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Abstract
Recently there has been a strong interest in cross-frequency coupling, the interaction between neuronal
oscillations in different frequency bands. In particular, measures quantifying the coupling between the phase of
slow oscillations and the amplitude of fast oscillations have been applied to a wide range of data recorded from
animals and humans. Some of the measures applied to detect phase-amplitude coupling have been criticized for
being sensitive to nonsinusoidal properties of the oscillations and thus spuriously indicate the presence of
coupling. While such instances of spurious identification of coupling have been observed, in this commentary we
give concrete examples illustrating cases when the identification of cross-frequency coupling can be trusted.
These examples are based on control analyses and empirical observations rather than signal-processing tools.
Finally, we provide concrete advice on how to determine when measures of phase-amplitude coupling can be
considered trustworthy.
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Detecting phase-amplitude coupling
In the past decade, there has been an increasing inter-

est in the role of brain oscillations in both human and
animal research (Buzsáki, 2006). Since these oscillations
co-occur in different frequency bands, their functional role
cannot be understood in isolation, and it is imperative to
uncover how they interact. There are different ways by
which these oscillations can interact [e.g., phase-to-

phase, amplitude-to-amplitude, and phase-to-amplitude
coupling (PAC); Palva et al., 2005; Jensen and Colgin,
2007; Siegel et al., 2012]. In particular, PAC has received
strong interest since the phenomenon suggests that the
phase of slow oscillations correlates with neuronal activity
in higher-frequency bands (Bragin et al., 1995; Canolty
et al., 2006; Tort et al., 2009; Miller et al., 2010; Belluscio
et al., 2012; Lisman and Jensen, 2013; von Nicolai et al.,
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Significance Statement

Neuronal oscillations at different frequencies are thought to reflect processing within and across brain
networks. To fully understand how these oscillations support neuronal computation, it is essential to
understand how they interact. It is, however, not straightforward to quantify cross-frequency interactions.
We here discuss the problems associated with quantifying cross-frequency coupling and put forward
examples in which indices of cross-frequency interactions can be considered reliable.
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2014; Bonnefond and Jensen, 2015; Colgin, 2015; Florin
and Baillet, 2015; Hyafil et al., 2015a,b; McLelland and
VanRullen, 2016; Fig. 1). Such findings have provided
important insights into the temporal coordination of neu-
ronal activity. However, the reliability of PAC has recently
been questioned since the measure is sensitive to nonsi-
nusoidal properties of the neuronal oscillations (Kramer
et al., 2008; Aru et al., 2015). Indeed, recent articles have
reported PAC, which can fully be explained by the lower-
frequency oscillation, as having a saw-tooth like shape
(Cole et al., 2016; Sheremet et al., 2016; Cole and Voytek,
2017). Although these concerns are valid, they do not
exclude the existence of a true measure of PAC that is
associated with neuronal activity in different frequency
bands. The aim of this commentary is to provide exam-
ples for cases where measures of PAC can be considered

trustworthy. We will conclude by providing concrete rec-
ommendations on how to determine whether measures of
PAC should be considered trustworthy.

Even though there are several metrics by which PAC
can be quantified, these different methods are qualita-
tively similar. The core of these methods is that they (1)
estimate the phase of the slow oscillations (Fig. 1b), (2)
estimate the temporal evolution of amplitude or power
(the “envelope”) of the faster signal (Fig. 1c), and (3) relate
the phase of the slow oscillations to the time course of
power of the faster signal (Fig. 1d,e).

The time course of phase and power (points 1 and 2)
can be estimated by a sliding time window subjected to a
discrete Fourier transformation, a wavelet transformation
(typically, a Morlet wavelet), or a bandpass filter followed
by a Hilbert transformation. These three approaches, at

