPP|NTPP), PPi (=TPPi|NTPPi), and EQ

respectively disjoint, partial overlap, proper part, and inverse proper part and equality. Here the
symbol “|” signifies disjunction; e.g., DR(x, y)↔ DC(x, y)∨EC(x, y). These respectively form the eight
and five base relations of two relational subsumption lattices with top and bottom elements interpreted
as the universal and null dyadic relations. Given that RCC8 is predicated on a continuous embedding
space and DM on a discrete one, the relations sharing the same name are strictly not identical. For this
reason, DM’s JEPD relation sets are identified in the text by the suffix “D” as in “RCC8D”. This same
notation is used to mark the same distinction between the standard set of topological operators
predicated on a continuous space and a set of discrete topological operators defined in DM; e.g., intD
denoting in this instance the discrete interior operator—see immediately following.

In [9], the discrete interior (intD) and closure (clD) are pseudo-topological operators defined on
regions, and they share some but not all of the usual properties of the interior and closure operators
in standard treatments of topology. For example, in discrete space, the discrete interior and closure
operators are not idempotent, and while both the standard and the discrete exterior, boundary,
and interior operations defined on a region partition the embedding space u into three mutually
exhaustive sets, the discrete boundary operator—unlike its standard counterpart—maps to a region of
the same co-dimension.

The definitions for the discrete topological operators intD, clD, extD, and bndryD are as follows:

intD(x) =def {x̂ | P(N(x̂), x)} (1)

clD(x) =def {x̂ | O(N(x̂), x)} (2)

extD(x) =def {x̂ | DR(N(x̂), x)} (3)

bndryD(x) =def {x̂ | O(N(x̂), x) ∧ O(N(x̂), compl(x)} (4)

The discrete interior contains those pixels whose immediate neighbourhoods lie within x, and
the discrete exterior those pixels whose immediate neighbourhoods are disjoint from x; from which it
can be inferred that the exterior is the interior of the complement. The discrete closure of x comprises
all the pixels whose immediate neighbourhoods overlap x, while the discrete boundary of x contains
those pixels whose immediate neighbourhoods overlap both x and the complement of x.

In our case where the canonical model is a (finite) n×m regular square pixel lattice, the discrete
boundary of a region x typically maps to a two-pixel-wide non-null region, though four-pixel wide
boundary regions can arise. This means that the discrete exterior of x is separated from x, as is the
discrete interior of x from the complement of x.

A map between the intD and clD operators and the MM operations erosion and dilation [8] enables
one to define a notion of approximate equality that underpins transitions encoded in DM’s conceptual
neighbourhood graphs, and it also enables the RCC8D relation set to be easily implemented in any
image-processing programs featuring standard MM libraries. Other properties of regions can be
defined in DM—for example, regions with or without an interior, regular regions (i.e., those without
pixel-wide spikes and fissures), self-connected regions, and connected components.

In the histological domain, cells and their parts, groups of cells forming tissues and compartments,
and the background of a digitised histological preparation can all be modelled using DM. Simple regions
and arbitrary sets of pixels forming regions which may or may not be spatially contiguous all yield
potential models. If a histological preparation is thresholded as a single binary image, then segmented
regions of interest will form connected components, so that in any one image, the only possible relations
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between pairs of regions are DC and EQ. However, the methods presented here assume that independent
imaging modalities are used—for example, separating out the contribution of the different dyes in
stained sections (as in Figure 1) or confocal microscopy channels. In this case, pairs of regions segmented
from each channel can be compared, with all RCC5D and RCC8D relations now being possible.

3.1. Conceptual Neighbourhood Graphs, Continuity and Change, and Composition Tables

In [2,9], a set of conceptual neighbourhood diagrams (CNDs), or graphs, were defined on dyadic
relations. In RCC8, relation R′ is a conceptual neighbour of relation R if some pair of regions related
by R can be continuously deformed so that R changes to R′ with no other relation holding during
that deformation. In the discrete setting of DM, continuous deformation is recast in terms of minimal
change. In [2], this was defined using the discrete interior (intD) and closure (clD) operators; here we
extend this to include changes to regions produced using the set theoretic operators sum, prod, diff,
compl, xor (denoting union, intersection, relative difference, complement, and symmetric difference)
and the discrete topological operators intD, clD, extD, and bndryD (denoting the discrete interior,
closure, exterior, and boundary). The universal region u—representing the image—is assumed to be
self-connected (i.e., SC(u)).

In general, an RCC8D conceptual neighbourhood of a binary relation R can be defined as

nbhd〈α,β〉(R) = {R′ ∈ RCC8D | ∃x, y(R(x, y) ∧ R′(α, β))} (5)

where α and β are designated functions of the region variables x, y. The elements of nbhd〈α,β〉(R) are
called the 〈α, β〉-neighbours of R. They are all the possible relations that can hold after regions x and y
are modified in accordance with α, β. Given a segmented image, by a resegmentation we understand the
replacement of a set S of regions in the image by a new set S′ defined from S using some sequence of
conceptual neighbourhood transitions. Such a resegmentation is chosen in order to correct anomalous
relations in the original segmentation so that it satisfies the constraints of the domain being modelled.

