
 
 

University of Birmingham

What are the primary limitations in B cell affinity
maturation? How much affinity maturation can we
drive with vaccination?
Toellner, Kai-Michael; Sze, Daniel; Zhang, Yang

DOI:
10.1101/cshperspect.a028795
10.1101/cshperspect.a028795
License:
None: All rights reserved

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Toellner, K-M, Sze, D & Zhang, Y 2018, 'What are the primary limitations in B cell affinity maturation? How much
affinity maturation can we drive with vaccination? A role for antibody feedback', Cold Spring Harbor Perspectives
in Biology, vol. 10, no. 5, a028795. https://doi.org/10.1101/cshperspect.a028795,
https://doi.org/10.1101/cshperspect.a028795

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1101/cshperspect.a028795
https://doi.org/10.1101/cshperspect.a028795
https://doi.org/10.1101/cshperspect.a028795
https://doi.org/10.1101/cshperspect.a028795
https://birmingham.elsevierpure.com/en/publications/69a92608-d067-48cc-9bad-ed9ab49fcb1a
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Maturation, and How Much Affinity Maturation
Can We Drive with Vaccination?

A Role for Antibody Feedback
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We discuss the impact of antibody feedback on affinity maturation of B cells. Competition
from epitope-specific antibodies produced earlier during the immune response leads to
immune complex formation, which is essential for transport and deposition of antigen
onto follicular dendritic cells (FDCs). It also reduces the concentration of free epitopes into
the mM to nM range, which is essential for B-cell receptors (BCRs) to sense affinity-dependent
changes in binding capacity. Antibody feedback may also induce epitope spreading, leading
to a broader selection of epitopes recognized by newly emerging B-cell clones. This may be
exploitable, providing ways to manipulate epitope usage induced by vaccination.

GREAT DEBATES

What are the most interesting topics likely to come up over dinner or drinks with your
colleagues? Or, more importantly, what are the topics that don’t come up because they
are a little too controversial? In Immune Memory and Vaccines: Great Debates, Editors
Rafi Ahmed and Shane Crotty have put together a collection of articles on such ques-
tions, written by thought leaders in these fields, with the freedom to talk about the issues
as they see fit. This short, innovative format aims to bring a fresh perspective by encour-
aging authors to be opinionated, focus on what is most interesting and current, and avoid
restating introductory material covered in many other reviews.

The Editors posed 13 interesting questions critical for our understanding of vaccines
and immune memory to a broad group of experts in the field. In each case, several
different perspectives are provided. Note that while each author knew that there were
additional scientists addressing the same question, they did not know who these authors
were, which ensured the independence of the opinions and perspectives expressed in
each article. Our hope is that readers enjoy these articles and that they trigger many
more conversations on these important topics.

Editors: Shane Crotty and Rafi Ahmed

Additional Perspectives on Immune Memory and Vaccines: Great Debates available at www.cshperspectives.org
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Antibody-mediated protection from disease is
a great success, and public vaccination pro-

grams have led to herd immunity against a large
number of diseases. Still, we do not understand
well how affinity maturation is regulated and
how to translate this into good vaccine design.
In recent discussions, it has been shown how to
induce efficiently neutralizing antibody against
antigens with temporal variation such as influ-
enza or HIV. We need to find ways not only to
target nonvariable epitopes that hide behind a
screen of decoy epitopes that may vary over time
(Midgley et al. 2011; Wrammert et al. 2011;
Doria-Rose et al. 2014), but also to induce high-
est affinity antibodies that can efficiently neu-
tralize their targets.

