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Feasibility studies of a novel extrusion process for curved profiles: Experiments 

and modelling  

Abstract 

The work described in this paper concerns a novel method for directly forming curved 

profiles/sections from billets in one extrusion operation using two opposing punches. Its mechanics 

are based on internal differential material flow, and it has been given the acronym, differential 

velocity sideways extrusion (DVSE). A tool set enabling sideways extrusion to be performed using 

opposing punches moving with different velocities was used for a series of experiments in which 

punch velocity ratio and extrusion ratio were process parameters. Plasticine was used as a model 

work-piece material and a series of compression tests were undertaken, to determine its constitutive 

properties and gain an estimate of work-piece die friction for use in process simulation. Curvature 

of extrudate can be controlled and varied using a difference between the velocities of the two 

punches, defined by velocity ratio. Greater curvature is achieved with lower velocity ratio. 

Curvature is also dependent on extrusion ratio, an increase in which increases curvature, although 

curvature is less sensitive to it than to velocity ratio. The extent of work-piece flow velocity 

gradient across the die exit orifice, which causes curvature, has been identified. Severe plastic 

deformation of the extrudate occurs in a way similar to channel angular extrusion (CAE), thus a 

greatly promoted effective strain level is achieved, though it is not always uniform across a section. 

The inner bending region of an extrudate experiences maximum localised effective strain, which 

decreases with decrease in curvature. To the authors’ knowledge this is the first publication in 

which extrudate curvature is deliberately induced using opposing punches with differential 

velocities. Although only fixed velocity ratio values have been used in the work described in this 

paper the ability to change during operation exists and the process has the potential for the 

production of a profile with different curvature along its length.  

Keywords: Profiles/Sections; Bending; Curvature; Severe Plastic Deformation (SPD); Sideways 

Extrusion; Channel Angular Extrusion (CAE) 
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1. Introduction  

Aluminium alloy has a wide range of application for structural components in both aerospace and 

automotive industries, on account of its good combination of light weight and high strength.  

Reduced fuel consumption and therefore decreased CO2 emissions can be achieved by utilising 

lightweight aluminium components in aircraft, trains and cars. In industry, ultra-light structures of 

complicated design have been manufactured using extruded aluminium alloy profiles with various 

complex cross-sections, which possess high stiffness and strength. Since sculptured forms can 

readily be achieved with aluminium profiles using simple machining and welding, efficient 

lightweight, capacious aerodynamic transportation modules can be produced at low cost. [1-4]. 

Considering the high demand for reducing weight and aerodynamic resistance, as well as improving 

aesthetics, in high-speed transport systems, an ability to manufacture accurate, high strength, hollow 

sections, longitudinally curved, in large quantity at low cost is opportune. 

Since the beginning of the twentieth century, various forming techniques for curved profiles have 

been proposed. They mainly consist of known cold forming operations such as stretch bending, 

press bending, rotary draw bending and roll bending. Much research has been undertaken to refine 

these operations [5-10], however, intrinsic problems such as cross-sectional distortion and 

springback remain to be controlled using secondary operations and the tools are expensive, thus 

significantly increasing manufacturing cost and decreasing productivity. Some novel stress 

superposed cold bending techniques, i.e. torque superposed spatial (TSS) bending and superposed 

three-roll-bending with subsequent profile deflection, have been proposed to alleviate these 

deficiencies [11-15] and it has been shown that cross-sectional distortion and springback of curved 

profiles can be greatly reduced by superposition of torsion or compressive stress with external 

bending moment.  

Several novel extrusion-bending integrated methods for forming curved profiles have been 

developed, one is based on external bending apparatus to influence material flow at die exit orifice 

during the extrusion process. Curved profile extrusion (CPE) was proposed by Kleiner et al. [16,17] 

to reduce forming stages in the manufacture of curved profiles. During CPE the metal billets are 

formed into curved profiles using consecutive extrusion and bending stages, thus significantly 

improving manufacturing efficiency. A curved profile is obtained by installing a bending device 

(guiding tool) immediately behind the die exit (hold by the backup plate) which deflects the 

extrudate to the prescribed value of curvature, as illustrated in Fig. 1a. CPE was further developed 

by Muller et al. [18,19], who achieved curvature with a segmented regulating guiding device 

composed of serially placed bending discs at the die exit, as shown in Fig. 1b. The discs could be 
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adjusted prior to extrusion to give a specified curvature.  Another method for obtaining curvature is 

by introducing asymmetry in the metal flow, by tool design. Using this concept, Shiraishi et al. [20-

22] developed a novel extrusion-bending method for producing curved bars and tubes, in which a 

billet is extruded through a die orifice with its axis inclined towards the central axis of the container 

(see Fig. 1c). Experiments were carried out using plasticine as work-piece material and it was found 

that by adjusting the inclination angle of the die exit orifice, material flow velocity across the die 

exit orifice can be regulated to produce curvature of extruded bars and tubes. It was found that 

curvature increases with increase of inclination of the die and also is affected by extruded profile 

geometry. Dajda et al. [23] proposed using an eccentrically positioned mandrel and eccentric die 

orifice to extrude pipe bends and elbows. Curvature was achieved through the derived asymmetric 

flow field in the region of the orifice. Chen et al. [24] studied the influence of  extrusion ratio, and 

eccentricity ratio of holes on curvature of aluminium alloy 7075 profiles produced by multi-hole 

extrusion, in which a billet is extruded by a single punch through either a two-hole or three-hole die 

(see Fig. 1d). It was found that the eccentricity ratio of the die orifices is the most critical factor 

affecting curvature which increases with increasing eccentricity ratio.  