Figures 2 and 3 show a set of 20 graphs that encode the conceptual neighbourhood relations
defined in terms of the operators sum, prod, diff, compl, xor (Figure 2), and the quasi-topological
operators intD, clD, extD, and bndryD (Figure 3). Not all these operators yield resegmentations with
obvious applications in the histological domain, but we include them here for completeness in view of
the fact that all the operators arise in many formal descriptions of space. A subset of these operators
are used in the resegmentations depicted in Figures 4 and 5.

In the first graph, for example, showing

nbhd〈x,sum(x,y)〉(R) = {R′ ∈ RCC8D | ∃x, y(R(x, y) ∧ R′(x, sum(x, y))} (6)

the arrow from DC to TPP represents the case nbhd〈x,sum(x,y)〉(DC) = {TPP}, meaning that if DC(x, y)
holds then we must have TPP(x, sum(x, y)). In this case, only one resegmentation exists; other cases,
such as nbhd〈x,sum(x,y)〉(PO) = {TPP, NTPP}, may allow more than one. Loops in the CND indicate
where a change to a region of a designated pair does not necessarily result in a corresponding change
of relation. Isolated nodes or nodes without outgoing edges arise where an operator returns null
(e.g., diff(x, y) where PP(x, y)).

While 20 graphs are depicted here in the interests of clarity, these could theoretically be reduced
to a minimal set of three from which all the others may be derived. One such set encodes the operators
sum, compl, and intD as primitive graphs. This property is a direct consequence of the definitions
for sum, compl, and intD from which all the other set-theoretic and topological operators can be
defined—see Appendix A.1.

For graph number n (Figures 2 and 3), the outgoing edges from the vertex labelled with relation
R are designated with the mnemonic nR; for example, in the case of the pair of outgoing edges from
PO to TPP and NTPP in graph 1, this is denoted as 1PO. Note that four of the RCC8D relations are
self-inverse (i.e., R(x, y) implies R(y, x)); these are DC, EC, PO, and EQ. The other four relations form two
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mutually inverse pairs: TPPi(x, y) if and only if TPP(y, x), and NTPPi(x, y) if and only if NTPP(y, x).
These inverse relations will sometimes be exploited in our reasoning. In graph 4, for example, we see
that PO(x, y) implies TPPi(y, prod(x, y)); sometimes we will find it more convenient to rewrite this as
TPP(prod(x, y), y), in which case we would cite the graph operation as 4′PO. An example of this is seen
later in Table 1. Note that the graphs exclude edges marking transitions of relations to DC as a direct
consequence of one of the relata passing to null (e.g., as arises when a region without interior is eroded).

TPP

NTPP

EQ

NTPPi

TPPi

DC

EC

PO

TPPEQ

NTPP

NTPPi

TPPi

DC

EC

PO

TPPEQ

NTPP

NTPPi

TPPi

DC

EC

PO

1: nbhd〈x,sum(x,y)〉(R) 2: nbhd〈y,sum(x,y)〉(R) 3: nbhd〈x,prod(x,y)〉(R)

TPP

TPPi

NTPP

NTPPi

EQ

DC

EC

PO

TPP

NTPP

EQ

NTPPi

TPPi

DC

EC

PO

TPP

DC

EC

NTPP

EQ

NTPPi

TPPi

PO

4: nbhd〈y,prod(x,y)〉(R) 5: nbhd〈x,diff(x,y)〉(R) 6: nbhd〈x,diff(y,x)〉(R)

TPP

NTPP

EQ

NTPPi

ECTPPi

DC

PO

TPP

NTPPi

TPPi

NTPP

EQ

DC

EC

PO

TPP

NTPP

EQ

NTPPi

TPPi

DC

EC

PO

7: nbhd〈y,diff(x,y)〉(R) 8: nbhd〈y,diff(y,x)〉(R) 9: nbhd〈x,compl(y)〉(R)

TPP

NTPP

EQ

NTPPi

TPPi

DC

EC

PO

TPP

NTPP

EQ

NTPPi

TPPi

DC

EC

PO

TPP

NTPP

EQ

NTPPi

TPPi

DC

EC

PO

10: nbhd〈compl(x),y〉(R) 11: nbhd〈x,xor(x,y)〉(R) 12: nbhd〈xor(x,y),y〉(R)

Figure 2. Directed graphs encoding set theoretic operators. In each case, the regions and the resulting
operation on them are non-null. DC: disconnection; EC: external connection; PO: partial overlap;
TPP: tangential proper part; NTPP: non-tangential proper part; TPPi: inverse of TPP; NTPPi: inverse
of NTPP; EQ: equality.
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TPP

