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AUTHOR SUMMARY 19 

All Gram negative species of bacteria, including those that cause significant disease, release 20 

small vesicles from their cell membrane. These vesicles deliver toxins and other virulence factors 21 

to host cells during infection. Current methods for studying host cell entry are limited due to the 22 

nanometer size and rapid uptake kinetics of vesicles. Here we developed a method to monitor the 23 

rapid vesicle entry into host cells in real-time. This method highlighted differences in kinetics 24 

and entry route of vesicles into host cells, which varied with the bacterial cell wall composition 25 

and thus, the vesicle surface. Increased understanding of vesicular entry mechanisms could 26 

identify targets which may allow us to combat infections by inhibiting delivery of vesicle-27 

associated toxins to host cells. 28 

  29 
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ABSTRACT  30 

Outer membrane vesicles are nano-sized microvesicles shed from the outer membrane of Gram-31 

negative bacteria and play important roles in immune priming and disease pathogenesis. 32 

However, our current mechanistic understanding of vesicle - host cell interactions is limited by a 33 

lack of methods to study the rapid kinetics of vesicle entry and cargo delivery to host cells. Here, 34 

we describe a highly sensitive method to study the kinetics of vesicle entry into host cells in real-35 

time using a genetically encoded, vesicle-targeted probe. We found that the route of vesicular 36 

uptake, and thus entry kinetics and efficiency, are shaped by bacterial cell wall composition. The 37 

presence of lipopolysaccharide O antigen enables vesicles to bypass clathrin-mediated 38 

endocytosis, which enhances both their entry rate and efficiency into host cells. Collectively, our 39 

findings highlight the composition of the bacterial cell wall as a major determinant of secretion-40 

independent delivery of virulence factors during Gram-negative infections. 41 

  42 
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INTRODUCTION 43 

Outer membrane vesicles (OMVs) are nano-sized proteoliposomes released from the bacterial 44 

cell envelope [1]. OMV release is a highly conserved process, occurring in all growth phases and 45 

environmental conditions [2]. OMVs contain and deliver a broad range of cargos, from large 46 

hydrophobic molecules to DNA, making them a versatile and generalised form of secretion that 47 

enhances bacterial fitness in hostile environments [3-6]. They also contribute significantly to 48 

pathogenesis, via the delivery of virulence factors such as toxins, adhesins and 49 

immunomodulatory compounds directly into the host cell [7-9]. In a mouse model, purified 50 

OMVs from Escherichia coli were sufficient to cause lethal sepsis in the absence of intact 51 

bacterial cells, indicating their potency in enhancing infection and inflammatory processes [10]. 52 

The immunogenicity and ubiquitous production of OMVs has also led to their clinical use in 53 

vaccine preparations [11], representing an application for OMVs in generating immunity against 54 

bacterial infections without the risks associated with live cell vaccines. Whilst many virulence 55 

factors are known to be OMV cargos, the processes underlying their delivery to host cells during 56 

infection are not well characterized. Understanding these mechanisms could help to identify 57 

targets for inhibition of OMV-associated toxin delivery and lead to attenuation of bacterial 58 

infections, as well as helping to achieve their therapeutic potential in medicine, via vaccines and 59 

engineered delivery vehicles [12-14]. 60 

     Release of OMVs occurs during infection, and has advantages over other secretion 61 

systems. They can carry a broad range of cargos, from protein toxins to hydrophobic small 62 

molecules such as the Pseudomonas aeruginosa quorum sensing molecule quinolone signal 63 
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(PQS), and vesicular cargos are protected from environmental insults [15, 16]. In addition, 64 

OMV-mediated delivery of virulence factors can function over longer distances than contact-65 

dependent secretory pathways [17]. While much is known about the cargos contained within 66 

OMVs, the small size of OMVs (20-200 nm) and rapid kinetics of entry (cargo-specific effects 67 

can often be detected within minutes) have made studying their interactions with host cells 68 

difficult. Previous work has often relied on OMVs labelled with dyes, non-discriminate probes 69 

that modify vesicular contents during labeling. While such probes allow real-time analysis of 70 

OMV entry and cargo delivery, their potential to modify vesicle components may interfere with 71 

the vesicle’s physicochemical characteristics, and alter the mechanism of OMV recognition, 72 

entry and cargo release [18-20]. Other approaches rely on immunolabelling of OMV-associated 73 

epitopes, but this often requires fixation of cells at pre-determined time points, and makes 74 

assumptions about OMV cargo, which may ignore natural sub-populations of OMVs [21]. Some 75 

experiments have used specific changes in host cell phenotypes in response to OMV contained 76 

toxins as an indicator of OMV uptake [4]. However, such changes in host cell responses have 77 

distinct dynamics from the OMV entry event, and allow only indirect conclusions about entry 78 

kinetics [22]. These challenges have often lead to discrepancies in observations of OMV entry 79 

and cargo delivery [14], demonstrating the need for an assay that can detect OMV entry 80 

processes in a consistent and repeatable manner. In this paper we describe a novel assay to 81 

continuously measure OMV entry and cargo release to host cells with high sensitivity, and in a 82 

format that is adaptable for high throughput screening. Using this assay to study entry of OMVs 83 

from different E. coli serotypes and pathovars into host cells, we identified key bacterial and host 84 
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factors that determine the route of entry, and thereby kinetics and efficiency of vesicular cargo 85 

delivery and trafficking. 86 

RESULTS 87 

A highly sensitive, kinetic assay for monitoring OMV entry into host cells. We set out to 88 

develop a highly sensitive and dynamic assay that would allow us to monitor the kinetics of 89 

OMV entry into host cells. We used a genetically encoded hybrid reporter probe that is 90 

incorporated into the bacterial outer membrane and subsequently targeted to the OMV surface. 91 