It is apparent that profile curvature extruded using the methods described above, has essentially a 

pre-set constant value. In this paper, a novel extrusion method termed, differential velocity 

sideways extrusion (DVSE), in which two punches are utilised, is proposed, to extrude billets 

directly into curved sections within one single operation. The novelty of this process exists in that a 

difference in velocity between the two punches is used to control curvature and that curvature can 

be changed by changing the ratio of punch velocities within a continuous operation. 

Sideways extrusion (also known variously as either; ‘lateral’, ‘radial’, ‘cross’ or ‘transverse’ 

extrusion), is a class of extrusion in which a billet is pressed in a cylindrical chamber by a punch or 

by two opposing punches, and contrary to the axial flow of conventional extrusion, flows radially 

(normal to the extrusion chamber) outwards through an aperture. Previous research has been 

undertaken in which the process has taken various forms [25-27]. The extrusion aperture is used to 

guide the extrudate to ensure it is straight and normal to the billet axis and it can be used for 

forming parts from either solid or hollow billets. Figure 2a shows three tooling configurations for 

extruding solid and hollow side arms from a solid billet [27]. This basic tooling design is commonly 

employed for producing straight solid/tubular components (rod, tube, cup) whose cross sections are 

decided by the die opening/orifice and the mandrel. Rudolf [28] proposed a development for 

forming asymmetric tubular parts using tubular billets and mandrels (see Fig. 2b). A lateral punch 

system is used to provide an additional horizontal tool axis acting as the mandrel. Wälder et al. [29] 

further developed Rudolf’s process for asymmetric cup parts using tubular billets (see Fig. 2b). The 
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cup was formed without an additional horizontal tool axis (mandrel), making it possible to lower the 

tool design's complexity and cost, however, roundness deviation and wall thickness deviation were 

found. Both authors concluded that the synchronous movement of the upper and lower halves of the 

closing die device is essential to achieve straight tube/cup.  

Injection forging, or radial forging, see Fig. 2c, (so called because the lateral feature is machined 

into the side of a container and is not developed by approaching top and bottom dies, as in 

conventional closed-die forging) is a near-net or net-shape completely closed-die, net-shape process   

for producing components with central bodies and lateral features. The features can be 

axisymmetric, such as for gears, splines, arms on CV joint spiders, inner races and flanges, or 

asymmetric such as for cams and levers. A single punch or two opposed punches moving co-axially 

inside a chamber force a work-piece to flow radially into an annular space which is normally closed 

[30-32]. Injection forging is referred as sideways extrusion by some researchers due to a similarity 

of flow fields [33-35], especially for a forging die cavity/land with an opening/orifice [35]. 

However strictly speaking they are different, since the lateral feature is fully constrained by a die in 

injection forging whereas it is unconstrained in extrusion. Largely to demonstrate the effect of 

container friction on die filling, previous tool designs for injection forging lateral features have 

included single punches, twin punches and fixed or moving containers [35,36]. Although the effect 

of direction of movement of the work-piece in the container has been recognised, little work to 

quantify the effect of punch velocity difference on solid parts forged in closed dies has been 

undertaken [35,37]. Alves et al. [35] studied the effect of the kinematics of the movable active tool 

components on the final geometry of injection forged components. The relative velocity between 

the movable upper punch and floating die was controlled with two different types of the spring 

closing elements having different spring constants, while the lower punch was fixed (see Fig. 2d). 

They found that using a double-acting tool with punches of equal speed, obviates bending defects 

occurring in a tool in which relative top and bottom punch velocities were different. Johnson et al. 

[37] gave a simple possible slip-line field for a closed die forging in double-sided compression 

under plane strain conditions (neglecting die lands), and concluded that for free sideways expulsion 

of solid forged parts into die lands the two slip-line fields must be of the same shape, irrespective of 

the relative velocities of the two punches. 

In much of the research work on injection forging described above, the effect of container friction 

on metal flow has been implicitly recognized and partially mitigated by the use of opposing 

punches and moving containers, but to the authors’ knowledge no work in which prescribed 

velocities of opposing punches to deliberately induce curvature in laterally extruded (as opposed to 
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forged) features has been published. Contrarily, tooling has always constrained metal flow to a 

radial path. Also, curved extrudates have been obtained in tooling containing single punches.  