NTPP

EQ

NTPPi

TPPi

DC

EC

PO

TPP

NTPPi

TPPi

DC

EC

PO

NTPP

EQ

13: nbhd〈intD(x),y〉(R) 14: nbhd〈x,intD(y)〉(R)

TPP

NTPPi

TPPi

PO

NTPP

EQ

DC

EC

TPP

NTPP

EQ

NTPPi

TPPi

PO

DC

EC

15: nbhd〈clD(x),y〉(R) 16: nbhd〈x,clD(y)〉(R)

TPP

NTPP

DC

EQ

NTPPi

TPPi EC

PO

TPP

DC

NTPP

EQ

NTPPi

TPPi EC

PO

17: nbhd〈extD(x),y〉(R) 18: nbhd〈x,extD(y)〉(R)

TPP

NTPPi

TPPi

NTPP

EQ

DC

EC

PO

TPP

NTPP

DC

EQ

NTPPi

TPPi EC

PO

19: nbhd〈bndryD(x),y〉(R) 20: nbhd〈x,bndryD(y)〉(R)

Figure 3. Directed graphs encoding discrete topological operators. In each case the regions and the
resulting operation on them are non-null.

We also use RCC8D’s composition table (RCC8D-CT). The notion of composition is well-known
in AI, as it provides an efficient inference mechanism for many QSR constraint satisfaction programs,
where it is typically implemented as a simple look-up table. Following [17], weak composition of DM’s
JEPD relation sets is defined as follows. Given relation set Σ, the weak composition RCC8D-CT(R,S),
where R, S ∈ Σ, is defined to be the smallest subset {Ti} ⊆ Σ such that DM |= ∀x, y, z((R(x, y) ∧
S(y, z)) → T1(x, z) ∨ · · · ∨ Tn(x, z)). The elements of RCC8D-CT defined on non-null regions agree
identically with those of RCC8’s composition table entailed by RCC. This was mechanically proved
using the sorted theorem prover SPASS [18] to verify that all entailments of the above form were
included in the composition table; and constructing a set of graphical models satisfying each Ti(x, z)
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disjunct. The same method was used to verify the sets of directed edges of the graphs depicted in
Figures 2 and 3.

3.2. Implementation

All the relations and functions described above were implemented on the ImageJ (IJ) image
processing platform. Two variants of the RCC5/8D relation sets were implemented: one that restricts
the indexed region pairs to simple (self-connected) regions, while the other relaxes this constraint by
allowing a labelled region to consist of disjoint connected components. In the case where multiple
regions arise in an image, paired images were processed by computing the Cartesian Product defined
on pairs of connected components with the n×m relations stored in an n×m matrix. A raster scan
encoding of the segmented regions in each image and the matrix enables images to be queried and
specific relations and regions to be reconstructed. These matrices are encoded and stored as an 8-bit
colour-coded n×m image which we call an RCC table.

The set-theoretic operators (sum, prod, diff, compl, xor) were respectively mapped to IJ’s default set
of operators (OR, AND, Subtract, Invert, Difference). Of the discrete topological operators, intD and
clD were mapped to IJ’s dilation and erosion operators (Erode, Dilate), respectively, while extD and
bndryD were defined and implemented in terms of these. The universal region denoted as u in DM
maps to the image itself.

To provide an idea of the computation involved, our implementation of RCC8D in the ImageJ
platform (Java 1.8.0) processes an image of 2048 × 1546 pixels containing 898 nuclear regions and
1007 cytoplasmic regions (total number of possible relations is 903,286) in 162 s using an Intel i7 CPU
running at 3.3 GHz under the Linux operating system. The CPU processing the RCC table depends
on a number of factors: the number of regions in each image, the types of relations held (some are
quicker to compute than others), and the size of the image. With the RCC table precomputed, the
time it takes the algorithm to get from the steps depicted in Figure 5b–f is 8.7 s (this is for the entire
2048 × 1536 pixel image with 548 nuclear and 1012 regions of cytoplasm).

4. Examples

This section presents two examples to illustrate the method using a H400 dataset. In the first
example we show how we need a sequence of changes in the relations in order to get a sequence of
changes in the regions. Several alternative re-segmentation solutions are constructed and verified
by the underlying logic. A detailed example is given of one such correction to show a path through
the graph network from a start to a goal state. The second example shows how the method can be
extended to cover other morphological operations on region pairs not defined by the set-theoretic and
discrete topological operators, or their compositions assumed here. It is additionally shown how the
same model-based method provides a mereotopological method to quantify, evaluate, and correct
segmentation errors.

