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Anelasticity in Flexure Strips Revisited

Clive C. Speake

December 12, 2017

School of Physics and Astronomy, University of Birmingham, Edgbaston,
Birmingham B15 2TT, UK

Abstract
This note reviews previous analyses by the author of the damping

produced by the anelasticity of a simple flexure element that is loaded
in tension by an extended object such as a beam balance. The correct
calculation of the anelasticity of a simple flexure appeared in an appendix
in Quinn et al (1995)[10] where the change in the gravitational poten-
tial energy due to the shortening of the flexure was calculated enabling
expressions for the elastic energy and its associated losses to be derived.
Publications prior to this paper did not include this lossless term which led
to incorrect predictions of the anelastic losses in flexure pivots in Quinn et
al (1987) [7]. In this current paper the derivation of the result is given in
such a way that it can be easily contrasted with the expressions in these
earlier papers. I also extend the methodology to calculate the elastic and
gravitational energy associated with the motion of a suspended object
whose dimensions are significantly smaller than the length of the flexure.

PACS:
07:10.Lw Balance Systems, 62.20.D Elasticity, 04.80.Nn Gravitational Wave de-
tectors

1 Introduction
Many physical measurements are derived from mechanical oscillators. For ex-
ample, the measurement of mass relies on the precision achievable in common
balances and thermal noise in mechanical suspensions plays a key role in the
sensitivity of gravitational wave detectors. It has been known for some time that
anelasticity in material suspensions produces non-linearity and is also a source
of thermal noise ([7],[13],[11]). Derivation of the key equations describing the
elastic behaviour of a simple flexure-strip supporting a beam balance has been
given in previous papers [7, 12, 9, 8]. However, looking over these papers, that
were published now more than 20 years ago, it appears appropriate to collect
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the key results together and present them in a coherent way. In particular a
treatment of anelasticity that included the change in gravitation potential en-
ergy due to the shortening of the bending flexure was given in an appendix in
reference [10]. In this current paper I will revisit the results of these earlier pa-
pers and present them in the context of the work reported in the 1995 paper to
provide confirmation of the correct result. I will also use the same methodology
as used in reference [10]to derive expressions for the anelastic losses in a simple
pendulum suspension.

2 Key Equations
I will derive the general equations governing the quasi-static stiffness of a simple
flexure element of uniform cross section. As shown in Figure 1, a flexure-strip,
of second moment of area H and length L, supports a load of weight W . We
will assume that the flexure has a rectangular cross-section with width b and
thickness t and in this case we have H = bt3

12 . A torque, τ , and a horizontal
force, F , are applied to the free end of the flexure at x = L. This results in
a reaction force −F and a reaction torque τ0 at the upper end of the flexure.
As described in reference [9] and basic undergraduate texts, provided that the
radius of curvature of the flexure is much larger than its thickness, Hooke’s law
can be used to equate the moment of the forces, acting at any point, to the
curvature of the flexure, which in turn can be found in terms of the stress distri-
bution across its cross-section. This method is that adopted by previous authors
(see references given in [9]), however in reference [9], we discuss limitations to
this method such as those imposed due to the finite width of the flexure and
its Poisson’s ratio. The equation describing the bending of the flexural element
is given, more generally, by a fourth order equation but, here, we ignore any
shear forces due to a distributed load (ie the mass per unit length of the flexure
is considered to be negligible). Thus our approach differs from the analyses of
other authors: in reference [6], for example, the problem of the dynamic exci-
tation of the suspension elements for mirrors for gravitational wave detectors is
analysed and the mass per unit length of the suspensions is key to the analysis.