ClyA, a cytolysin that is sorted into OMVs produced by pathogenic E. coli, acts as the targeting 92 

component, and is fused to the TEM domain of β-lactamase (Bla), which acts as an 93 

enzymatically active probe (Figure 1A), and prevents assembly of the toxin into its biologically 94 

active oligomeric conformation [12]. Host cells were incubated with CCF2-AM, a dye composed 95 

of a covalently linked coumarin and fluorescein molecule, resulting in FRET and green 96 

fluorescence emission, specifically in the eukaryotic cytoplasm where it is processed by 97 

esterases. Esterification decreases the hydrophobicity of the FRET probe, thus decreasing its 98 

membrane permeability and trapping the probe in the host cell cytoplasm. When OMVs isolated 99 

from the producing bacterial strain enter host cells, their Bla cargo is able to cleave CCF2-AM, 100 

abolishing FRET and resulting in a shift in emission from green (530 nm) to blue (460 nm) 101 

fluorescence (Figure 1A).  We monitored the FRET kinetics upon incubation of OMVs with host 102 

cells, and analyzed efficiency of OMV uptake by host cells ([Em460/Em530]t=0hrs)/ 103 

[Em460/Em530]t=3hrs). We further analyzed data by fitting to a cubic spline function and 104 

estimating gradients to extract maximal rate of entry (rmax) and rate over time (see SI Materials 105 
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and Methods). Experimental traces were limited to three hours, since beyond this time point the 106 

FRET signal decayed, likely due to degradation of the substrate within the host cell cytoplasm.  107 

Figure 1. Genetically encoded Bla probes are enriched in E. coli OMVs and retain their enzymatic activity. 108 

(A) Expression of genetically encoded Bla probes is induced in bacteria and secreted OMVs are isolated for all 109 

subsequent experiments. Entry of OMVs containing Bla probes into host cells can be detected using a continuous 110 

FRET assay. (B) Whole cell lysate (WCL), supernatant (sup) and outer membrane vesicles (OMV) fractions isolated 111 

from EHEC expressing ClyA-Bla, carrying empty vector, or no vector were separated by SDS-PAGE and 112 

expression of ClyA-Bla was detected by Western Blotting and probing with α-Bla antibody. (C) Specific enzyme 113 

activity in whole cell lysate, supernatant, OMV or solubilized OMV fractions isolated from EHEC expressing ClyA-114 

Bla, Bla-ClyA, or carrying empty vector (data shown are means ± stdev, n=3). 115 

 116 

Genetically encoded Bla probes are targeted to E. coli OMVs and retain their enzymatic 117 

activity. First, we set out to verify whether ClyA-Bla fusion constructs retained ClyA’s ability to 118 

partition into vesicles, and were indeed targeted to E. coli OMVs. Following induction of probe 119 

production, OMVs were isolated from enterohemorrhagic E. coli (EHEC) containing empty 120 

vector, or expressing either ClyA-Bla (C-terminal fusion, enzyme exposed on the OMV surface) 121 

or Bla-ClyA (N-terminal fusion, enzyme facing the OMV lumen) enzymatic probes. Probe 122 

expression did not significantly change cross OMV morphology (Figure S1A ) or charge (mean 123 

ζ-potential -6.7 ± 3.6 mV, Figure S1C), but did cause a slight but significant increase in OMV 124 

size distribution (~ 20% increase in median diameter; Figure S1B). Probe expression did not 125 

appear to result in cell envelope stress, as the amount of OMVs released per cell did not change 126 

significantly compared to the untransformed strains (approximately 41 vs 39 vesicles/cell). 127 

Sizing data (mean diameter 134 nm, range 10-400 nm across all OMV preparations) were in 128 
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accordance with previously published data for E. coli OMVs [12]. Intact ClyA-Bla fusion protein 129 

was detected in samples from EHEC whole cell lysate, supernatant and OMV fractions (Figure 130 

1B), suggesting that the fusion protein was targeted to and enriched in OMVs, as previously 131 

reported for non-pathogenic E. coli [12]. The ClyA-Bla probe was oriented with Bla facing the 132 

exterior of the OMV, as the protein was gradually degraded during treatment of ClyA-Bla OMVs 133 

with papain protease, while the probe remained intact in OMVs containing Bla-ClyA, where Bla 134 

faces the vesicle lumen (Figure S1D). The specific enzymatic activity was ~ 3-fold higher for 135 

ClyA-Bla OMVs than for Bla-ClyA OMVs with similar activities in whole cell lysates, and both 136 

activities were equalized by lysis of vesicles and probe solubilization, suggesting efficient 137 

expression of active β-lactamase with the anticipated orientation (inward facing for Bla-ClyA, 138 

outward facing for ClyA-Bla) in isolated OMVs (Figure 1C). Average OMV concentration was 5 139 

x 10
12

 particles per ml, and particle concentrations of all samples were normalized to give a 140 

consistent OMV concentration for subsequent experiments.  141 

 142 

OMV-targeted Bla probes report on rapid vesicle uptake and dismantling by host cells. 143 

Having verified the correct targeting, orientation and enzymatic activities of the Bla probes, we 144 

used them to dissect OMV entry (i.e., exposure of ClyA-Bla to cytoplasmic dye) and release of 145 

OMV luminal contents (i.e., exposure of Bla-ClyA to cytoplasmic dye) into epithelial cells. We 146 

used both Hela (cervical epithelial) and RKO (intestinal epithelial) cells loaded with CCF2-AM 147 

dye and exposed to OMVs at an MOI of 1000 OMVs/cell. OMV yield was approximately 27 ± 148 

13 OMVs/bacterial cell for the different pathovars used, so this corresponds to a bacterial MOI 149 

of approximately 37 bacteria/cell, a dose commonly used in infection assays, or approximately 150 
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10 µg/ml OMV protein (published assays use between 5-200 µg/ml OMV protein). EHEC ClyA-151 

Bla OMVs caused a rapid increase in blue/green fluorescence over the course of a 3 hour 152 

experiment. OMVs lacking probe did not cause a significant change in FRET signal. (Figure 2A-153 