a

b

c

d e

Figure 1. Quantifying PAC: a, The raw signal. b, c, The temporal evolution of phase (b) and power (c) are typically identified using a
discrete Fourier transform, wavelet transformations, or a bandpass filter followed by a Hilbert transformation. d, e, The relationship
between phase and amplitude envelope can be quantified by the phase relationship between the two signals (e.g., coherence; d;
Osipova et al., 2008) or by considering the nonuniformity of the phase distribution of fast-frequency power with respect to the slow
oscillations (e; Tort et al., 2010).
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some level, all involve a Fourier-like transformation multi-
plying the signal by e�i2�ft, where f is the frequency of
interest (Bruns, 2004). The slow and fast signals (point 3)
are related by estimating the phase synchronization (e.g.,
coherence) between the slow signal and the envelope of
the fast signal (Osipova et al., 2008; Fig. 1d) or by quan-
tifying the distribution of power of the fast signal with
respect to the phase of the slow signal (Canolty et al.,
2006; Tort et al., 2010; Fig. 1e). Strong coherence or a
nonuniform phase distribution of high-frequency power is
indicative of PAC. Another method includes a general
linear model approach to quantify the relationship be-
tween phase and amplitude (van Wijk et al., 2015). All
these measures have in common that they are sensitive to
coupling in the sense of stronger high-frequency ampli-
tude at certain low-frequency phases than at others.
When applying these PAC measures, a broad set of fre-
quency ranges are typically explored, yielding a
frequency-by-frequency measure of the coupling.

The problem: spurious identification PAC
coupling

The goal of reporting PAC is to identify coupling in
which amplitude in the high-frequency band is associated
with actual neuronal activity in that frequency band, which
is modulated by slow neural oscillations. However, the
amplitude modulations at fast frequencies might not be
caused by neuronal firing in that frequency range per se
but could also stem from higher harmonics generated by
the oscillations in the slow-frequency band. From stan-
dard Fourier analysis (Stein and Shakarchi, 2003), it fol-
lows that any periodic signal repeated at frequency f0 can
be expressed as a sum of sinusoidal functions with fre-
quencies f0, 2f0, 3f0, . . . (Fig. 2). Importantly, the more the
periodic signal deviates from a sinusoidal function, the
larger the coefficients of the higher harmonics. Any non-
sinusoidal neural oscillation will therefore necessarily have
power in higher harmonics. Importantly, depending on the
exact waveform shape, the application of a technique like
a sliding time window Fourier transform (or equivalent) will
result in this higher harmonic power showing a modula-
tion as a function of phase of the slow oscillation. The
higher harmonics are not reflecting “true neuronal activity”
per se, as they may not be associated with spiking or
oscillations at these frequencies. Measures of PAC are
sensitive to higher harmonics, as shown in Figure 2d.
Note that, due to frequency smoothing as a result of
estimating the envelope for the fast frequencies, the har-
monic contributions are often “bleeding” together in the
PAC plot. Therefore, great care must be taken when
interpreting measures of PAC, in particular in the fre-
quency bands of the higher harmonics, additionally taking
into account the effective frequency smoothing (Kramer
et al., 2008; Aru et al., 2015; Cole et al., 2016; Jones,
2016; Lozano-Soldevilla et al., 2016). In particular, Cole
et al. (2016) and Sheremet et al. (2016) provide concrete
examples from respective intracranial human and hip-
pocampal rat recordings in which nonsinusoidal oscilla-
tions contribute to estimates of PAC.

How are nonsinusoidal oscillations
generated?

What will cause neuronal oscillations to be nonsinusoi-
dal? One possibility is a gradual ramping up of neuronal
activity within a slow cycle. This would produce a saw-
tooth like shape (Fig. 2e), which indeed has been ob-
served in the rat hippocampus (Terrazas et al., 2005;
Belluscio et al., 2012; Sheremet et al., 2016) and in elec-
trocorticography recordings in the human motor cortex
(Cole et al., 2016). Another possibility is pulses of neuronal
activity repeated at a fixed frequency. Yet another possi-
bility is “clipping” in which the periodic signal is capped
when exceeding a certain magnitude. This could be ex-
plained by periodic neuronal activity “maxing out” (e.g.,
due to a depletion of some resource). While clipping is a
theoretical possibility, we are not aware of reports of such
effects. As described, nonsinusoidal wave shapes will
produce higher harmonics, resulting in spurious identifi-
cation of PAC. As with many measures of neural activity,
one must be cautious of potential confounds like these
when interpreting measures of PAC. We would here like to
emphasize that the possibility of spurious measures of
coupling by no means precludes the existence of true
PAC associated with neuronal activity in various fre-
quency bands.