We therefore seek solutions to the second order differential equation specify-
ing the bending moment as a function of position that can be written in terms
of the torque, τ , acting at the free end and the applied forces,

M (x) = EH
d2y

dx2
= τ + F (L− x)−W (y(L)− y(x)) (1)

where E is the Young’s modulus of the flexure. A solution to this problem, that
satisfies the boundary conditions given by the positions and tangents at both
ends of the flexure is,

y =
F

αW
(tanhαL (coshαx− 1) + αx− sinhαx) +

τ

W coshαL
(coshαx− 1)

(2)
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where α2 = W
EH . Plots of equation 2for the cases where there are either torques

or forces applied to the flexure are shown in Figures 2a and 2b where the physi-
cal values of the parameters that characterise the flexure are those of the flexure
described in [9]. This solution can then be used to express the tangent angle,
θ0 and transverse displacement, y0, as shown in Figure 1, in terms of the ap-
plied torque and force. It is convenient to write these relations in the form a
compliance matrix, C, (

y0
θ0

)
= C

(
F
τ

)
, (3)

with
C =

(
C11 C12

C21 C22

)
, (4)

where
C11 =

αL coshαL− sinhαL

αW coshαL
, (5)

C12 = C21 =
coshαL− 1

W coshαL
, (6)

and
C22 =

α

W
tanhαL. (7)

x

y t W

F

q0

y0y0t0

F

W

Figure 1 A schematic the flexure element. The flexure is loaded with force,
W , due to the weight of the suspended object, and torques due to a horizontal
force, F , and a torque, τ . This results in a transverse displacement y0 and and
an angular deflection θ0 at the free end of the flexure. Note that Earth’s gravity
is vector points in the positive x direction.
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The shape of a flexure with an applied torque

Figure 2a

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

mm

0

0.005

0.01

0.015

0.02

0.025

0.03

tr
a
n
s
v
e
rs

e
 d

e
fl
e
c
ti
o
n
 (

m
)

The shape of a flexure with an applied force

Figure 2b.
Figures 2a and 2b show the shape of the flexure as given by equation 2 for

the cases where a simple torque or force is applied respectively. In Figure 2a
the torque has an abitrary magnitude of 10−3Nm and in Figure 2b the force
applied has an arbitrary magnitude of 10−3N . The flexure dimensions are given
as t = 50µm, b = 24mm, L = 20mm with E = 130GPa and W = 40N .
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In our previous analyses we have ignored the force, F , and the omission of
the applied force is an approximation that can be understood as follows. The
suspended object is assumed to be oscillating in Figure 1 and has arrived at
the deflection shown there by moving through angle θ0. The force acting on
the end of the flexure due to this motion is the inertial force proportional to
the object’s linear acceleration. On the other hand, the torque, τ , is due to
the angular inertial acceleration and is proportional to the objects moment of
inertia. In the limit that the object’s radius of gyration is much larger than the
distance of its centre of mass from the centre of rotation (given as Rf in the
discussion below) it is reasonable to assume that the suspended object applies a
pure torque to the end of the flexure and that the force is negligible. When an
extended object such as a beam-balance is attached to the flexure, as was the
case in our previous work, we can consider that a pure torque is being applied,
on the other hand when the suspended object is a point mass we can assume
that only a force acts. It is worth noting that a complete treatment of the
dynamical equations of a simple flexure that is supporting a mass of a given
moment of inertia has been analysed by Haag [3]. In this analysis it is shown
that the inertial stability of the oscillating bob can change the shape, effective
rotation axis and the energy stored in the flexure. This full analysis (that has
to be treated numerically) is not necessary for quasi-dc applications as is the
case here.

In what follows we will use an superscript * to indicate a result that is revised
in Section III. The well-known result (see for example [9]) is that the bending
stiffness, κt, is

κt =
τ

θ0
=

1

C22
=
W

α
cothαL, (8)

This result follows from equation 3 by setting F = 0. It is evident that the
stiffness of the flexure does not depend on its length in the limit that αL >> 1
and for this reason, in reference [9], the product αL was chosen to be approx-
imately two. It is helpful to keep the length of flexure as small as possible as
this increases the stiffness of higher order modes and reduces their coupling to
the simple rotational mode that we are modelling. It is tempting to consider
that the trajectory of the supported object is determined by an effective radius
that is determined by the ratio of transverse deflection, y0, and the angular
deflection, θ0. We could define

r∗f =
y0
θ0

=
C12

C22
= α−1 tanh

(
αL

2

)
. (9)