C). While the rate of cargo release remains stable throughout the experiment (Figure S2B), the 154 

rate of entry is initially high but gradually decreases and approaches the rate of cargo release 155 

(Figure S2A). OMV entry kinetics are similar in intestinal epithelial (RKO) cells (Figure S3). 156 

Results of these kinetic analyses were visually confirmed by capturing FRET of samples at the 157 

onset and endpoint of the experiment (Figure 2D). The rapid kinetics inferred from the FRET 158 

traces also correlated with rapid internalization and re-distribution of OMV lipid inside host 159 

cells, with a significant portion of OMV material localized to an intracellular, tubular structure 160 

surrounding the nucleus, likely the ER, even after 10 minutes, the fastest we could feasibly 161 

prepare samples for imaging (Figure 2E).  These results suggest that our approach is capable of 162 

capturing the rapid internalization and dismantling of OMVs, which proceeds too fast to 163 

adequately capture by imaging. As the rate limiting step for cargo release appears to be OMV 164 

entry, we further focused on analyzing potential determinants of the entry process. 165 

 166 

Figure 2. Reporter OMVs capture rapid kinetics of vesicle uptake by host cells in real time. (A) CCF2-AM 167 

loaded Hela cells were exposed to OMVs from EHEC carrying ClyA-Bla (red), or vector control (grey) at an MOI 168 

of 1000 for 3 hours. Ratio of blue:green fluorescence) over time was plotted as mean ± stdev (n=3). (B) Rmax was 169 

determined from data in S2A to visualize speed of uptake and is shown are means ± stdev (n=3). Significance was 170 

determined by analysis of variance, with a Brown Forsythe test to determine equal variance. (**) p≤0.01. (C) 171 

Absolute FRET changes after 3 h were determined from data in (A) and plotted as efficiency of OMV uptake. Data 172 

shown are means ± stdev (n=3). Significance was determined by ANOVA, with a Brown Forsythe test to determine 173 
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equal variance. (**) p≤0.01. (D) CCF2-AM loaded Hela cells were imaged by confocal microscopy and merged 174 

blue/green images representative of 15 images (n=3) are shown. Scale bars, 20 µm. (E) Hela cells incubated with 175 

cellmask orange-labelled OMVs (red) for 10 and 60 min and slice views of z-stacks were acquired by confocal 176 

microscopy. Scale bars, 10 µm; 177 

 178 

EHEC OMVs enter host cells more rapidly and efficiently than OMVs from non-179 

pathogenic E. coli. Next, we compared the uptake kinetics of OMVs isolated from EHEC and 180 

non-pathogenic E. coli K12. Uptake of EHEC OMVs was faster (Figure 3A), and approximately 181 

30% more efficient (Figure 3C), compared to K12 OMVs; the maximal rate was higher (Figure 182 

3B), and a high rate of uptake was sustained for longer for EHEC than for the K12 strain (Figure 183 

S2C). Both rmax (Figure S2D) and uptake efficiency (Figure S2E) increased with increasing 184 

OMV concentration for both EHEC and K12, but for K12 vesicles rmax saturated at a lower OMV 185 

concentration and a lower uptake efficiency was achieved. Taken together, these results suggest 186 

EHEC OMVs contain cargos absent from K12 OMVs that accelerate and sustain the rate and 187 

thus increase the efficiency of vesicle uptake by host cells. 188 

 189 

Figure 3. EHEC OMVs enter host cells more rapidly and efficiently than E. coli K12 OMVs. (A) CCF2-AM 190 

loaded Hela cells were exposed to OMVs from EHEC (red) or E. coli K12 (blue) carrying ClyA-Bla, at an MOI of 191 

1000 for 3 hours. Ratios of blue:green fluorescence over time were plotted as means ± stdev (n=3). Maximum rates 192 

(B) were determined from data in Figure S2 and absolute FRET signal changes after 3 hrs (C) were determined from 193 

data in (A) and plotted to visualize overall efficiency of uptake for EHEC (red) and K12 (blue) OMVs. Data shown 194 

are means ± stdev (n=3). Significance was determined by ANOVA, with a Brown Forsythe test to determine equal 195 

variance. (***) p≤0.001, (**) p≤0.01. 196 

 197 
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Lipopolysaccharide structure shapes kinetics of OMV uptake by host cells. Since OMVs are 198 

derived from the outer membrane of Gram-negative bacteria, they contain lipopolysaccharides 199 

(LPS), [23]. Whilst lipid A and the core oligosaccharide regions are well conserved, many 200 

species including EHEC contain a highly variable polysaccharide domain known as O antigen 201 

[24]. The O antigen constitutes the outermost structural region of LPS, and due to its length of up 202 

to 40 nm [24], likely the first component in contact with host cells. These characteristics led us to 203 

hypothesize that the O antigen present on EHEC OMVs may be a structural determinant of OMV 204 

recognition and uptake by host cells.  205 

   To test this hypothesis, we carried out FRET assays with Hela cells exposed to ClyA-Bla 206 

reporter OMVs harvested from three pairs of strains, reflecting different E. coli serotypes and 207 

pathovars and O antigen deficient isogenic mutants, to determine how the presence or absence of  208 

O antigen would impact OMV uptake kinetics in each case. OMVs were derived from two 209 

different pathovars of E. coli, EHEC (serotype O157) and enteroaggregative E. coli (EAEC, 210 

serotype O42), and from the non-pathogenic lab strain K12 (serotype O16). For EHEC, OMVs 211 

from O157 wild type cells and an isogenic strain lacking the O157 O antigen (gne::IS629, [25]) 212 

were compared (Figure 4). The O antigen deficient mutant gne::IS629 carries a 1310 bp insertion 213 

in gne, disrupting the epimerase required for synthesis of the oligosaccharide repeating unit in 214 

the O antigen [25, 26], leading to a ~ 10 nm decrease in median OMV diameter (Figure S1B). 215 