Affinity maturation of antibodies happens
in germinal centers (GCs). They are the main
source of affinity-matured memory B cells and
plasma cells. Understanding the regulation of
the evolution of B-cell clones within these struc-
tures is key to understanding how to manipulate
affinity maturation of B-cell clones, their dom-
inant specificities, and how we might design
vaccines that induce high-affinity antibodies
to specific antigens or epitopes. B cells in GCs
expand and undergo immunoglobulin V(D)J
gene hypermutation. These mutations produce
variants with altered B-cell receptor (BCR) af-
finities that are positively selected or die as a
result of neglect. This cycle typically is repeated
many times. Reproduction, variation, and selec-
tion are the hallmarks of Darwinian evolution.
Key to a directional evolution (in this case to-
ward higher affinity) is a driver of directional
selection. How selection is regulated in the GC
has been subject to intense study over recent
years. Signals from T follicular helper (TFH)
cells are the master regulators of GC responses,
directing recirculation of GC B cells into the
GC dark zone where proliferation and further
hypermutation happen (Crotty 2011; Victora
and Nussenzweig 2012). Signals from TFH cells
possibly also trigger differentiation of GC B cells
into affinity-matured plasma cells or memory B
cells. The efficacy of TFH signaling to B cells
is dependent on whether GC B cells are able
to present sufficient antigenic peptide to the
T cells. This has been shown in vitro (Batista

and Neuberger 1998), and more recently in a
series of studies in vivo (Victora et al. 2010;
Victora and Nussenzweig 2012). The impor-
tance of T-cell-derived signals is also seen in
T-cell-independent GCs that cannot be sus-
tained for more than a few days (Garcia de
Vinuesa et al. 2000), and was predicted in theo-
retical studies (Meyer-Hermann et al. 2006).

ROLE OF ANTIBODY FEEDBACK
FOR THE INTERACTION OF B-CELL
RECEPTOR WITH ANTIGEN

Key to bringing GC B cells into the position of
presenting more antigen than competing B cells
is the interaction between BCR and antigen. It is
this trait that is the subject of directional evolu-
tion. The BCR makes contact with the antigen
and delivers antigen into the endocytic pathway.
It is also able to transduce signals into the B cell.
While BCR signaling is important for the initi-
ation of the endocytic event (Fleire et al. 2006),
most GC B cells have “short-circuited” B-cell
receptors and the signaling event itself is not
involved in affinity-dependent selection in
vivo (Khalil et al. 2012). Also, the reaction
kinetics of unbinding of higher-affinity BCR
from antigen are too slow or BCR signaling
too fast to make BCR signaling a meaningful
selection mechanism to differentiate between
BCRs with different affinities (Foote and Eisen
1995). The faster BCR-binding reaction is
limited by the diffusivity of the reactants to an
on-rate of 106

M
21 sec21 (Raman et al. 1992),

which quickly is reached when antibodies ma-
ture to higher affinity. Therefore, on-rate is
not relevant for selection of higher-affinity
BCR to antigen. Higher-affinity BCRs usually
differ in the much slower unbinding reaction,
or off-rate (Foote and Eisen 1995; Batista and
Neuberger 1998). The off-rate is thought not to
fall below 1024 sec21, because this translates
into half-lives for BCR-antigen unbinding lon-
ger than the 8.5 min it takes for endocytosis to
happen (Foote and Eisen 1995). As soon as it
takes more time for the BCR to separate from
the antigen than it takes to endocytose the an-
tigen, it seems impossible that BCR interactions
can differentiate further increases in affinity.

K.-M. Toellner et al.
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Therefore, the limit for affinity maturation is
seen to have a ceiling of Ka ¼ 1010 (Foote and
Eisen 1995). In vitro experiments using soluble
lysozyme variants with different affinities to
BCR showed that variations in B-cell-receptor
antigen affinity led to differential antigen pre-
sentation and BCR affinity–dependent T-cell
activation. These experiments also showed a
ceiling beyond which B cells were not able to
differentiate BCR affinity for antigen any more
(Batista and Neuberger 1998; Guermonprez
et al. 1998). Immobilizing antigen onto solid
surfaces (as it would be on antigen-holding fol-
licular dendritic cell [FDC]) leads to a larger
affinity range (Batista and Neuberger 2000).
All studies showing affinity differentiation by
the BCR were done with mM to sub-nM concen-
trations of antigen (Batista and Neuberger 1998,
2000; Guermonprez et al. 1998). These low con-
centrations are necessary owing to the high af-
finity of all BCR–antigen interactions. Even for
low-affinity BCRs, antigen concentrations
above the mM range will lead to saturation of
binding of the BCR.