The work described in this paper concerns a tool set and methodology, with the acronym DVSE, for 

producing controlled and possibly varied curvature, using a single container with opposing punches 

at each end and a lateral facing die orifice. A novel rig has been designed and manufactured to 

study the DVSE process. Experiments were conducted with plasticine, a commonly used model 

material for observing flow patterns in metal forming. Plasticine has been proved to be appropriate 

and widely used as physical model material for metal forming processes [38-41]. Being readily 

sectioned, it gives the opportunity to study material flow behaviour needed for tool design 

investigations. Effects of the extrusion velocity ratio of two opposing punches, and extrusion ratio 

(defined as the cross-sectional area ratio of the billet to that of the extruded profile), on the 

curvature of the formed profile were investigated in detail. A finite element programme has been 

used in parallel with experiments, to validate its accuracy and facilitate understanding of 

fundamental properties of the DVSE process. The findings are aimed to highlight the effect of 

forming parameters and procedures on the characteristics of extruded profiles.  

2. Differential velocity sideways extrusion (DVSE) 

2.1. Principle of DVSE 

Figure 3 shows a schematic of differential velocity sideways extrusion (DVSE), where the initial 

situation is shown in Fig. 3a, and an intermediate forming stage in Fig. 3b. The profile is extruded 

sideways out of the container and its exiting direction is perpendicular to the punch motion 

direction. The basic principle of this method is that profiles are extruded and bent simultaneously, 

due to the gradient of the internal material flow velocity over the die exit caused by the different  

relative moving velocities of the two extrusion punches. It is expected that by adjusting the 

extrusion velocity ratio of the two punches as well as the extrusion ratio, curved metal 

profiles/sections with adjustable arbitrary curvatures can be formed in one extrusion-bending 

procedure.  

2.2. Extrusion rig design 

Figure 4 shows the tool set designed and manufactured for undertaking differential velocity 

sideways extrusion (DVSE). Split extrusion dies and chambers were utilized in the present study to 

facilitate easy and quick removal of the extruded profiles, for examination of flow patterns, as 

shown in Fig. 4a. The chamber for the billet was 25.6mm in diameter and 150mm in height. A 

mandrel installed on the container wall opposite to the die exit orifice, was used for extruding 
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hollow sections. The dies were designed to extrude round billets into profiles with circular cross-

sections, thus the die exit orifice and mandrel were circular. The length of an extrusion die bearing 

land normally falls within 1~3mm for soft metal (Al, Cu etc.) and 2~4mm for carbon steel [42], 

here 2mm is used, which was chosen to ensure sufficient strength and small frictional effect on 

material flow. The extrusion dies were made of AISI type H13 hot work tool steel hardened and 

tempered to 50HRC. Dimensions of the tool are listed in Table 1.  

The extrusion tests were carried out on a 2500kN Instron universal hydraulic press, as shown in Fig. 

4b. The velocity of the upper punch can be directly controlled by the universal hydraulic press, 

however, except for the situation where the extrusion velocity of the lower punch was zero, a 

specially designed multi-motion loading device was needed to achieve synchronisation and 

different extrusion velocity ratios of the lower punch v2 to upper punch v1 (v2/v1=0~1). A special 

double-action/motion loading rig was designed and manufactured, using the principle of crossed 

levers. This enabled the ratio of the velocity of the lower punch, v2 to the velocity of the upper 

punch, v1, to be varied as; v2/v1=0, 1/3, 1/2, 2/3, 1. It was mainly composed of four drive rods and 

four levers. The drive rods were used to transfer the motion of the upper punch to the levers, which 

then transferred the motion to the lower punch through the drive rods at the other end of the levers. 

In this way the motions of the upper punch and the lower punch were synchronized. By positioning 

the four drive rods which connected the upper and lower punches at different relative locations on 

the levers, the velocity of the upper punch v1 can be transferred to the lower punch v2 at different 

ratios. An illustration of the kinematics of the double-action loading rig is given in Fig. 4c, where 

the following relationship existed; v2/v1= v2p/v1p=BC/AC=BB’/AA’. Both the upper and lower 

punches contained an adjustable front end in the perpendicular direction, which facilitated the 

alignment of the punch to the extrusion die chamber. The split extrusion die and double-action 

loading rig were assembled on a universal hydraulic press for DVSE tests.  

3. Experimental method and simulation   

3.1. Billet preparation  

The material used for this investigation was plasticine. To ensure a reasonable degree of 

homogeneity, it was repeatedly rolled and folded, to consolidate it and remove any inner voids. 

Cylindrical billets were formed, 25.4mm diameter and 130mm high. A corresponding circular 

through-hole was cut along a diameter at half of the height of the billet for extrusion of the hollow 

round tube. The diameter of the hole was the same as that of the mandrel used, as given in Table 1. 

The preformed plasticine cylinder billets were relaxed at room temperature for four days to avoid 

any further changes in flow stress prior to use in tests. To enable deformation flow patterns to be 
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studied, some billets were cut in two along a diametral plane and square grids of 4mm×4mm were 

scribed on one of the two matching halves. A marker pen with coloured ink was used to highlight 

the grids. Finer grids of 2mm×4mm were scribed on the outer edge of the billet to reveal details in 

dead zones. The two halves were gently pressed together to form a cylindrical billet again for 

extrusion. 