The rmax for ClyA-Bla reporter OMVs derived from this O antigen deficient EHEC strain and the 216 

isogenic wild type O157 strain were not significantly different (Figure 4B). However, OMVs 217 

derived from wild type EHEC with intact O antigen sustained a higher entry rate over a longer 218 
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period (Figure S4A), and thus entered host cells ~ 43% more efficiently than those derived from 219 

O antigen deficient EHEC (Figure 4D).  220 

OMVs from wild type EAEC (serotype O42, intact O antigen) were compared with an 221 

isogenic O antigen deficient mutant (∆wbaC, lacking a glycosyltransferase necessary for O 222 

antigen synthesis; [27]).  EAEC OMVs with intact O antigen were around 20 nm larger in 223 

median diameter than EHEC OMVs, suggesting they carry a longer O antigen, and the diameter 224 

dropped in the O antigen deficient mutant, to the same size as EHEC O antigen deficient OMVs 225 

(Figure S1B). EAEC OMVs with intact O antigen entered host cells ~ 66% more efficiently than 226 

OMVs without O antigen, due to a 77% higher rmax (Figure 4D-F) and a higher sustained rate 227 

over time (Figure S4B).  228 

  The non-pathogenic E. coli K12 strain MG1655 has lost its ability to produce O antigen 229 

due to a disruption in wbbL encoding the rhamnosyltransferase required for O antigen synthesis 230 

[28]. We compared entry of OMVs from this O antigen deficient strain (median OMV diameter 231 

decreased by ~ 10 nm, compared to O16 positive strain), to those from an isogenic strain (DFB 232 

1655 L9), where wild type wbbL has been restored, allowing for expression of the strain’s 233 

original O16 O antigen [27]. Similar to O157, the presence or absence of O antigen did not alter 234 

rmax, but the presence of O antigen allowed for a higher rate to be sustained for longer (Figure 235 

S4C), leading to a ~ 22% higher efficiency overall (Figure 4G-I). A similar effect of O antigen 236 

on uptake kinetics was observed in intestinal epithelial cells (Figure S3). Taken together, these 237 

results suggest that the presence of the LPS O antigen increases the entry efficiency of OMVs 238 

into host cells, independent of the specific mutation leading to O antigen deficiency. Depending 239 

on the serotype used, this is caused by enhancing rmax and/or by sustaining a higher uptake rate 240 
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over a longer period, compared to OMVs lacking O antigen. These variations may be due to 241 

differences in physicochemical features and/or other vesicle cargos between the different 242 

serotypes. 243 

 244 

Figure 4. LPS structure affects rate and efficiency of OMV uptake by host cells. CCF2-AM loaded Hela cells 245 

were exposed to ClyA-Bla OMVs isolated from EHEC (serotype O157, A-C), EAEC (serotype O42, B-F) or K12 246 

(serotype O16, G-I) containing O antigen (red), or lacking O antigen (blue), at an MOI of 1000 for 3 hours. Ratios of 247 

blue:green fluorescence over time (A, D, G) were plotted as means ± stdev (n=3). Maximum rates (B, E, H) were 248 

extracted from data in Figure S4 and absolute FRET changes after 3 hrs (C, F, I) were determined from data shown 249 

in A, D and G. Data shown are means ± stdev (n=3); Significance was determined using ANOVA, with a Brown 250 

Forsythe test to determine equal variance. (***) p≤0.001, (**) p≤0.01, (*) p≤0.05, (ns) not significant.  251 

 252 

LPS structure determines the preferred entry route of OMVs into host cells. Next, we 253 

evaluated the relative contribution of cellular trafficking pathways to OMV uptake and 254 

determined if this was affected by LPS structure. Inhibition of macropinocytosis following 255 

treatment of host cells with 20 uM blebbistatin enhanced both the rate and efficiency of uptake in 256 

the strains with shorter O antigen (EHEC and K12) and left it unaltered for EAEC (Figure S5). 257 

These data suggest that only a small fraction of OMVs usually enters cells by micropinocytosis, 258 

and inhibition of this relatively slow uptake route either does not affect or accelerates uptake. 259 

Next, we tested if OMV uptake required dynamin, using the dynamin GTPase inhibitor dynasore. 260 

Treatment of host cells with dynasore completely abolished uptake of OMVs, independent of 261 

serotype and the presence of O antigen (Figure S5). Next, we determined whether OMV uptake 262 

was via clathrin-coated pits, or via lipid raft-mediated endocytosis, both of which require 263 

dynamin [29-31]. We inhibited clathrin-mediated endocytosis, either by proteolytic removal of 264 
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all protein receptors from host cells with papain prior to OMV incubation, or by blocking pit 265 

assembly using chlorpromazine [32]. Removal of protein receptors from the host cell surface 266 

increased uptake rate (Figure S6) and efficiency (Figures 5 and S6) for OMVs with O antigen, 267 

but decreased or abolished uptake rate and efficiency of O antigen deficient OMVs. In general, 268 

both papain and chlorpromazine treatment decreased the uptake of O antigen negative OMVs 269 

but, although they had variable effects, they did not reduce uptake of O antigen positive OMVs 270 

(Figures 5 and S6). This suggests that OMVs lacking O antigen require protein receptors for 271 

uptake and use clathrin-mediated endocytosis as a main route of entry. In contrast, OMVs with 272 

intact O antigen do not rely on protein receptors for entry, and inhibition of clathrin-mediated 273 

endocytosis does not prevent their uptake into host cells.  274 

 275 

O antigen containing OMVs enter host cells faster because they can access raft-mediated 276 

endocytosis more efficiently. Since OMVs displaying O antigen on their surface accessed host 277 

cells faster in the absence of clathrin-dependent endocytosis, we investigated whether this was 278 

mediated by raft-dependent pathways. Disruption of raft-mediated endocytosis, either by 279 

sequestration of membrane cholesterol from membrane microdomains via methyl-β-cyclodextrin 280 

or by disrupting raft dynamics with filipin [33], led to a reduced rmax (Figure 5) and uptake 281 

efficiency (Figure S6). These data show that, while OMVs are able to access different uptake 282 

routes including macropinocytosis, clathrin-dependent and raft-dependent endocytosis, OMVs 283 

displaying O antigen on their surface are able to access raft-dependent endocytosis more 284 

efficiently, while OMVs lacking O antigen are more reliant on clathrin-mediated uptake (Figure 285 