4.1. Example 1: Segmenting Cells in Culture Using Set-Theoretic and Discrete Topological Operators

Figure 4a depicts a crop of an H&E-stained culture image of H400 cells grown on glass.
Various image pre-processing operations are performed. First, a Gaussian filter (kernel radius 2)
is applied to the original image to remove noise and reduce the fragmentation artefacts near the region
boundaries. Next, colour deconvolution [19] is used to unmix the dye contributions and identify
cell nuclei (H-stain, image (b)) from the rest of the cell bodies (E-stain, image (c)). Several standard
image processing operations then follow (k-means clustering on the H,E stain images using three
clusters, Boolean compositions of thresholded clusters, binary watershed separation), which are used
to generate the two binary images of cell nuclei and their associated cell bodies (images (d) and (e),
respectively). The colour composite merge depicted in (f) illustrates the extent of conformity to the
assumed histological constraints; binary segmented nuclei (d) are mapped to green, cytoplasm (e) to
magenta, and overlap between the two to white. Where a nucleus forms a proper part (PP) of its
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cytoplasm, the latter appears as magenta surrounding a white nucleus; in less common cases where
EQ holds, the whole cell appears white.

Figure 4. An example of segmenting and resegmenting cells from a H400 haematoxylin and eosin
(H&E)- stained culture using set-theoretic and discrete topological operators. The top row shows
(a) original H&E-stained image (field width 65 micrometres); (b) haematoxylin channel; (c) eosin
channel; (d) binary segmented nuclei; (e) binary segmented cytoplasm. In the second row, (f) is a colour
composite merge of (d,e) where magenta, green, and white correspond to cytoplasm, nucleus, and
cytoplasm + nucleus overlap, respectively; From (g) to (j) are shown possible resegmentations of the top
cell in (f) that correct the PO relationship of the nucleus and cytoplasm into PP by means of successive
erosions of the nucleus (g); corresponding dilations of the cytoplasm (h); extending the footprint of
the cytoplasm so the nucleus is contained as a part (i); and reducing the nucleus in an intersection
operation with the cytoplasm in (j); The third row shows (k) as an example of a nucleus overlapping
two cytoplasm regions and possible resegmentations by splitting the nuclear region into two separated
parts in an intersection operation (l); removing the non-overlapping region between the two cells with
a union operation (m); adding the nucleus to one cell and removing the overlap from the other (n);
and adding the nuclear boundary to one cell and removing the closure of the result from the other (o).
See text for details of the procedures involved.

First we test the RCC8D relation between cell nuclei and cytoplasm, where each typed set of
spatially disjoint regions is treated as a mereological whole (regions n and c, respectively). In the case
illustrated, we obtain PO(n, c), as indicated by the presence of green regions in image (f). As this fails
the test of conformity (which requires nuclei to fall within their associated cytoplasm), the task is to
repair the segmentation. In (f) two candidate nuclei partially overlap (PO) cytoplasm regions.

Using the directed graphs, we look for resegmentation operations on candidate
nucleus/cytoplasm pairs that take us from PO to PP. Consider the top cell in Figure 4f, where candidate
nucleus (call it n) is PO to cytoplasm component (c) (by “candidate nucleus”, we mean image segments
which to a first approximation correspond to the parts of the image derived from actual cell nuclei in
the sample as defined in [5]). One possible solution (image (g)) successively erodes n (i.e., replaces it by
its discrete interior) until it becomes PP to c; this requires five successive erosions. Another (image (h))
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replaces c by its discrete closure (dilation) until the same result is achieved. This uses a dilate-no-merge
operation to avoid the dilated cytoplasm region merging with adjacent cytoplasm regions, and requires
six successive dilations. In (i) we extend c to cover all of n so that once again the nucleus is PP to its
cytoplasm. In (j) we achieve the same result by subtracting from n the part that lies outside c.

Image (k) shows an example where a nucleus n′ partially overlaps two cytoplasm components c1

and c2. One correction (image (l)) splits the nucleus into two by taking its intersections with c1 and
c2. Each nuclear component is now PP to one cytoplasm component. In (m), the cytoplasm on the
left, (component c2), is extended to cover the whole of n′. However, this has the effect of merging two
cytoplasm components; to compensate for this, the rightmost component (c1) is reduced by subtracting
from it the closure of n′ (image (n)). Finally, in (o), the nucleus is completely surrounded by cytoplasm;
this is achieved by extending c2 to cover not just n′ but its closure; the compensatory reduction of c1

must now subtract the closure of the closure of n′ in order to ensure complete separation from the
extended c2.

These resegmentations, associated graphs, and inferences used to generate them are summarised
in Table 1.

Table 1. Resegmentation details for Figure 4. Here CT refers to the RCC8D composition table.

Figure Initial Relation Relation after Resegmentation Graph Operation

(g) PO(n, c) TPP(int5
D(n), c) 13PO

(h) PO(n, c) TPP(n, cl6D(c)) 16PO

(i) PO(n, c) TPP(n, sum(n, c)) 1PO

(j) PO(n, c) TPP(prod(n, c), c) 4′PO

(l)
{

PO(n′, c1)
PO(n′, c2)

TPP(prod(n′, c1), c1)
TPP(prod(n′, c2), c2)

}
4′PO

(m) PO(n′, c1) TPP(n′, sum(n′, c1)) 1PO

(n)
{

PO(n′, c1)
PO(n′, c2)

TPP(n′, sum(n′, c1))
DC(n′, diff(c2, clD(n′)))