3.2. Work-piece/tool friction 

The friction factor in the hot extrusion of metal is normally between 0.2 and 0.4 when graphite-

based lubricants are used and between 0.7 and 1.0 without lubricant [43]. The friction factor in 

model tests and real process should be identical according to the similarity criteria [44]. Friction in 

metal forming is known to be a complex phenomenon, depending amongst other factors, 

temperature, pressure, surface spread, which vary throughout a process and no simple tests available 

to determine it. The compression ring test is the simplest means for obtaining a single value of 

friction and in spite of its limitations of little surface flow and modest surface pressure, it has been 

used widely by research workers.  In this work several ring compression tests were conducted to 

identity friction values, using lubricants Vaseline and soap powder [40]. Plasticine ring samples of 

36mm outside diameter, 18mm inside diameter and 12mm height (6:3:2) were prepared. Friction 

factors of 0.4 with soap powder and 0.1 with Vaseline were obtained, which were in accordance 

with the friction range identified from previous work [41]. It was also found that a thin layer of 

Vaseline covered with fine soap powder provided a friction factor of 0.3, which was closest to 

friction conditions, quoted for lubricated hot extrusion of metal. Therefore, this means of lubrication 

was selected for all the DVSE model tests. 

3.3. Uniaxial compression tests 

Uniaxial compression tests were conducted on plasticine specimens 30mm in high and 25mm 

diameter, to determine flow stress relations of plasticine. The compression tests were performed on 

a 250kN Instron universal testing machine. Vaseline was used as a lubricant and tests were carried 

out at strain rates of 0.01s-1, 0.05s-1 and 0.2s-1 and temperatures of 296K, 303K and 313K. A load 

cell was utilised to record the applied load, which was recorded at every 0.10mm travel of the cross-

head until the final height of the specimen decreased to 15mm. The Norton-Hoff power law 

viscoplastic model was used to describe flow stress as [45]: 

                                                                            ���, ��, �� = 	
�������                                                               (1) 

where T is absolute temperature, ε and ε� are the effective strain and strain rate, respectively.	�, n 

and m reflect the temperature sensitivity, strain sensitivity and strain rate sensitivity respectively. 
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The coefficients K, � , n and m of plasticine used in experiments were determined from the 

compression tests.  

Figure 5 shows the true stress-strain curves of plasticine at strain rates of 0.01-0.25 and 

temperatures of 296 K, 303 K, and 313 K. Multiple tests were conducted to obtain the average value 

of experimental data for all strain rates and temperatures, which were then fitted to Eq. (1) to obtain 

the temperature sensitivity, strain sensitivity and strain rate sensitivity of plasticine. Table 2 shows 

the fitted constants for the Norton-Hoff model, and comparisons between fitted curves (solid curves) 

and experimental data (hollow symbols) are illustrated in Fig. 5. It can be seen that the Norton-Hoff 

model fits experimental data well except for lower strain values (ε ≤ 0.15), therefore like many 

metals at elevated temperatures the plasticine used here is a strain-hardening (n=0.15) and strain-

rate-hardening (m=0.14) viscoplastic material, and the strain sensitivity (n) and strain rate 

sensitivity (m) values of plasticine are very close to those of aluminium and steels, whose strain rate 

sensitivity and strain-hardening values at elevated temperatures are in the range 0.10 ≤ � ≤ 0.25 

and 0.13 ≤ � ≤ 0.16 [46-49]. 

3.4. Extrusion procedure 

The experimental program undertaken is given in Table 1. The parameters varied during the 

experiment were the diameter D2 of the die exit orifice, diameter D3 of the mandrel, velocity v2 of 

the lower punch. The wall thickness of the round tube was t=(D2-D3)/2. The velocity of the upper 

punch was fixed at v1=1mm/s and velocity ratios v2/v1=0, 1/3, 1/2, 2/3, and 1 were obtained by 

different configurations of the double-action loading rig. Extrusion tests were carried out at room 

temperature, which was also the initial temperature of the billets and the extrusion tooling. At the 

start of each test the upper and lower punches were aligned and 10mm into the open top and bottom 

of the die chamber, which just contacted the top and bottom surfaces of the billet. At the end of 

each extrusion test, the split die was dismantled to remove the extruded profile.  

3.5. Finite element analysis 

A 3D finite element model was established using Deform-3D code. Figure 6 shows the FE model 

of billet and DVSE tooling composed of two punches, a container, an exit die, and for hollow 

profile extrusion, a mandrel. Since the tooling was assumed to be rigid and only the billet was 

deformable, thicknesses of punch and container wall were simplified to be 1mm. The various 

dimensions of the mandrel and billet are the same as those used in experiments. Physical properties 

of billet and extrusion tooling materials are listed in Table 3. The similarity of flow behaviour 

between plasticine at room temperature and metal (steel, aluminium alloys) at elevated temperature 
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are discussed in Section 4.1. The flow stress data of AA6082 was imported into Deform-3D 

simulation using Zener-Hollomon model modified by Sheppard and Jackson as follows [50]: 

																																																											����, �� = 1
� sinh�" #

��
$ 
%& '

(
)�*+

"/�
	 																																														�2� 

where A and � are constants, n is stress exponent, Q is the activation energy, R is the universal gas 

constant and T is the temperature (K). Table 4 shows the values of the material constants used in 

Zener-Hollomon model for AA6082 [46]. The initial temperature of both billet and die was 480oC, 

and the surrounding environment temperature of the die was set as 300°C to reduce excessive heat 

loss caused by the simplified extrusion tooling [51]. The velocity of the upper punch was fixed at 

v1=1mm/s, and velocity ratios v2/v1=0, 1/3, 1/2, 2/3, and 1 were simulated by varying the velocity of 

the lower punch as; v2=0, 0.33, 0.5, 0.67, and 1mm/s. To decrease simulation time from the initial 

state to the steady state, the diameter of the billet was considered to be exactly the same as the inner 

diameter of the extrusion container, and thus no upsetting took place before the billet was extruded. 