6). Shifting a larger fraction of O antigen-positive OMVs to raft-mediated endocytosis further 286 
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accelerates their uptake, and we conclude the differences in uptake routes driven by LPS 287 

structure account for differences in uptake rate and efficiency we observe. 288 

 289 

Figure 5. OMVs lacking O antigen are biased towards clathrin-mediated endocytosis, while OMVs with O 290 

antigen can efficiently access host cells via lipid rafts. Hela cells were either left untreated (control, red), or pre-291 

treated with 5 µg/ml papain (lilac), 1 µg/ml chlorpromazine (pink), 5 mM methyl-β-cyclodextrin (light green) or 1 292 

µg/ml filipin (turquoise),  and exposed to ClyA-Bla OMVs isolated from EHEC (A), EAEC (B) or K12 (C) with or 293 

without O antigen at an MOI of 1000 for 3 hours. Total FRET changes after 3 hrs were determined from data in 294 

Figure S6 and data shown are means ± stdev (n=3). Significance compared to the control group was determined 295 

using ANOVA, with a Brown Forsythe test to determine equal variance. (***) indicates p≤0.001, (**) p≤0.01, (*) 296 

p≤0.05, (ns) not significant.  297 

 298 

Figure 6. LPS composition determines major route and kinetics of OMV entry into host cells. Whilst it is well 299 

established that pathogenic species utilize OMVs during infection, the specific adaptations which allow OMVs to 300 

contribute to pathogenesis require further exploration. This work has developed a new approach to overcome current 301 

methodological limitations and provide consistent data for future studies and allow new insights into the interactions 302 

of OMVs with host cells during infection. This method has shown the relevance of LPS composition, in particular 303 

the presence of O antigen, in determining the entry route and kinetics of OMVs. Further work in this area may 304 

reveal targets for inhibition of these processes, and enable attenuation of infections by preventing the OMV-305 

associated delivery of virulence factors.  306 

 307 
 308 

DISCUSSION 309 

Interactions between bacterial outer membrane vesicles and epithelial cells are now recognized 310 

as an important driver of bacterial pathogenesis. Yet, our ability to study vesicle-host cell 311 

interactions has been limited by a lack of methods to capture the rapid kinetics of vesicle entry 312 

and dismantling in real-time, and without altering the physicochemical properties of the vesicle. 313 

Here we describe a novel assay that fulfils these requirements and allowed us to study the 314 

kinetics of OMV uptake with enough temporal resolution to reveal critical differences in rate and 315 



 
 

LPS composition impacts OMV entry kinetics | 16 

 

 

uptake efficiency of vesicles derived from different E. coli serotypes and pathovars. The method 316 

uses a genetically encoded, OMV targeted probe and a cell-permeable dye, resulting in a change 317 

in FRET upon reporter uptake and dye cleavage. Advantages of this system include its high 318 

sensitivity (5 µg/ml OMVs, the lowest concentration reported in the literature, produced a 319 

reproducible trace with good signal/noise ratio) and rapid response (signal was detected within 320 

seconds). A potential drawback is, that it is not known if the ClyA-Bla probe is expressed 321 

equally across the entire OMV population, but this is equally true for other markers and assays 322 

currently in use. The system’s use can be extended to a high-throughput format, allowing further 323 

study of bacterial and host factors determining OMV uptake and trafficking.  Using a transwell 324 

format, the method can be applied to cell-based assays consisting of bacteria releasing OMVs, 325 

and host cells without the need for OMV isolation. Although the specific probes used here were 326 

functional across a range of E. coli isolates and different host cell types, their use in other 327 

bacterial species will require further characterization to determine if they are targeted to OMVs 328 

and retain correct orientation and enzymatic activity.  329 

We selected EHEC and EAEC OMVs for this study, since OMVs have been shown to 330 

play a crucial role in toxin stabilization and delivery for both pathovars [34, 35], and have been 331 

considered as a means to vaccinate and protect against hemolytic uremic syndrome, a severe 332 

complication of EHEC infection [36]. It is clear that LPS, and specifically O antigen, contributes 333 

to bacterial within-host fitness and pathogenicity, by enhancing resistance to complement, 334 

modulating phagocytosis and phage infection [37, 38]. The O antigen of most E. coli strains has 335 

10-18 repeats, but can exceed 80 repeats [39, 40]. The length of the O antigen is equally variable 336 
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(~5-50 nm), and is positively correlated with the ability of the bacterial cell to adhere to host 337 

cells and tissues, while loss of O antigen results in defects in colonisation, biofilm formation, and 338 

increased pathogen clearance [24, 41-43].  Recent work showed that EHEC OMVs allow 339 

efficient delivery of LPS into the host cell cytoplasm, resulting in inflammatory responses, 340 

caspase-11 activation and cell death, but did not explore the role of LPS in uptake [44]. Our data 341 

suggest that O antigen has an additional, previously unrecognized role during bacteria-host 342 

interactions, which is to steer OMVs towards raft-mediated endocytosis, accelerating uptake and 343 

delivery of vesicle associated virulence factors such as hemolysins and Shiga-like toxins [45] to 344 

host cells and enhancing pathogenicity.  345 

It is well known that OMVs contain different cargos, depending on pathovar and serotype 346 