Three examples of reliable phase-to-
amplitude coupling

How best to handle the concerns of spurious identifi-
cation of PAC? Although advanced signal-processing
techniques are being developed to alleviate problems
with spurious coupling (Dvorak and Fenton, 2014; van
Driel et al., 2015; Cole et al., 2016; Soto et al., 2016), it is
problematic to implement signal-processing tools that
unequivocally remove the effects of higher harmonics
when calculating the PAC measure. However, even when
signal-processing tools cannot provide a conclusive an-
swer, there are specific empirical circumstances that
might alleviate concerns about the spurious identification
of coupling. We will here provide three such examples.

Example 1: neuronal spiking clocked by gamma
oscillations

The core concern in PAC is that activity at higher fre-
quencies is caused by harmonics rather than neuronal
firing at higher frequencies. Intracranial animal recordings
allow us to discern both spikes and local field potentials
(LFPs). Such recording is routinely performed in behaving
rats using electrodes implanted in the hippocampus.
Such recordings have revealed that hippocampal activity
in the gamma band is modulated by the phase of the theta
oscillations (Bragin et al., 1995; Colgin et al., 2009; Bel-
luscio et al., 2012; Fig. 3a). Given that hippocampal theta
oscillations are clearly nonsinusoidal (Belluscio et al.,
2012), higher harmonics are indeed a concern. However,
Colgin et al. (2009) were able to identify reliable gamma
oscillations directly visible in the LFP (Fig. 3b). Interest-
ingly, both fast and slow gamma oscillations were identi-
fied. Furthermore, analysis of spike-triggered LFP
recordings revealed that spike timing was clocked by the
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Figure 2. Periodic nonsinusoidal signals expressed as Fourier series. a, A periodic nonsinusoidal signal (blue line) constructed by a
sigmoidal function applied to sinusoidal signal: s�t� � f�0.5 � 0.5 sin �2�10t�� where f�x� � 1 / �1 � e�12�x�0.7�� . The signal can be
expressed as a sum of sinusoids s�t� � �1 sin �2�ft � �1� � �2sin �2��2f�t � �2� � �3sin �2��3f�t � �3��. i.e. the periodic signal
can be expressed as a sum of sinusoids at the harmonic frequencies. The green line shows the sum of the first 10 harmonics. b, The
first 10 harmonics. c, The coefficient for amplitude and phase (�i and �i). d, The PAC for the signal is sensitive to the higher harmonics
and can therefore produce a spurious phase-to-power coupling. e, Examples of nonsinusoidal functions of some neuronal relevance:
periodic pulses, a saw-tooth function, and a clipped sinusoidal signal.
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phase of ongoing gamma oscillations (Fig. 3c). These
findings provide direct evidence for actual neuronal activ-
ity with a dominant gamma frequency component. By
simultaneously considering neuronal spiking and LFPs,
we can confidently conclude that the coupling between
gamma activity and theta phase reported in the rat hip-

pocampus is due to genuine oscillatory activity in the
gamma band.

Example 2: slow and fast oscillations are generated
by different populations

PAC is not constrained to data from single site record-
ings. It can also be applied to quantify the relationship
between the phase of oscillations in one site and fast
activity in another site (van der Meij et al. 2012). This was
done in the study by Spaak et al. (2012) in which data from
laminar recordings in visual cortex of the monkey were
analyzed. The core finding was that the phase of alpha
oscillations in the deeper layers (infragranular layers) was
coupled to the gamma band activity in superficial layers
(supragranular layers; Fig. 4). Importantly, the PAC be-
tween layers was stronger than the local PAC in any of the
layers. This finding provides evidence for different popu-
lations generating the alpha and gamma band activity.
The observation strengthens the case that gamma activity
coupled to alpha phase is not spurious. Had the effect
been due to higher harmonics, it would have been stron-
ger locally than across sites. In conclusion, measures of
PAC in which the slow and fast activity are generated in
distinct layers, areas, or populations reduce concerns on
spurious coupling.