Only a half portion of work-piece and tool was modelled using the advantage of its symmetry.  

Both the extrusion tooling and billet in the FE model were meshed with tetrahedral elements. The 

absolute mesh density was used as the general meshing method, where the minimum size of an 

element was set as 0.5 mm and the size ratio was 2. A mesh window with an increased element 

density was applied to the aluminium billet around the mandrel and the die exit orifice to generate 

localised finer elements. The element size in this mesh window was set as 0.3 mm. A small relative 

interference depth of 0.3 was used to trigger the automatic remeshing procedure during the 

simulation process when the penetration depth between the element edges exceeded 30% of their 

original edge lengths. Friction at the billet-tooling interfaces was considered to be of shear type. 

The Shear friction model used was: 

                                                                                                - = ��/√3                                                                    (3) 

where - is the frictional shear stress, m (0 ≤ � ≤ 1) is the friction factor and � is the effective flow 

stress of the billet. In the present study, to ensure the similarity of flow behaviour between 

plasticine and hot metal, the same friction factor m=0.3 as the physical experiment was used in 

simulation.  

4. Results and discussion 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 
 

4.1. Extrusion of bar and tube 

Profiles of round bars extruded with the same extrusion ratio (λ=1.61) and different extrusion 

velocity ratios of the lower punch v2 to upper punch v1 (v2/v1=0, 1/3, 1/2) are shown in Fig. 7. 

Figure 8 contains profiles of tubes of circular ring section extruded with different thicknesses 

(t=2mm, 4mm, i.e. λ=6.20, 3.67) and extrusion velocity ratios (v2/v1=1/3, 1/2). The computed 

results from FEM are also illustrated for comparison. Two dashed concentric circles are overlaid on 

each of experimental and FEM result image to demonstrate the degree of circularity of the profiles, 

the diameters of the superposed circles are shown as well.  

It can be seen from Figs. 7-8 that FEM results agree well with the experimental results, thereby 

validating the numerical simulation results. The trial experiments using aluminium were carried out 

and shown in Fig. 9. The test condition was the same as that used in FEM, except that commercially 

pure aluminium AA1050 was used for trials. All extruded profiles are smoothly curved and circular 

and no defects in the cross-sections were detected, though each extrudate has a different curvature. 

The results suggest that the present extrusion process, differential velocity sideways extrusion 

(DVSE), is indeed feasible to directly form billets into curved solid and hollow profiles by one 

single extrusion-bending procedure, and degree of the curvature can be varied by changing both 

extrusion velocity ratio and extrusion ratio. Since it is a natural bending process based on internal 

differential material flow rather than external bending force, defects such as distortion and thinning 

of the cross-section are avoided and bending equipment, such as that used in conventional forming 

processes, is obviated.  

4.2. Profile curvature 

Relationships between the extrudate curvature, extrusion velocity ratio and extrusion ratio, for both 

round bars and tubes are illustrated in Fig. 10. The values of the curvature, plotted in the figures, 

were measured by fitting the experimental and simulation results to best-fit circles as shown in Figs. 

7-8. Curvature is expressed as the inverse of the radius Rc. It can be seen from Fig. 10 that extrusion 

ratio and velocity ratio v2/v1 both affect curvature. However, the effect of velocity ratio v2/v1 is more 

pronounced than that of the extrusion ratio. The effect of extrusion ratio is small when velocity ratio 

v2/v1 is greater than 0.5, below this value the effect of extrusion ratio increases as velocity ratio v2/v1 

decreases. The curvature of bar and tube is reduced as the diameter D2 of the die exit orifice 

increases, moreover for the same D2 the curvature of the tube is reduced with increase of wall 

thickness of the tube, that is, lower extrusion ratio results in smaller curvature of both bars and 

tubes. Lower velocity ratio leads to greater curvature, and when velocity ratio v2/v1 is less than 

about 0.33, curvature of tubes increases significantly with reducing velocity ratio, while curvature 
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of bars varies relatively slowly with variation of extrusion velocity ratio. The maximum curvature 

of round bar of D2=15mm (λ=2.87) at velocity ratio v2/v1=0 is 0.0288mm-1, and the maximum 

curvatures of round tubes of thickness 2mm (D2=15mm) and 2.5mm (D2=20mm)  at velocity ratio 

v2/v1=0 are 0.1mm-1 and. 0.095mm-1, respectively.  