[46]. This means the comparison of O antigen deficient mutants with wild type OMVs as well as 347 

comparison of different pathovars has the pitfall that other vesicle cargos may be modulated and 348 

alter uptake kinetics. To dissect the effect of O antigen independent of other cargos, we 349 

attempted to deplete O antigen of wild type OMVs by treatment with a glycoside hydrolase, but 350 

found enzymatic activity was not limited to O antigen cleavage but modified the core LPS as 351 

well.  However, we observed a strong correlation between O antigen and uptake kinetics across 352 

three different serotypes and pathovars, suggesting that O antigen is, if not the only factor, at 353 

least a key determinant of uptake kinetics. Since EAEC OMVs showed the most distinct change 354 

in entry kinetics upon O antigen deletion, with rmax impacted as well as rate sustenance and 355 

efficiency (Figure 4) and O42 antigen seemed to be much longer than EHEC O157 or K12 O16 356 
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antigens, which seemed similar in size and displayed similar changes upon O antigen deletion 357 

(Figure S1B), we speculate that O antigen length may impact maximal entry rate. 358 

We used our newly-devised assay to identify the relative contribution of cellular uptake 359 

pathways to OMV entry into host cells. Clathrin- and raft-dependent endocytosis, 360 

macropinocytosis and membrane fusion have all previously been reported as uptake pathways for 361 

bacterial OMVs, and it is likely that discrepancies between studies result, at least in part, from 362 

differences in species, strains and methodology used to study uptake [48]. Uptake of OMV cargo 363 

by fusion of vesicles with the host cell membrane can be ruled out as a major route of uptake for 364 

OMVs used in our study, since in this case ClyA-Bla would be exposed on the outer leaflet of 365 

the host cell membrane and would not account for the rapid cleavage of the cytoplasmic FRET 366 

dye. Assays using pharmacological inhibitors to block specific endocytic pathways, showed that 367 

while all OMVs use multiple uptake routes, their surface structure biases them towards different 368 

pathways. For example, O antigen deficient OMVs had a stringent requirement for surface 369 

protein receptors for their uptake, while O antigen containing OMVs were able to access protein-370 

receptor independent pathways. Depletion of such receptors actually allowed them to access 371 

protein-receptor independent pathways more efficiently and utilize raft-mediated endocytosis, a 372 

more rapid mode of uptake, as main route of entry. While raft-mediated endocytic routes are not 373 

as well characterized as clathrin-mediated endocytosis, it is clear there are multiple pathways, 374 

including caveolin and non-caveolin dependent raft-mediated endocytosis. Our experiments 375 

suggest that the entry of O antigen containing OMVs is raft- and dynamin dependent, but 376 

protein-receptor independent, and no co-localization between OMVs and caveolin was detected. 377 
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The requirement of dynamin is likely, based on complete inhibition of uptake following 378 

treatment with dynasore, however this is confounded by the dual inhibitory effect of dynasore 379 

both on dynamin as well as cholesterol containing micro domains [49]. A recent study focusing 380 

on vesicular cargo delivery of EHEC OMVs to host cells over longer time frames also concluded 381 

that OMVs enter host cells via dynamin-dependent endocytosis [45]. We therefore conclude they 382 

use a raft-mediated, and likely dynamin dependent, but protein-receptor and caveolin-383 

independent route of uptake, and the detailed requirements regarding their uptake are subject to 384 

current studies.  385 

MATERIALS AND METHODS 386 

Strains and growth conditions 387 

The strains used in this study were the E. coli serotype O157:H7 strain Sakai 813, a derivative of 388 

enterohaemorrhagic E. coli (EHEC) RIMD 0509952, and its O antigen deficient derivative, MA6 389 

(∆gne, [25]; the E. coli serotype O42 wild type strain (an enteroaggregative E. coli isolate, [47], 390 

and its isogenic, O antigen deficient derivative strain (∆wbaC,  [27]; the E. coli serotype O16 391 

strain DFB 1655 L9 (a K12 strain containing a restored wbbL gene), and its isogenic, O antigen 392 

deficient derivative, MG1655 [27]. All strains were transformed with plasmids pBAD ClyA-Bla, 393 

Bla-ClyA, or empty vector (a kan
R
 derivative of the pBAD amp

R
 vector provided by Matthew 394 

DeLisa, Cornell University), [12]. Strains were grown in LB containing 50 μg/ml kanamycin, at 395 

37 °C with shaking at 200 rpm.  396 

 397 

Isolation of outer membrane vesicles by ultracentrifugation 398 
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100 ml cultures were grown in LB at 37 ºC, with agitation at 200 rpm. Once the OD600 reached 399 

0.5-0.6, expression of ClyA-Bla was induced with 0.2% L-arabinose and grown for a further 16 400 

h. Cells were then pelleted at 6000xg, and the supernatants were removed and filtered with a 401 

0.45um syringe filter. Aliquots of filtered supernatants were spread on LB agar and grown 402 

overnight at 37 ºC to check that all viable cells had been removed by filtration. 25 ml of filtered 403 

supernatants were centrifuged in a Beckman XL90 ultracentrifuge using a 70Ti rotor at 404 

100,000xg (30,000 rpm) for 2 h at 4 °C. After centrifugation, supernatants were removed, and the 405 

OMV pellets were resuspended in 1 ml colorless DMEM or sterile water (for TEM) and stored at 406 

-20 °C.  407 

Detection of Bla probes in cellular fractions  408 

12 μl of samples normalized for their protein content from EHEC ClyA-Bla and Bla-ClyA whole 409 

cell lysate, supernatant and OMV fractions were added to 3μl 5X SDS loading dye and boiled for 410 

10 min. Samples were loaded onto a 15 well BioRad pre-cast stain-free SDS-PAGE gel and run 411 

at 120V, 200mA for 45 min. The gel was then transferred onto a PVDF membrane in transfer 412 

buffer containing 20% methanol for 80 minutes at 100V. After transfer, the membrane was 413 

blocked at room temperature in TBS 0.1% Tween-20 and 5% skim milk for 1h with agitation. 414 