1PO

15PO, 6PO, 16EQ, CT

(o)
{

PO(n′, c1)
PO(n′, c2)

NTPP(n′, sum(clD(n′), c1))
DC(n′, diff(c2, cl2D(n

′))
15PO, 1PO, 16EQ, CT

15PO, 6PO, 16EQ, 16NTPP, CT

In detail, the steps for c1 in (o), for example, are as follows:

1. Start with PO(n′, c1).
2. By 15PO this gives PO|NTPPi|TPPi(clD(n′), c1).
3. By 1PO|NTPPI|TPPI this gives EQ|NTPP|TPP(clD(n′), sum(clD(n′), c1)).
4. Next, from EQ(n′, n′) and 16EQ we have EQ|NTPP(n′, clD(n′)).
5. The RCC8D weak composition EQ|NTPP ◦ EQ|NTPP|TPP is EQ|NTPP|TPP.
6. Hence from 3 and 4 using 5 we have EQ|NTPP|TPP(n′, sum(clD(n′), c1)).

In step 2, we apply graph 1 to each disjunct of PO|TPPi|NTPPi separately to generate the new
disjunction EQ|TPP|NTPP in step 3: here PO and TPPi (NTPPi) are mapped to TPP|NTPP and
EQ by 1PO and 1TPPi (1NTPPi), respectively; the combined operation is notated as 1PO|TPPi|NTPPi

(other disjunctions are handled similarly). The soundness and completeness of the inference procedures
ensure not only that steps 1–4 encode the DM theorem PO(x, y)→ EQ|TPP|NTPP(x, sum(clD(x), y)),
but also that the disjunctive relation EQ|TPP|NTPP is the strongest obtainable.

4.2. Example 2: Segmenting Cells in Culture: Adding Other Morphological Operators

Morphological operators other than those that directly implement the set-theoretic and discrete
topological ones described above can be exploited using the same method. In the example below,
a binary geodesic dilate without merging operation is combined with the sum operator to resolve cases
such as those depicted in Figure 4k, where the cytoplasm regions are repartitioned to resolve multiple
merged cells with partially overlapping nuclei (Figure 5).
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Figure 5. (a) Original cropped image of cells in H400 H&E-stained culture; (b) nuclei segmented
using a regional gradient and circularity contraint method; (c) cytoplasm mask using the
histogram-based minimum method; (d) binary watershed on (c) and colour composite merge
with (b); nuclei = green, magenta = cytoplasm, white = nuclei/cytoplasm overlap showing
PO relations formed where the watershed boundaries cut the nuclei; (e) repartitioning the cytoplasm
by extracting the watershed-induced PO cases, and merging the associated adjacent regions of
cytoplasm in (f); (g) resegmentation of PO cases using (f,b): colour composite merge: nuclei = green,
magenta = cytoplasm; (h) detail of the watershed partitioning generating partially overlapping nuclei
and cytoplasm, and the result of the cytoplasm merge and resegmentation using a binary dilation
without merging operation. Remaining PO cases (see single green pixel at 9 o’clock of upper-right cell)
is then reassigned to the cytoplasm using the sum operator—see Section 4.2 for explanation.

Several model-based constraints are exploited in this example: (1) morphology: nuclear shape
and size tends to be more uniform than those of their host cells; (2) stain uptake: the haematoxylin
staining is greater and relatively uniform in the nucleus compared to the cytoplasm, while the rest
of the cell stains more prominently with the eosin dye; and (3) topology: a valid histological model
of a cell requires the nucleus to be part of its associated body of cytoplasm. All three constraints are
implemented as follows: first, using an image gradient method to segment nuclei based on circularity
and size and a histogram method to extract the cytoplasmic regions, secondly, placing a priority on
the resegmentation of the cytoplasm over the segmented nuclei, and thirdly assessing the model
part–whole condition on the mereotopological relationship between nuclear and cytoplasmic regions
that enables us to either accept, reject, or modify the segmentation results.

The proposed procedure is summarised as follows. Figure 5a depicts a cropped image of an
H&E-stained culture of H400 cells grown on glass. For the nuclear regions, colour deconvolution [19]
is used to separate the colour image information into haematoxylin-only and eosin-only images.
A regional gradient and circularity and size constraints algorithm [20] is applied twice to the
haematoxylin image. The first pass identifies fairly circular nuclear regions (with circularity ≥0.6),
within a range of expected sizes (minimum and maximum areas of 400 and 3600 pixels, respectively, all
determined empirically). A second pass is applied to the same image but modified so that the nuclei
found in the first pass are masked with the background intensity (and so they are not detected) and
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the algorithm is set to accept lower circularity results (≥0.3) to find elliptical and clustered nuclear
regions. After smoothing with opening and closing (kernel radius = 4 pixels), a binary watershed
separation operation splits the clustered nuclei and these are merged with those detected in the first
pass (Figure 5b). The cytoplasmic regions are segmented from the greyscale version of the original H&E
image (as this has contributions of both dyes). Initially, a local contrast-limited adaptive histogram
equalization [21] is applied to increase the contrast between cells and background and mitigate residual
effects of uneven illumination that can still appear in background-corrected images. The image is then
binarised using the histogram minimum method [22] followed by median filtering (kernel radius =
2 pixels) to smooth boundaries (Figure 5c). Finally, a binary watershed separation operation splits the
entire cytoplasm region into tentative cell parts (seen in Figure 5d).