Flow lines at the die orifice provide some understanding of the influence of the extrusion 

parameters on extrudate curvature and a comparison of velocity distribution for different extrusion 

ratios and velocity ratios, is shown in Fig. 11. The velocity ratio for Figs. 11a-b, is v2/v1=0. As 

shown in Fig. 11a, with extrusion ratio λ=2.87, velocity is higher at the upper orifice edge closer to 

the faster moving upper punch at 4.0 mm/s (line H)  and decreases to 2.2 mm/s (line A)  towards the 

lower orifice edge. At a lower extrusion ratio λ=1.61, as shown in Fig. 11b,  velocity at the upper 

orifice edge is lower at 2.6 mm/s (line H) and decreases to 1.22 mm/s (line A) at the lower edge. 

Therefore, greater extrusion ratio leads to an increased velocity gradient at the orifice and thus 

greater curvature. It should be noted that the average material flow velocity at the orifice for the 

case of λ=2.87 is also greater than that for λ=1.61, due to the decrease of cross-sectional area of the 

orifice. The extrusion ratio in Figs. 11b-d, is the same and is λ=1.61. It can be seen that the velocity 

gradient decreases as v2/v1 increases, thus leading to a decreased bending curvature of the extrudate. 

When v2/v1=1, this velocity gradient becomes quite small and negligible considering the existence 

of numerical calculation error, as can be seen in Fig. 11d a straight profile is formed. It should be 

pointed out that the average material flow velocity at the die exit orifice increases as v2/v1 increases, 

due to the increase of the sum of extrusion velocities v2 and v1, though v1 is fixed at 1mm/s. 

4.3. Plastic deformation characteristics  

Figure 12 shows grid distortions on extruded plasticine bars and simulated velocities, highlighting 

the dead zone are shown in Fig. 13. Here a velocity of 0.05 mm/s is used to define the upper flow 

limit of material in dead zone. As shown in these figures, a dead zone of roughly triangular shape, 

exists on the chamber wall opposite the die exit orifice. The dead zone extends as velocity ratio 

reduces and extends completely across the chamber when it is zero. In this situation, the tip of the 

triangle coincides with the die exit orifice and the volume of the workpiece between the slower 

punch and the orifice does not deform. To quantitatively study the effect of velocity ratio and 

extrusion ratio on dead zone, a dividing line passing through the vertex of the triangular dead zone 

is drawn in Fig. 12, which divides the deformation zone and die exit channel into two parts, namely 

e and D2-e, the material flowing into these two parts to compose the extrudate comes from the 

corresponding two extrusion punches. Further, the eccentricity ratio 
̂	is employed to define the 

degree of deviation between the dividing line and the central line of die exit channel as follows: 
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̂ = 
/01                                                                (4) 

where 
  is the distance between the dividing line and the boundary extension line of the exit 

channel closer to the faster punch, 01  is the diameter of the exit channel,  0.5 ≤ 
̂ < 1   is a 

normalised dimensionless variable. The obtained	
 and 
̂	are shown in Figs. 14a-b, respectively. It 

can be seen that a good agreement is achieved between experimental and FEM results. Lower 

velocity ratio v2/v1 and greater extrusion ratio λ lead to a greater eccentricity ratio 
̂	of the dividing 

line. As v2/v1 decreases, the dividing line moves towards the side which has a lower extrusion 

velocity (v2), and when v2/v1=1 the dividing line is exactly in the centre of the die exit. The 

difference of 
̂ for λ=2.87 and λ=1.61 increases as the decrease of v2/v1, especially when v2/v1 < 0.5. 

This accords with the results in Fig. 10 that the effect of extrusion ratio on the extrudate curvature is 

small when velocity ratio v2/v1 is greater than 0.5, below this value the effect of extrusion ratio 

increases as velocity ratio decreases. 

The distortion of the grid in Fig. 12 also indicates that asymmetrical material flow occurs near the 

die exit. The effective strain contour is illustrated in Fig. 15, which is in good agreement with the 

extent of grid distortion. The curved profile has experienced high effective strain levels which 

increase with extrusion ratio. This is similar to the severe plastic deformation (SPD) arising in equal 

or non-equal channel angular extrusion (ECAE or NECAE) processes. The strains arising in DVSE 

extrudates are not uniform across their sections, especially when the curvature is greater. The 

highest value of strain occurs in a thin inside region of the curved profile. As discussed before, the 

extrudate material comprises that provided by the two punches, the relative amounts being in 

proportion to their velocities. A greater effective extrusion ratio exists in the region (D2-e) which is 

bounded by an extended dead zone dividing line nearer to the orifice edge and this is where strains 

will be greater. With lower velocity ratio v2/v1 and greater extrusion ratio, i.e. greater curvature, the 

eccentricity ratio increases while this thin region (D2-e) narrows, leading to more severe plastic 

deformation for the inside bending region of the profile closer to the slower punch and less plastic 

deformation for the outside bending region closer to the faster punch. When v2/v1=1, the 

eccentricity ratio is 0.5 and the plastic deformation over the cross-section becomes symmetric, the 

effective strain distribution becomes reasonably homogeneous. It has been proven that a single pass 

of ECAE of aluminium alloy can refine grain structure and increase mechanical properties 

significantly, further ECAE processing only results in slight improvement, and reasonably 

homogeneous microstructure can be achieved as well after a single extrusion [52,53].  