The membrane was washed 3 times with TBS 0.1% Tween-20 (5 min per wash). After blocking, 415 

the membrane was incubated with a 1:2000 dilution of mouse anti-Bla primary antibody in TBS 416 

0.1% Tween-20 and 5% skim milk overnight at 4 ºC with agitation. The following day, the 417 

membrane was washed 3 times as before, and incubated with a 1:5000 dilution of sheep anti-418 

mouse secondary antibody in TBS 0.1% Tween-20, 5% skim milk for 1h at room temperature 419 
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with agitation. The membrane was washed again 3 times, and 2 ml BioRad ECL reagents were 420 

added to the membrane and incubated for 5 min, before visualization with a BioRad ChemiDoc 421 

imager.  422 

 423 

Nitrocefin assay to determine β-lactamase activity  424 

50 μl of samples were added in triplicate to a 96-well plate. Nitrocefin was diluted to 0.5 mg/ml 425 

in PBS and 50 μl was added to each sample. The absorbance at 486 nm was measured in the 426 

FluoStar Omega plate reader for 2 h, and the change in absorbance over time was used to 427 

determine the specific activity in samples, using the protein concentration determined by the 428 

CBQCA kit.  429 

 430 

Protein Quantitation  431 

To quantify levels of protein in cell fractions, the ThermoFisher CBQCA Protein Quantitation kit 432 

was used according to the manufacturer’s instructions. 433 

 434 

Papain and detergent treatment of OMVs  435 

Triton X-100 and SDS were added at a concentration of 1% to 20 μl OMVs for 45 min at 37 ºC. 436 

5ug/ml papain was then added for 30 or 60 min at 37 ºC. The papain reaction was inactivated 437 

using 1 mM PMSF at room temperature for 30 min. 5 μl SDS-PAGE loading dye was added to 438 

the samples, which were then boiled for 10 min. Samples were run on a 15-well pre-cast stain 439 
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free gel for 45 min at 120V, and then subjected to Western blotting with anti-β-lactamase 440 

primary antibody (Pierce) as described above.  441 

 442 

Plate reader FRET experiments  443 

HeLa cells (passage 1-7) were seeded in triplicate in a black-walled, clear bottom 96-well plate 444 

at a concentration of 1x10
5
 cells per ml in Dulbecco’s modified Eagle medium (DMEM) 445 

supplemented with 1% L-glutamine, 1% Penicillin/Streptomycin and 10% heat inactivated fetal 446 

bovine serum. The plate was incubated at 37 ºC, 5% CO2 for 24 h prior to experiments. The 447 

following day, cells were loaded with 20 μl 6X CCF2-AM with 100 μl colourless 448 

unsupplemented DMEM (cDMEM) and incubated at room temperature for 1 h in the dark to 449 

allow dye loading. The dye was removed by washing 2x in PBS and 1x in cDMEM. Cells were 450 

treated with 5 mM methyl-ß-cyclodextrin or 1 μg/ml filipin to inhibit cholesterol mediated 451 

endocytosis, 80 uM Dynasore for dynamin inhibition, or 20 uM blebbistatin for 452 

macropinocytosis inhibition for 1h at 37 ºC. Cells were treated with 1 μg/ml chlorpromazine for 453 

1h at 37 ºC to inhibit formation of clathrin-coated pits,  or with 5 μg/ml papain for 15 min at 37 454 

ºC to remove surface proteins, before inactivation of papain with 5 mM PMSF for 20 min. 455 

Reporter OMVs were diluted in cDMEM and added to the cells for a final concentration of 10 456 

μg/ml, or 1x10
8
 vesicles, corresponding to an MOI of 1000. The plate was immediately placed in 457 

the PheraStar plate reader, with excitation at 405 nm and simultaneous dual emission at 530 nm 458 

and 460 nm. The wells were scanned (bottom optic) with orbital averaging for a total of 150 459 

cycles, equating to a measurement every 90 seconds for 3 hours. The ratio of blue to green 460 
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fluorescence intensity detected in the cells at each cycle was calculated using GraphPad Prism, 461 

and ratios for uninfected, dye-loaded cells were used as the baseline value for each cycle. All 462 

traces were normalized to 0 for their first ratio value. All experiments were performed with a 463 

minimum of three technical replicates and three independent repeats.  464 

 465 

Efficiency of uptake and statistical analysis 466 

Efficiency of uptake was calculated as the absolute change in blue:green fluorescence intensity 467 

ratio between 0 and 3 hours ([Em460/Em530]t=0hrs)/ [Em460/Em530]t=3hrs). Analysis of variance 468 

(ANOVA) was used to determine statistical significance, with a Brown Forsythe test to 469 

determine equal variance (GraphPad Prism software). A p-value of <0.05 was considered 470 

statistically significant. 471 

 472 

 473 

Rate estimation and statistical analysis 474 

To estimate the gradients of the data, polynomials were fitted to each data set using the cubic 475 

spline function csaps in Matlab. Numerical estimates of the gradients of the resulting 476 

polynomials were determined using the gradient function. To ensure that the gradient estimates 477 

were as smooth as possible whilst also retaining the overall shape and trend of the data, a small 478 

smoothing parameter was used. Analysis of variance (ANOVA) was used to determine statistical 479 

significance, with a Brown Forsythe test to determine equal variance (GraphPad Prism software). 480 

A p-value of <0.05 was considered statistically significant. 481 

  482 
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Confocal Microscopy  483 

HeLa cells (P3-7) were seeded on 13mm coverslips in a 12-well plate at a concentration of 1x10
5
 484 

cells per ml in complete DMEM, 24 h prior to experiments. The following day, cells were 485 

washed and loaded with 100 μl 6X CCF2-AM dye with 500 μl colourless unsupplemented 486 