Since both segmentation results are obtained through independent processes, an assessment
of the relations held between the two object types is necessary to evaluate the consistency of the
results in terms of spatial relations with the biological reality (i.e., real cells). We note that the position
of watershed split-lines is to some degree sensitive to the geometry of the regions, and can result
in unintended separation of whole nuclei into parts and inadequately separated cells (Figure 5d).
Investigation of the RCC5D relations existing between nuclear and cytoplasmic regions can help in
identifying and correcting such artefacts. In the original uncropped image, 548 segmented nuclei and
1012 cytoplasmic regions were obtained using the procedure above. The frequency count of the different
RCC5D relations was: DR = 553,778, PO = 490, PP = 308, EQ = 0, and PPi = 0. As the segmentation
target is to generate model cells (i.e., pairs of nuclear and cytoplasmic regions satisfying a part–whole
relation and a one-to-one mapping between nucleus and cytoplasm) of the mereotopological relations,
the 490 PO counts enable the quantification of the number of relations not fulfilling the cell model,
while the number of PP counts indicate those that do.

Interestingly, this provides a quality control measure of the segmentation results. The artefactual PO

instances could arise either from cytoplasmic mis- or over-partitioning (where nuclei partially overlap
across cytoplasmic split lines), from under-sized cytoplasmic regions (therefore the nucleus “spilling out”
of the cell), or from oversized nuclei. To resolve these PO cases, the cytoplasm regions were re-merged
by means of binary closing (which fills the 1 pixel- wide watershed lines) and repartitioned using
the binary dilation without merging operation of the nuclei (considered here as seeds) on the merged
cytoplasmic regions (the mask)—Figure 5e,f. Note that this procedure might leave the other PO instances
unmodified. Indeed, a further RCC5D analysis revealed eight remaining PO instances due to nuclear
spilling or cytoplasmic shortage. Inspection of 1PO in Figure 2 shows that the sum operator points to the
sought-after resolution of PO into PP (either TPP or NTPP) relations This is equivalent to forcing the
space occupied by nuclear pixels not forming part of the cytoplasm to become so.

The re-segmentation method so far ensures that the repartitioning of the cytoplasm of the PO cases
with respect to their associated segmented nuclei necessarily generates model cells; however, a PP

relation (that only gives a necessary condition of being a model-cell) does not. Where this is required,
the RCC-table that exhaustively enumerates the segmented RCC5/8D relation pairs is interrogated
and used to test for one–one mappings. Those regions of cytoplasm and their overlapping nuclei that
fail this test are factored out and the cytoplasm repartitioned using the binary dilation without merging
operation of the nuclei (considered here as seeds) on the cytoplasmic regions (the masks). The final
resegmentation of the subset of PO relations is shown in Figure 5g, while Figure 5h,i respectively
show the resegmentation of PO cases from the initial watershed partition assumed in Figure 5d to the
cytoplasm merge and resegmentation using a binary dilation without merging operation.

While this particular example might appear obvious, the neighbourhood diagrams and their
graphs are essential to identify which paths exist for different operations that result in the search for
specific models. In turn, the method provides a guide of which segmentation algorithms may or may
not be suitable for a particular application. Additionally, note that the two strategies used here result
in different modifications of the image regions. These depend on the nature of the PO occurrences
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(i.e., depending on the nature of the segmentation artefacts) while retaining unchanged those objects
that were originally correctly segmented.

5. Discussion

While theoretically any one of the RCC8D relations is possible given a pair of segmented regions,
when applied to histological images, morphological, geometric, and other empirical constraints on
models will tend to favour some relations over others. One such example is the prevalence of the PO

relation between segmented nuclei and regions of cytoplasm, and another is the histological part–whole
relation P or the proper-part relation PP associated with model cells, which we now turn our attention to.

The 20 graphs reveal six resegmentation operations that take us directly from PO to PP

(i.e., TPP|NTPP), hence guaranteeing the transition to PP (namely 1PO, 2PO, 3′PO, 4′PO, 5′PO, and
8′PO) and another ten that merely allow that possibility (namely, 9′PO, 10PO, 13PO, 14′PO, 15′PO, 16PO,
17PO, 18′PO, 19PO, and 20PO; in these cases the predicted models include PP, but PP is not entailed). The
number (and complexity) of potential resegmentations increases when several graphs are combined
and node–node paths through these networks of length n > 2 are considered, as in the segmentation
operations used to generate the cell depicted in Figure 4o.