To compare with experimental results quantitatively, the effective strain is also calculated from Fig. 

12. For a NECAE die without rounding of the corners at the intersection of the 

channels, the simple shear model gives the value of shear strain in one pass as [54]: 
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                                                              3 = cot � + cot �                                                                (5) 

where � and � are the angles of the intersection plane with the entry and exit channels, respectively. 

For a 90 degree NECAE die, the value of equivalent strain can be calculated from Eq. (5) as: 

                                                      � = 3/√3 = �8/9 + 9/8�/√3                                                   (6) 

where 8 and 9 are diameters of the entry channel and the exit channel, respectively. Here, 8 =
0" = 25.6mm	is the same for all velocity ratios and extrusion ratios, however, as discussed before 

the die exit can be divided into two parts, which change with the variation of velocity ratio v2/v1 for 

a given extrusion ratio λ. Only the effective strain of outside bending part of the profile is calculated 

here, thus e shown in Fig. 14a is taken as w in Eq. (6). The comparison of calculated effective strain 

from experiment by using Eq. (6) and FEM is shown in Fig. 16. Since bending occurs with shear 

deformation, to minimise the effect of bending on element deformation, only the effective stain in 

the neutral plane (~1/2 e) of the outside bending part of the profile is extracted from FEM. The 

areas above and below the neutral plane have almost equal effective strains which are greater than 

that of the neutral plane, as shown in Fig. 15. It can be seen that the effective strain obtained from 

FEM is slightly greater than that of experiment, though the bending curvature obtained from FEM is 

slightly lower than that of experimental results. This may be due to the fact that Eq. (6) is 

essentially obtained from the simple shear model where only shear strain is considered during the 

deformation zone of ECAE or NECAE, also it is actually more applicable to the plane strain case 

where the width of the billet is not considered, however the DVSE is a three dimensional extrusion 

process where the width of the profile and the billet is not equal here, and bending is accompanied 

with extrusion as well. As can be seen in Fig. 16, the difference between experimental and FEM 

results decreases as the decrease of extrusion ratio and the increase of velocity ratio v2/v1, namely as 

the decrease of the extrudate curvature.  

5. Conclusions 

A novel method of forming controlled curved profiles/sections, differential velocity sideways 

extrusion (DVSE), has been proposed and verified through physical experiment and numerical 

modelling. The method essentially is sideways extrusion from a cylindrical container using 

opposing punches. The relative movement of slower to faster punch is defined by extrusion velocity 

ratio v2/v1 (0~1). It was found that DVSE can directly form billets into curved profiles without 

defects in the cross-sections by a combined extrusion-bending operation. Curvature of extrudates 

can be adjusted by varying the extrusion velocity ratio of the two extrusion punches as well as the 

extrusion ratio. Lower velocity ratio and greater extrusion ratio tend to increase the material flow 

velocity gradient at the die exit orifice and result in greater curvature. The effect of extrusion ratio is 
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less remarkable compared with extrusion velocity ratio, which also decreases as the extrusion 

velocity ratio increases. A curved extrudate has resulted in an enhanced effective strain level which 

increases as the increase of the extrusion ratio, as severe plastic deformation (SPD) arises, though it 

is not always uniform. For a given extrusion ratio, the maximum value of localised effective strain 

occurs near the inner bending region of the profile, and decreases with the decrease in curvature, 

namely increase of the velocity ratio, while the effective strain of its outside bending region 

increases as the curvature decreases. 
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Figures and Tables  

 
Table 1  Dimensions of the DVSE tooling, specific extrusion process parameters 

 D2 

(mm) 
D3 

(mm) 
t 

(mm) 
λ 

Round bar 20 - - 1.61 
15 - - 2.87 

Round Tube 15 7 4 3.67 
15 9 3 4.48 
15 11 2 6.20 
20 11 4.5 2.31 
20 13 3.5 2.79 
20 15 2.5 3.69 

(D2: diameter of the die exit orifice; D3: diameter of the mandrel; t: extrudate thickness; λ: extrusion ratio) 
 

Table 2  Norton-Hoff coefficients for the flow stress of plasticine. 

K (108 N/mm2) 
β n m 

1.8 0.07 0.15 0.14 
 

Table 3  Thermal properties of the billet and extrusion tooling. 

Property AA6082 H13 tool steel 
Heat capacity(N/(mm2·oC)) 2.43328 2.8 at 93 oC 

3.2 at 315 oC 
4.5 at 538 oC 

Thermal conductivity (N/(s·oC)) 180.195 24 
Heat transfer coefficient between tooling and 

billet (N/(mm·s·oC)) 
11 11 

Heat transfer coefficient between tooling/billet 
and air (N/(mm·s·oC)) 

0.02 0.02 

Emissivity  0.7 0.7 
 

Table 4  Material constants for AA6082. 