Further we could then assume that the system behaves as a compound pendulum
and possesses a gravitational potential energy determined by this length. A
gravitational stiffness, κ∗g, could then be defined as

κ∗g =Wr∗f =
W

α
tanh

(
αL

2

)
(10)

The total stiffness, κt, then comprises the gravitational term, κ∗g, and another
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term that could be considered to be the ’intrinsic’ elastic stiffness of the flexure,
κ∗el, where

κt = κ∗el + κ∗g. (11)

Hence we find

κ∗el =
W

α
csh(αL). (12)

This type of analysis has also been used to derive expressions for the stiffnesses of
end suspensions of beam balances in reference [9]. We will revise these equations
in Section III below.

It is generally accepted that a significant contribution to the damping of the
motion of flexures comes from material anelasticity. Of particular importance
to the field of mass metrology is the anelastic behaviour of a beam balance when
it is subjected to a change in stress. This is referred to as the anelastic after-
effect. Anelasticity, although observed by Henry Cavendish [2], is analysed in
detail in connection with measurements of weak forces in reference [7]. Following
reference [7], the stiffness can be expanded in terms of a frequency dependent
modulus defect δE (ω),

κel (E) = κel(E0 + δE (ω)) w κel (E0) +
dκel
dE

δE (ω) , (13)

where E0 is the component of the Young’s modulus that obey’s Hooke’s law. It
is also useful to define

κanel =

[
−α
2

dκel
dα

]
δE (ω)

E0
. (14)

The frequency dependent part of the modulus defect, δE (ω), has a real and
imaginary part. The latter, δEi (ω), is responsible for damping. In reference
[7] we were only interested in the damping and the anelastic after-effect and
thus we ignored the real part of the modulus defect. We assumed that the total
modulus defect comprised the sum of a distribution of relaxation processes that
all have the same relaxation strength, δe, where

δEi (ω) = δe

τ∞ˆ

τ0

f (τ)
ωτ

1 + ω2τ2
dτ. (15)

The weighting factor, f (τ), of the dissipation mechanisms of relaxation time τ
(not to be confused here with the applied torque) is normalised as follows1,

τ∞ˆ

τ0

f (τ) dτ = 1. (16)

1This distribution of relaxation processes is discussed in [5]. However Wiechert [15] (1893)
appears to have been the first to have modelled an arbitrary spectrum of such processes. To
the best of the knowledge of the current author, the authors of reference [7] were the first to
apply a general model of anelasticity to the low frequency behaviour of metals.
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Our measurements, that extended to oscillation periods of 690 s, indicated that
the imaginary component of the modulus was independent of frequency even at
these low frequencies. This behaviour is reproduced with

f (τ) =
1

ln (τ∞/τ0)

1

τ
, (17)

and for ωτ0 � 1 and ωτ∞ � 1. Thus by performing the integrations (see [7])
we can define

δEi (ω) = δe
π

2 ln (τ∞/τ0)
. (18)

Using 12, we find [
−α
2

dκel
dα

]
=
W

2α

1

sinhαL
(1 + αL cothαL) . (19)

We can find the variation of κ∗anel with the change in length, L, by expanding
19 around L ≈ α−1, for constant load and flexure geometry. We find

κ∗anel = i
δEi

E0

W

α

(
0.98− 1.60(αL− 1) +O (αL− 1)

2
)
. (20)

We also can show that κ∗anel tends to zero as L tends to infinity. This was
a result that was revised in the later publication [10]and is discussed further
below.

See references [7] and [14] for more details of the calculation of the anelastic-
after-effect and the damping produced by anelasticity and references to the work
of other authors.