Free antigen is not what B cells encounter in
the GC; however, FDCs hold antigen in large
tightly packed complexes of antigen bound by
specific antibody. This is observed by the very
prominent staining when antigen is detected
using immunohistology, electron microscopy, or
intravital microscopy (Chen et al. 1978; Kosco
et al. 1986; Suzuki et al. 2009; Heesters et al.
2014). It was mentioned above that, to sense
affinity differences, the concentrations of avail-
able antigen have to be in the range of the Kd

of the BCRs to be tested (Batista and Neuberger
1998, 2000; Guermonprez et al. 1998). Antibod-
ies present in immune complexes that are spe-
cific for the same epitopes as the ones tested by
the GC B-cell’s BCR are lowering the concentra-
tion of free epitopes. These antibodies initially
are low-affinity nonmutated antibodies pro-
duced during the early extrafollicular plasma-
blast response or, later on, they may be derived
from affinity-matured plasma cells from the
GC response (Zhang et al. 2013). Competing
antibodies derived from earlier stages of the
ongoing response should limit concentration
of free epitopes just adequately to allow inter-

actions by higher affinity but not of lower affin-
ity BCR variants (Zhang et al. 2016). This idea
of epitope-specific antibody feedback leading to
adequate regulation of GC B-cell selection was
suggested in the first paper proposing affinity
maturation in the GC (MacLennan and Gray
1986), but later forgotten.

WOULD ANTIBODY FEEDBACK INCREASE
THE CEILING FOR AFFINITY MATURATION?
MAYBE INDIRECTLY

Binding of BCR to specific epitopes is still de-
pendent on the BCR reaction kinetics. The main
difference under antibody feedback conditions
is that binding of the BCR is slowed down
because it now depends on the speed of the
unbinding of the antibody covering the epitope.

If BCR binding is considerably delayed
because of the presence of antibody feedback,
this raises the question of whether the speed of
endocytosis is the main factor for a ceiling of
affinity-dependent BCR–antigen interactions.
This question gains even more relevance as an-
tibodies with Ka . 1010

M
21 have been found,

and dissociation rates of Koff , 1025 sec21 are
not impossible (Poulsen et al. 2011).

Is there actually more time available for the
B cell to test for BCR binding? The theoretically
maximum time available may be the time a GC
B cell can survive in the absence of signals from
TFH cells. T-cell-independent GCs induced by
the nonprocessable antigen nitrophenyl (NP)-
Ficoll can last for 3 days until all GC B cells
undergo apoptosis (Garcia de Vinuesa et al.
2000). The survival time for GC B cells in vitro
that have received BCR stimulation but not
T-dependent signals is �1 day (Liu et al.
1989). Maybe there are processes before or after
antigen uptake that give the B cell more time to
test binding of BCR with immune complex.
Intravital observations have shown that B cells
dwell on FDC with antigen for up to 30 min
(Suzuki et al. 2009). The same experiments
showed that B cells rip off large bits of immune
complex from FDC to take it with them. These
experiments were also done in the absence
of competing epitope-specific antibodies, so
whether timings or amounts of antigen re-
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trieved are different in the presence of antibody
feedback is not known. The benefits of uptake
of so much antigen are not clear. B cells seem
to have intracellular compartments that pre-
serve antigen (Thaunat et al. 2012). If these
compartments contain antigen still bound by
epitope-specific antibodies, they may allow lon-
ger periods for BCRs to compete with preexist-
ing antibodies. This then would be compatible
with dissociation rates ,1025 sec21. The large
kinetic delays associated with very low dissoci-
ation rates could lead to higher-affinity B cells
being able to present sufficient peptide earlier
than lower-affinity variants. Future in vivo and
in vitro experiments should systematically test
the role of competing antibodies for epitope-
specific affinity maturation.

A ROLE OF ANTIBODY FEEDBACK FOR
EPITOPE SPREADING?