DMEM, and incubated in the dye solution for 1 h at room temperature in the dark. Cells were 487 

then incubated with ClyA-Bla reporter OMVs for 0-4 h. The cells were washed with PBS and 488 

then fixed with 0.5 ml 4% PFA. The next day, coverslips were mounted onto slides with a drop 489 

of Gold Anti-Fade mounting solution and then imaged using a Nikon A1R confocal microscope 490 

(Birmingham Advanced Light Microscopy Facility), and fluorescence was observed from 491 

excitation at 409 nm and dual emissions at 450 nm and 520 nm. Z stacks were produced with 492 

gain, slice thickness, exposure and laser intensity kept the same for all slides, and images were 493 

taken for 3 representative fields of view per slide and n=3 independent samples. The Z stacks 494 

were converted to maximum intensity projection images. For OMV localization experiments, 495 

OMVs were stained using cell mask orange (1:500) for 1 h at 22 °C and gentle agitation. 496 

Following staining, samples were washed with 28 volumes of PBS and labelled OMVs pelleted 497 

by ultracentrifugation (100,000xg, 2h). Hela cells were exposed to labelled OMVs for 10 of 60 498 

minutes prior to fixation in 3.2% formaldehyde. Slides were imaged using an Olympus IX83 499 

inverted microscope fitted with a FV3000 confocal system and 100x Super Apochromat oil 500 

objective. Images were captured using Olympus Fluoview software and processed using the 501 

CellSens extension package.  502 

 503 
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SUPPORTING INFORMATION LEGENDS 647 

Figure S1. Morphology, size, charge and probe orientation of reporter OMVs. (A) Electron 648 

micrographs of negative stained OMV fractions from EHEC wt (left image) or EHEC ClyA-Bla 649 

(centre and right images). Scale bars, 0.5 µm. (B) Isolated OMVs were diluted 1x10
-6

 fold and 650 

nanoparticle tracking analysis was used to determine the size distribution. Black lines represents 651 

median size from at least 200 tracks acquired per sample. Statistical significance was determined 652 

by ANOVA, with a Brown Forsythe test to determine equal variance. (***) p≤0.005, (ns) not 653 

significant. (C) ζ-potentials of isolated OMVs. Values represent means from 30 readings per 654 

sample. (D) OMV fractions from EHEC expressing Cly-Bla, Bla-ClyA or carrying empty vector 655 

were treated with papain for 30 or 60 minutes, and used for Western Blotting with α-Bla 656 

antibody. 657 

 658 

Figure S2. Rates of uptake/dismantling and concentration dependency of uptake kinetics 659 

for OMVs. (A) CCF2-AM loaded Hela cells exposed to EHEC OMVs carrying ClyA-Bla (red), 660 

or empty vector (grey) at an MOI of 1000 for 3 h. Rate of uptake over time was extracted from 661 

data in Figure 2A and data shown are means ± stdev (n=3). (B) FRET change upon exposure of 662 

Hela cells to EHEC OMVs carrying ClyA-Bla (reporting on exposure to OMV surface to 663 

cytoplasm) or Bla-ClyA (reporting on exposure of luminal cargo to cytoplasm). (C) Hela cells 664 

were exposed to EHEC or K12 ClyA-Bla OMVs at an MOI of 1000 for 3 hours. Rates of uptake 665 

over time were extracted from data in Figure 3A and are means ± stdev (n=3). (D) Experiments 666 

were repeated as above but using different OMV concentrations (0-20 μg/ml of protein, 667 

corresponding to an MOI of 0- 2000), and maximum rates (D) and efficiency of uptake (E) 668 

determined as described above. Data are means ± stdev (n=3).   669 

 670 

Figure S3. Uptake for OMVs from serotypes O157, O42 and O16 with or without O 671 

antigen. CCF2-AM loaded RKO intestinal epithelial cells were exposed to OMVs from EHEC 672 
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O157 (A), EAEC O42 (B), and K12 O16 (C), with O antigen (red) and without O antigen (blue), 673 

at an MOI of 1000 for 3 hours. FRET changes (blue/green fluorescence, A-C) and efficiency of 674 

uptake (total change over three hours, D) are shown as means ± stdev (n=3).  675 

 676 

Figure S4. Rates of uptake for OMVs from serotypes O157, O42 and O16 with or without 677 

O antigen. CCF2-AM loaded Hela cells were exposed to OMVs from EHEC O157 (A), EAEC 678 

O42 (B), and K12 O16 (C), with O antigen (red) and without O antigen (blue), at an MOI of 679 

1000 for 3 hours. Polynomials were fitted to each data set using the cubic spline function csaps 680 

in Matlab. Numerical estimates of the gradients of the resulting polynomials were determined 681 

using the gradient function. Data shown are means ± stdev (n=3).  682 

 683 

Figure S5. Effect of blebbistatin and dynasore on uptake of OMVs. Hela cells were either 684 

left untreated or pre-treated 80 uM Dynasore for dynamin inhibition (grey), or 20 uM 685 

blebbistatin for macropinocytosis inhibition (orange) for 1h at 37 °C and exposed to ClyA-Bla 686 

OMVs isolated from EHEC (A, B), EAEC (C, D), or K12 (E, F) at an MOI of 1000 for 3 hours. 687 

The FRET signal (ratio of blue:green fluorescence) over time was plotted as mean ± stdev (n=3).  688 

 689 

Figure S6. Effect of pharmacological treatments on OMV uptake. Hela cells were either left 690 

untreated or pre-treated with 5 ug/ml papain (lilac), 1 ug/ml chlorpromazine (pink), 5mM 691 

methyl-β-cyclodextrin (light green) or 1μg/ml filipin (turquoise) and exposed to ClyA-Bla 692 

OMVs isolated from EHEC (A, B), EAEC (C, D), or K12 (E, F) at an MOI of 1000 for 3 hours. 693 

The FRET signal (ratio of blue:green fluorescence) over time was plotted as means ± stdev 694 

(n=3).  695 
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