Strategies for selecting optimal resegmentations would be relatively straightforward if the
segmented cells were widely separated from each other, but in Figure 4 this is not so, since several
cells are separated by a pixel-width distance and in (f) and (k) nuclei overlap more than one cytoplasm
component (these pixel-wide boundaries arise where neighbouring individual regions of a given
type are represented in a single binary image). Hence, when applying 16PO to (f) to generate (h),
or applying 1PO to (k) to generate (m), hitherto separated cytoplasm components can merge. As we
have seen, one way to avoid this is to restrict the discrete closure operation so as to prevent merging
with a neighbouring component:

cl−D(x, y) =def {x̂ | O(N(x̂), x) ∧ ¬O(N(x̂), y)}. (7)

This picks out those pixels whose immediate neighbourhoods overlap x but are disjoint from
y, giving the largest subset of clD(x) not connected to y. It cannot be applied carte blanche, however,
since histological domain constraints may require some regions (e.g., fragmented nuclei) to be merged.

Within DM proper, different classes of regions operate as filters (e.g., atoms, regions without
interiors, regular regions lacking spikes or fissures, or connected components), and all these give
rise to varying constraints on the mereotopological relations defined on them. At the image scales
typically used in digital microscopy, most segmented regions mapping to histological objects have
interiors, and very few are atomic, but restricting these topological properties will constrain the
possible segmentation models and relations that can be defined on them. Constraints other than
those defined directly within DM can also be used to reduce the number of segmentation models.
A simple example is where the range of sizes of histological objects can be used as a filter, either using
MM granulometry methods or filtering by morphological thickness [2], enabling us to rule out the
segmentation models with cell bodies too large or nuclear regions being too small.

Another extra-logical constraint that can be used exploits empirical information about the
histological stains and their known selectivity in dye take-up with respect to targeted tissues and
their parts. Given that the H-stain offers a potentially more reliable segmentation for nuclei than
the eosin counter-stain does for cytoplasm, resegmentations could be ranked to favour those that
minimize the changes to nuclei. Other assumed empirical and ontological dependencies can also be
exploited. For example, depending on microscope resolution, each cell nucleus should fall wholly
within some cytoplasm component, whether this is segmentable from the original image or not; in DM
this can be captured by adding the histological domain axiom Nuc(x) → ∃y(Cell(y) ∧ P(x, y)).
This constraint also justifies the assumption underlying the transition 1PO, where a cytoplasm
component partially overlapping a nucleus is extended to cover the nucleus so that it forms part of that
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cell. The correspondence between histological features and stain selectivity can also be incorporated
algorithmically: given a PO relation defined on a poorly segmented nucleus and its host cytoplasm,
we favour 16PO (dilating the cytoplasm) over 13PO (eroding the nucleus). It is also worth noting that
the boundaries of histological objects in grayscale images tend to exhibit intensity gradients, so if
thresholding is used for segmentation, subsequent erosion and dilation-based resegmentations are
more likely to follow gray-scale intensity levels in the original image than blind set-theoretic operations
on the same binary images. This observation highlights a potential limitation of the underlying method,
which is that once a target histological object is segmented, subsequent changes applied to it may not
conform to the available information in the original image. However, in some cases, restricting oneself
to information in an image may not—even in principle—lead to a histological model. For example,
uneven staining may fail to reveal the full extent of the cytoplasm in the sample; in which case a
model-based resegmentation solution can be used to factor out those regions in an image that need to
be treated differently from the rest.

It is also perhaps useful here to give at least some indication of empirical methods and metrics
envisaged for quantifying, validating, and measuring our segmentation solutions. For example, given that
segmentation of cell nuclei appears to be more reliable than that of regions of cytoplasm, these can be used
as a standard reference to measure how well the segmented cytoplasm conforms to the histological model.
In this case, a necessary condition would be that a segmented nucleus forms part of some overlapping
body of cytoplasm, so one possible quantitative measure is the proportion of region pairs that form a
part–whole relation out of all possible overlap cases. These simple examples show (i) that the underlying
physical model should guide the abstraction and (ii) the danger of abstracting and working with generic
cases too quickly, where empirical constraints restricting valid resegmentations may be missed.

The methods presented so far address the correction of histological models. In [5] we proposed
that deriving consistent histological models from tissue images can be seen as a progression through a
number of ontological levels, each one consisting of distinctive classes of entities related in systematic
ways to entities at other levels. According to [5], histological models are level 3 ontologies, and their
correction assumes that the procedures used for obtaining candidate nuclear and cytoplasm regions
(level 2 ontologies: nuclei, cytoplasm) are valid. The accuracy of such procedures to generate initial
segmentations is therefore essential, and often involves ground truth sets or gold standards. However,
this goes beyond the scope of the level 3 methods presented here. Furthermore, how accurately the
level 2 segments represent biological reality cannot be directly addressed by the mereotopological
approaches presented (because they address level 3 ontologies). Despite this, the frequency and
magnitude of the corrections needed to be applied to obtain valid models could serve as additional
indicators of a lack of correctness in the initial segmentation as an artefact detector operating at a
higher ontological level than the original segmentation.