3 Revision of these equations
Section II derives the results that were developed in our papers up until refer-
ence [10] in 1995. The result of equations 12 and 20 is that the anelastic stiffness
reduces exponentially as the flexure becomes longer or thinner. It makes sense
physically that the damping reduces to zero as the second moment are area
reduces to zero. We do not, however, expect that it reduces by simply mak-
ing the flexure-strip longer as the bending moment at the end of the flexure
cannot physically reduce to zero as the flexure becomes longer. This is con-
sistent with the stiffness of the flexure becoming independent of the length of
the flexure in the limit that L � α−1. The calculations given above were also
not consistent with experimental results obtained in [10]. At this point I tried
another approach where the elastic stored energy and the gravitational energy
were treated separately and, importantly the change in gravitational potential
energy was calculated as being due to the change in height of the load, W, as
the flexure deforms. The stored elastic energy can be written (see Appendix A
in [10]),

Vel =
1

2EH

L̂

0

M2 (x) dx, (21)
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where again M (x) is the bending moment:

M (x) = EH
d2y

dx2
. (22)

If we confine ourselves to the situation where F is insignificant in equation 3
then from equation 2 and 7,

y(x) =
θ0
α

(cosh (αx)− 1)

sinh (αL)
. (23)

Thus we can show that

Vel =
1

2

W

α
θ2

1

2

(
coth (αL) +

αL

sinh2 (αL)

)
, (24)

where we have deliberately separated out the two factors of one half. We can
define an elastic stiffness that comes from this approach as

κel =
W

2α

(
coth (αL) +

αL

sinh2 (αL)

)
. (25)

The bending of the flexure results in its length projected onto the vertical di-
rection being shortened. To second order in the bending angle, the change in
vertical height of the suspended load can be calculated to be

∆L =
1

2

L̂

0

(
dy (x)

dx

)2

dx. (26)

This results in a change in the gravitational energy of

Vg =W∆L =
1

2

W

α
θ2

1

2

(
coth (αL)− αL

sinh2 (αL)

)
, (27)

with an associated gravitational stiffness,

κg =
W

2α

(
coth (αL)− αL

sinh2 αL

)
. (28)

We can define a radius of rotation as in the previous analysis in Section 2,

rf =
y0
θ0

=
κg
W

=
1

2α

(
cothαL− αL

sinh2 αL

)
. (29)

We can see that
Vg + Vel =

1

2
κtθ

2, (30)

and
κt = κg + κel. (31)
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We now assume that energy loss from the oscillations of the pendulum due
to non-ideality of the flexure material, such as anelasticity, originates solely in
the elastic energy and that no energy loss occurs in the gravitational energy.
Clearly changes in the magnitude of the Young’s modulus can modulate the
gravitational potential energy but this energy is not dissipated in the system
via anelasticity due to the bending of the flexure. It is important to note that the
equations from21 including those through to equation31, where the gravitational
energy term is calculated in terms of the shortening of the flexure as it bends,
appeared in the appendix of [10]. In this current paper we are reiterating the
importance of these results and explaining further their interpretation.

These equations lead to the same result for the total stiffness as in equation
8 but the elastic and gravitational stiffnesses differ from the previous analysis,
as given by equations 24 and 31 compared with equations 12 and 24. However
the geometrical interpretation of r∗f is a simple function of the geometry of
the stressed flexure and its use to estimate the position of the effective centre
of rotation of the compound pendulum remains valid. This is an important
parameter when designing a device that has minimum sensitivity to horizontal
ground vibrations and tilt. We will therefore refer to r∗f as Rf , which we can
consider to be the location of the effective pivot axis, as measured from the end of
the flexure. The length Rf is also the parameter that enters into the calculation
of the moment of inertia of the suspended object about the effective point of
rotation. The importance of rf lies in its use for calculating the gravitational
potential energy following equations 28 and 29. We can calculate the ratio rf
to r∗f and express the result numerically for the usual case when L ≈ α−1,

r∗f
rf

≈ 1.57 + 0.13(αL− 1) +O
(
(αL− 1)2

)
... (32)

The previous analysis therefore overerestimates the value of rf by a factor of
1.57. Therefore using r∗f to estimate the gravitational potential energy of the
system results in an error of some 57%.