It has been proposed that the enormous in-
creases in serum avidity seen after immuniza-
tion with complex antigens are more a result
of clonal replacement and the generation of
specificity variations rather than a result of in-
creases of affinities of individual B-cell clones
(Newman et al. 1992; Guermonprez et al. 1998).
A further question is whether antibody feed-
back can be used as a tool to skew epitope usage,
guiding responses toward easier accessible un-
bound epitopes (Brady 2005). Immune com-
plexes have been used in human vaccination:
The earliest active vaccines against diphtheria
were complexes of diphtheria vaccine with an-
titoxin (Hajj Hussein et al. 2015). Passive im-
munization of mice with hyperimmune serum
specific for a strain of Actinobacillus pleuropneu-
moniae followed by active immunization with
strain variants leads to production of strain-spe-
cific unique antibodies (Stenbaek 1995). In
simian immunodeficiency virus (SIV) infection
models in macaques, passive immunization can
skew specificities of developing antisera leading
to earlier onset of production of neutralizing
antibodies (Haigwood et al. 2004).

It is therefore important to study develop-
ment of antibody affinities to complex antigens.
Hapten-specific responses are useful and can be

well analyzed as hapten-specific reagents are
available, but it is more difficult to follow the
behavior of individual clones. Even in hapten-
induced responses, the range of B-cell clones
taking part in the response changes over time.
The NP-specific response in C57BL/6 mice
initially is dominated by clones with canonical
V(D)J recombinations (Jacob and Kelsoe 1992).
Later, during the response, during recall, or
when priming with carrier proteins was done,
a broader repertoire of B-cell receptors can
emerge, indicating activation of a broader range
of B-cell clones specific for different epitopes
(see below; Reth et al. 1978; McHeyzer-Williams
et al. 1991; Nie et al. 1997).

A recent study by Kuraoka et al. (2016)
analyzed responses to two complex antigens,
Bacillus anthracis–protective antigen and influ-
enza hemagglutinin. This provides insights into
the parallel evolution of B-cell clones during
the GC response. Analyzing such complex re-
sponses carries the caveat that the molecular
specificities of individual B-cell clones are not
immediately known. B cells may be coevolving
in competition for the same antigen, but not
necessarily for the same epitope. The study
shows that GC B cells taken at specific times
after immunization have a large variety of affin-
ities. This is seen as absence of globally acting
selection mechanisms such as antibody feed-
back (Zhang et al. 2013). However, the same
study finds a consistent rise in median affinities
of B-cell clones, which is compatible with a rise
in general selection stringency. Variations in
intraclonal affinities are expected to be substan-
tial, as GC differentiation involves random mu-
tation of antibody genes, which continuously
produces lower-affinity variants that have to
be weeded out over time. More importantly,
without definition of the molecular specificities
of individual B-cell clones it is possible that
many of the different B-cell clones observed
in the study bind different antigenic epitopes.
Unless there is steric hindrance between neigh-
boring epitope, antibody feedback should act
on different epitopes independently, leading to
different strengths in competition dependent
on the affinity of antibodies that have developed
specifically for a particular epitope. Therefore,
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4 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a028795