6. Conclusions

We have shown how DM provides the means to model cellular structure in digitised histological
images. Segmentation and resegmentation satisfying a histological model can be achieved by a set
of operations on regions that satisfy a set of constraints on pairs of regions. These constraints can be
encoded as a set of graphs in which topological and set-theoretic operators lead from one vertex to
another. The method is generic and can be applied to any domain where it is required to segment
digitised images into regions satisfying specific sets of mereotopological relations.

Several directions for future work can be suggested. We have already discussed empirical
validation methods using a set of gold-standard images. Secondly, the set of operators and associated
graphs can be extended to cover morphological operators other than the topological and set-theoretic
operators used here. In order to generate graphs encoding all possible relation transitions, each operator
needs to be defined together with a proof that the models constructed are exhaustive. However,
this can be an onerous task when encoding all but the simplest of morphological-based operators,
such as opening and closing, or implementing alternate sequential smoothing operations [23]. Thirdly,
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various different metrics can be defined on the conceptual neighbourhoods and their graphs, allowing
optimisation of segmentation models and prediction of the most likely path to take through the graphs
from a given state to a segmentation goal. These could be based on what proportion of JEPD relations
reached at each step can lead to a valid model, or probability measures determined from a statistical
analysis of the data sets, taking into account a priori and empirically-derived properties such as cell
type and morphological shape and size.
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Abbreviations

The following abbreviations are used in this manuscript:

H&E haematoxylin and eosin stain
QSR qualitative spatial reasoning
DM discrete mereotopology
MM mathematical morphology
RCC region connection calculus
RCC5/8D the five/eight-element relation sets used in DM
sum union operator
prod intersection operator
diff difference operator
compl complementation operator
xor exclusive-or (or symmetrical difference) operator
intD discrete interior operator
clD discrete closure operator
extD discrete exterior operator
bndryD discrete boundary operator
P part
O overlap
C contact or connection
JEPD jointly exhaustive pairwise disjoint
DC disconnection
EC external connection
PO partial overlap
TPP tangential proper-part
NTPP non-tangential proper part
EQ equality
DR disjoint
PP proper-part
R|R′ disjunction of R and R’
Ri inverse relation of R
SC self-connected
nbhd〈α,β〉(R) conceptual neighbourhood of binary relation R
RCC8D-CT the RCC8D composition table
IJ ImageJ image processing software
cl−D disjoint discrete closure
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Appendix A

Appendix A.1

The method used to generate and verify the graphs was as follows. First the discrete topological
intD and clD graphs, and set-theoretic graphs sum, prod and diff were machine verified using the sorted
logic theorem prover SPASS. For each S ∈ R′ given R→ R′, a corresponding set of graphical models
satisfying R ∧ S, was generated by hand.

Of the remaining graphs, compl was similarly verified. In the case of xor, lemmas were used to
achieve the following theoretical reductions using the existing sum and diff graphs:

DR(x, y)→ xor(x, y) = sum(x, y) (A1)

P(x, y)→ xor(x, y) = diff(y, x) (A2)

Pi(x, y)→ xor(x, y) = diff(x, y) (A3)

To generate the extD graphs, we used the intD, clD and compl graphs feeding the set of disjunctions
generated by one graph into another. This assumed the following identities:

extD(x) = intD(compl(x)) = compl(clD(x)). (A4)

Hence:
R(x, y)→ R′(x, intD(compl(y))) (A5)

R(x, y)→ R′′(x, compl(clD(x))) (A6)

Formulae (A5) and (A6) were used to compare generated disjunctions for R′ and R′′. In the few
cases where these differed, set intersection of the relation sets generated was used to generate the
subset R′ as the remainder disjuncts were found to be unsatisfiable.

Finally the bndryD graphs were machine verified using SPASS. Again for each R′ disjunction,
given R→ R′, a set of graphical models satisfying each directed edge was hand-generated.

The task of verification can in fact be reduced to a set of three primitive graphs and their
associated operators, e.g., the set {intD, sum, compl} from which all the others can be formally derived.
Other equivalent sets exist, e.g., {clD, sum, compl}.

The relation between paired graphs using the same operator (e.g., graphs 1 and 2, 3 and 4, ...,
19 and 20) depicted in Figures 2 and 3 satisfies the following set of equivalences—here shown for
the operator intD, though it applies equally to the other operators. The equivalences show that only
one graph of the pair need be generated, the other being formally derived from it—here the notation
R−1(x, y) representing the inverse of relation R(x, y):

S ∈ nbhd〈intD(x),y〉(R) iff ∃x, y(R(x, y) ∧ S(intD(x), y))
iff ∃x, y(R−1(y, x) ∧ S−1(y, intD(x)))
iff ∃x, y(R−1(x, y) ∧ S−1(x, intD(y)))
iff S−1 ∈ nbhd〈x,intD(y)〉(R−1)

(A7)
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