Now that we have adequately accounted for the gravitational energy involved
in the flexure bending, as was already given in the 1995 publication, we can
calculate the anelasticity from the stored elastic energy. We can use equation
24 to calculate the anelasticity of the flexure in terms of the elastic stiffness.
We find that[

−α
2

dκel
dα

]
=
W

4α

(
coth (αL) +

αL

sinh2 αL
+

2 (αL)
2
cothαL

sinh2 αL

)
. (33)

We can present this result numerically in the case of L ≈ α−1, as follows,

κanel = i
δEi

E

W

α

(
0.98− 1.04 (αL− 1) +O(αL− 1)2

)
, (34)

The anelastic component of the flexure stiffness behaves in similar way to the
expression given for κ∗anal in the previous section for the case where L ≈ α−1.
However, for L � α−1, the damping now tends to a value of 0.25 and this
expression for the anelastic stiffness is physically reasonable.
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4 Further calculations
The results above are all relevant for the case where the suspended object has
a radius of gyration large compared with the radius Rf . A natural extension is
to consider the case where the supported load is essentially a point mass. We
can use similar methods as described above but follow the calculation through
with τ = 0 instead of F = 0.

The stiffness of the flexure can be defined as

Kt =
F

y0
= αW

coshαL

αL coshαL− sinhαL
. (35)

It should be noted that this expression states that the stiffness of the flexure
against transverse forces becomes infinite as the flexure length tends to zero.
This is to be expected. We can also find the length of a simple pendulum,

Rf =
y0
θ0

=
1

α

αL coshαL− sinhαL

coshαL− 1
. (36)

It is interesting to note that Rf tends to L− 1/α as αL tends to infinity. This
is consistent with the work of Lorenzini et al [4]. The elastic component of the
stiffness is

Kel =
αW

4
· sinh 2αL− 2αL

(αL coshαL− sinhαL)2
. (37)

The gravitational stiffness can be written

Kg =
αW

4
· (2αL (cosh 2αL+ 2)− 3 sinh 2αL)

(αL coshαL− sinhαL)2
. (38)

The frequency dependent component of the elastic stiffness can be calculated
straightforwardly by differentiation of the Kel however the resulting expression
is unwieldy so we will write it out as an expansion in the case of αL ≈ 1,

Kanel = i
δEi

dE
αW

(
2.995− 9.00 (αL− 1) +O

(
(αL− 1)

2
))

. (39)

The surprising thing here is that the leading term is not unity for this case.
However this appears to be the result. Equation 39 indicates that the expansion
is not reliable for values of αL that differ too much from unity. Finally, in the
case that the L� α−1, we find that Kanel tends to zero. So in the case of point
mass load the damping term tends to zero at the length of the flexure increases.
This may seem unphysical as did the previous incorrect result for the case of
the pure applied torque when we used the incorrect form of the gravitational
potential energy. Clearly as the length of the flexure increases the energy stored
in the flexure due to a finite transverse displacement tends to zero. However any
finite load must have a finite moment of inertia and therefore there will always
be some damping due to the applied torque.

At this point the quality factor of the suspension could be calculated as a
ratio of the dissipated to stored energy for the different bending modes of the
flexure. This straighforward but is beyond the scope of of this paper. These
results agree with the paper of Cagnoli et al (2000)[1].
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Conclusions
This paper has attempted to clarify some results that were aimed at understand-
ing the quasi-static behaviour of flexure elements in their role as low-loss elastic
pivots for supporting beam-balances. I have repeated the previous calculations
that were published some 20 to 30 years ago and replaced them, with hindsight,
with more accurate results (that are now hopefully correct!). But note that the
correct calculation was previously published in an appendix in reference [10]. I
have also extended the work to cover the case where the object suspended from
the flexure has a negligible radius of gyration. This may be of use in under-
standing the damping of simple pendulum suspensions. The behaviour of the
predicted damping as a function of the length of the flexure now appears to be
physically reasonable in both cases.

It is worth pointing out that the above methods can be easily adapted to
inverted pendulums by switching the direction of gravity in the problem and
finding the solutions in terms of sine and cosine functions.
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