 on September 28, 2017 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


0

50

100

150

200

Carrier protein–specific GC response

0% 

10% 

20% 

30% 

40% 

0
No 

Ab

NP-s
pe

cif
ic 

Ab

No 
Ab

NP-s
pe

cif
ic 

Ab
 5 10 15 

Days after NP-CGG immunization 

0 

10 

20 

30 

40 

50 

60 

70 

: m
ed

ia
n 
n 

G
C

 p
er

 s
pl

ee
n 

se
ct

io
n

 : 
%

 G
C

s 
w

ith
 m

ai
nl

y 
C

G
G

-b
in

di
ng

 c
el

ls
 

Hapten
response

Clone

A

B

C

D

A

B

C

D

E

A

B C

Bound
epitope

GC B cells per spleen

Non-NP-bindingNP-binding

**

%
 o

f c
on

tr
ol

Complex antigen
response

Figure 1. (A) Development of clones during a response to a single hapten antigen (top) or to a complex protein
antigen (bottom). Antibodies produced by one clone may regulate the same clone or other clones of lower or
similar affinity. Epitope specificities are symbolized by colors. Bar thickness represents clone size. Red arrows
symbolize antibody feedback regulation through antibody produced by members of a clone. Affinity is not
visually indicated. In the hapten response (top) clone A initially has higher affinity than clones C and D. Clone
B at a later stage develops even higher affinity and starts to repress clones A, C, D, and finally itself once it reaches
the limits of affinity maturation. In the polyclonal example (bottom) only clones specific for the same epitopes
(symbolized by different colors) are capable of repressing each other. (B) Effect of injection of high-affinity anti-
nitrophenyl (NP) immunoglobulin M (IgM) on numbers of NP-specific germinal center (GC) B cells and GC B
cells not specific to NP. Data taken 24 h after injection. Experimental setup described in Zhang et al. (2013). (C)
Frequency of carrier protein–specific GCs (diamonds) and number of GCs (line) during a primary splenic
response to NP-chicken g globulin (CGG). Experimental setup described in Toellner et al. (1996). Ab, Antibody.
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one would expect large variations in affinity be-
tween different clones to different epitopes.
Members of the same clone should bind the
same epitope, and therefore have less variation
of affinity. This fits with observations (Kuraoka
et al. 2016).

One surprising result presented by Kuraoka
et al. (2016) is that clones underrepresented in
GCs at early stages can thrive later on. A recent
study on complex antigens by Tas et al. (2016)
shows similar clonal bursts that occur at various
stages of the response. This may be explainable
by antibody feedback. Only clones specific for
the same epitope should regulate each other.
However, owing to different V(D)J sequences
used by different clones specific for an epitope,
they may find themselves in different adaptive
landscapes (Svensson and Calsbeek 2012). Dif-
ferent sequences require different key mutations
that will lead to significant affinity enhance-
ments at different stages of the evolutionary
pathway of each clone. Emergence of higher-
affinity mutations may lead to expansion of
a clone, while plasma cells derived from this
clone will suppress other lower-affinity clones
specific for that same epitope. In the absence of
significant additional affinity gains, antibodies
derived from one clone may even suppress the
expansion of that same clone (Fig. 1A). This
may open options for clones with different spec-
ificities to thrive, access antigen, and recruit
T-cell help. Indeed, we have seen similar phe-
nomena when experimentally increasing anti-
body feedback to single epitopes on haptenated
proteins. Injection of NP-specific antibody re-
duced the frequency of cells specific for NP, but
left GC B cells with other specificities unaffected
(Fig. 1B). At late stages of GC responses to NP-
chicken g globulin (CGG), increasing numbers
of GC B cells were specific for other epitopes
on the carrier protein (Fig. 1C). The easiest
explanation for this is that affinity maturation
of NP-specific antibody suppresses other clones
specific for the NP epitope, allowing the expan-
sion of slower maturing clones that are specific
to other epitopes on the carrier protein.

In summary, future studies should consider
not only the specificities and affinities of B cells,
but also the presence of competing antibody

and its affinity. While earlier studies showed
that the affinity of BCR–antigen interactions
can translate into affinity-dependent T-cell
help, in the absence of competing antibody
this had to be done at nM concentrations (Ba-
tista and Neuberger 1998; Guermonprez et al.
1998). Antibody feedback may restrict availabil-
ity of antigen in real-life conditions. Experi-
ments on antigen-induced B-cell activation
should consider the presence of antibodies
competing for specific epitopes. This requires
availability of monoclonal antibodies with
well-defined specificities and finely tuned affin-
ity (Zhang et al. 2013). One should also bear in
mind that variations in antibody class have ad-
ditional effects on antibody function. Study of
responses to complex antigens as models for
naturally occurring antigens is certainly valu-
able; however, care has to be taken to define
not only affinities but also epitope specificities
of B-cell clones and antibody development
(Newman et al. 1992). Understanding this bet-
ter may well lead to new ways to use antibodies
as a tool not only to increase affinity matura-
tion, but also to guide B-cell responses toward
epitope specificities wanted in specific contexts
(Midgley et al. 2011; Wrammert et al. 2011;
Doria-Rose et al. 2014).
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