1/α (N/mm2) Q (105 J/mol) R (J/(K·mol) A (108/s) n 
22.2 1.53 8.314 2.39 2.976 
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(a) Curved profile extrusion (CPE) [17] (b) Curved profile extrusion (CPE) [19] 

 

 

(c) Inclined die orifice extrusion [20] (d) Multi-hole extrusion [24] 

 

 

 

 

Fig. 1. Illustration of process principles of extrusion-bending integrated methods which are based 
on external bending apparatus [17,19] and extrusion tooling designs [20,24] to influence material 

flow.                                       
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(a) Radial extrusion [27] (b) Radial extrusion [28,29] 

 
 

(c) Radial forging [34] (d)   Radial forging [35] 

 

 

 

Fig. 2. Illustrations of the radial extrusion [27-29] and radial forging [34,35] processes: I-prior to 
extrusion/forging; II-after extrusion/forging; a-punch; b-container; c-workpiece; d-spring; e-
counterpunch; f-mandrel. 
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Fig. 3. Schematic illustration of differential velocity sideways extrusion (DVSE): (a) initial stage, (b) 

intermediate stage. 
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(a) 

  

                                (b)                                                                                          (c) 

Fig. 4. (a) Designed and manufactured split extrusion die, (b) extrusion die and double-action 
loading rig assembled and centralized on the 2500kN Instron universal hydraulic press, (c) 
illustration of the kinematics of the double-action loading rig. 
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Fig. 5. (a) Plasticine samples; Comparison of experimental (hollow symbols) and Norton–Hoff 
fitted (solid curves) true stress-strain curves of plasticine at strain rates of 0.01-0.25s-1 and 
temperatures of (b) 296 K, (c) 303 K, and (d) 313 K. 
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Fig. 6. FE model of DVSE fabricating curved round tubes. 
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v2/v1 λ=1.61 

0 

 

 
 

 

1/3 

 

 

1/2 
 

                                  (a)  Experiment                                                    (b)   FEM 

Fig. 7. Comparison between (a) experimental and (b) FEM results for bars extruded at extrusion 
ratio λ=1.61 and extrusion velocity ratios v2/v1=0, 1/3, 1/2. 
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v2/v1 (i) t=2mm, λ=6.20 
1/3 

 

 

  

1/2 

 

 

v2/v1 (ii) t=4mm, λ=3.67 

1/3 

 

  

1/2 
 
 

                                    (a)  Experiment                                                      (b)   FEM 

Fig. 8. Comparison between (a) experimental and (b) FEM results for tubes extruded at extrusion 
velocity ratios v2/v1=1/3, 1/2, extrusion ratios λ=6.20 (thickness 2mm) and λ=3.67 (thickness 4mm). 
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Fig. 9. Trial tests using commercial pure aluminium AA1050 

  

v2/v1=0, λ=2.87 v2/v1=0, λ=1.61 v2/v1=1/3, λ=1.61 
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(a) Solid bars 

 

 

 

 

 

 

 
(b) Tubes with outside diameter D2=15mm 

 
 
 
 
 
 
 
 
 
 
 

       (c) Tubes with outside diameter D2=20mm 

Fig. 10. Comparison of curvature variations for the results obtained from experiment (hollow 
symbols) and FEM (solid curves).  
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(a) λ=2.87, v2/v1=0 (b) λ=1.61, v2/v1=0 
  
 

  

 

 (c) λ=1.61, v2/v1=0.33 (d) λ=1.61, v2/v1=1 

  
 

 

 

 

Fig. 11. Material flow velocity distribution of extruded bars at the die exit orifice. 
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v2/v1 (a) λ=2.87 (b) λ=1.61 
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Fig. 12. Distorted grids on extruded bars. 
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(a) λ=2.87, v2/v1=0 (b) λ=1.61, v2/v1=0 
  

  

 
 

(c) λ=1.61, v2/v1=0.33 

(d) λ=1.61, v2/v1=1    

 

 

 

 

 

  

 

Fig. 13. Simulations showing dead zones in extruded bars. 
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(a) e 

 

   

(b) Eccentricity ratio 
̂ = 
/01 

Fig. 14. Variations of (a) e and (b) eccentricity ratio 
̂ = 
/01 (experiment-hollow symbols, FEM-
solid curves) with different extrusion velocity ratios and extrusion ratios.  
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(a) λ=2.87, v2/v1=0 (b) λ=1.61, v2/v1=0 
  

  

 

(c) λ=1.61, v2/v1=0.33 (d) λ=1.61, v2/v1=1 

  
 

 

 

Fig. 15. Effective strain contours of extruded bars with different extrusion velocity ratios and 
extrusion ratios. 
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Fig. 16. Comparison of effective strain of the outside bending region of the profile obtained from 
experiment (hollow symbols and dash curves) and FEM (solid symbols and solid curves).  
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Highlights 

 

•A novel process, differential velocity sideways extrusion (DVSE), for 

manufacturing curved profiles was studied by a designed tool set. 

 

•DVSE can efficiently form billets into curved profiles without defects in 

one procedure. 

 

•Curvatures can be actively controlled by the velocity ratio of extrusion 

punches and the extrusion ratio.  

 

•Severe plastic deformation occurs in DVSE and profiles have greatly 

promoted effective strain levels. 

 