Example 3: coupling increases when low-frequency
power decreases

A recent memory study relying on human MEG inves-
tigated PAC when subjects were preparing to encode
upcoming visual items (Park et al., 2014, 2016). When
subjects were asked to ignore the upcoming item (“No-
Remember”), alpha power in visual cortex was stronger
compared with when subjects were asked to remember
(“Remember”) the item (Fig. 5a). However, importantly, in
the Remember condition, when alpha power was low, the
PAC coupling was stronger (Fig. 5b). This finding is con-
sistent with the notion that alpha oscillations inhibit
gamma band activity in a phasic manner (Mazaheri and
Jensen, 2008). The stronger the alpha oscillations, the
lower the gamma power and therefore the weaker the
PAC in the No-Remember condition. Had the PAC been
explained by the nonsinusoidal shape of the alpha oscil-
lations, and thus by the higher harmonics of the alpha
frequency, one would expect PAC to increase with alpha
power since the magnitude of the higher harmonics would
increase as well. Park et al. (2016) found the reverse, in
support of nonspurious PAC. It does remain a theoretical
possibility that low-amplitude alpha oscillations are less
sinusoidal than high-amplitude alpha oscillations. How-
ever, this is not likely to explain the effect on PAC, since
the lower amplitude would also impair the alpha phase
estimate and thereby reduce the PAC. In sum, studies in
which one can demonstrate an increase in PAC associ-
ated with a decrease in power speak to the existence of
nonspurious coupling.

Does broadband gamma activity warrant
special caution?

Transient power in higher harmonics at certain phases
of a lower-frequency oscillation, together with frequency

a

b

c

Figure 3. Gamma oscillations are modulated by theta phase in
the rat hippocampus. a, The PAC measure applied to the LFP of
rat data reveals phase-amplitude coupling. b, Gamma oscilla-
tions coupled to the phase of the theta oscillations are directly
visible in the unfiltered LFPs. c, A histogram demonstrating the
neuronal firing is modulated by gamma band oscillations. Re-
printed by permission from Macmillan Publishers Ltd. (Colgin
et al., 2009).
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smoothing due to power estimation, might result in a
typical broadband frequency response at those low-
frequency phases that contain sharp transitions (e.g., the
peak of a saw tooth). One should be extra careful about
such broadband PAC profiles. However, even the occur-
rence of broadband (“gamma”) activity modulated by

slow oscillations does not per se imply that the measured
PAC is caused by nonsinusoidal slow oscillations. As we
will explain below, the broadband response could be
caused by neuronal spiking, providing a wide frequency
content. Indeed, it is debated whether neuronal activity in
the gamma band can be considered oscillatory or whether
it is a broadband phenomenon (Hermes et al., 2015). This
issue is complicated by factors such as differences be-
tween species, tasks, brain regions, and recording tech-
niques. For instance, Colgin et al. (2009) have reported
fast and slow gamma oscillations, both in a well defined,
relatively narrow frequency band, in the behaving rat.
These were isolated in spike-field recordings and were
associated with, respectively, retrospective and prospec-
tive memory operations (Bieri et al., 2014). In contrast,
several other studies report broadband activity modulated
by slow oscillations (Canolty et al., 2006). The latter
should, however, not be considered spurious PAC.
Broadband activity modulated by a slow rhythm does
speak to the temporal organization of neuronal computa-
tion since it demonstrates that the neuronal activity is
synchronized more strongly at some phases than others
within a cycle of a slow rhythm. This phasic synchroniza-
tion is bound to modulate the communication to target
regions and is likely to be important for neuronal commu-
nication (Jensen, 2005; Hyafil et al., 2015b; McLelland
and VanRullen, 2016).

Conclusion
Nonsinusoidal low-frequency waveforms will have tran-

sient power at higher harmonics in certain phases of the
cycle. When analyzing PAC in such signals, one might
erroneously conclude that higher-frequency neural activ-
ity is clocked by a lower-frequency one. Even advanced
signal-processing tools might never completely alleviate
this potential artifact. Instead, one can look to other em-
pirical factors to aid the interpretation of PAC. We have
here presented three examples of reports of PAC that
cannot be explained by concerns such as higher harmon-
ics. While great care should be taken when interpreting
PAC measures, there are numerous good examples of
true coupling between distinct neuronal activity at slow
and fast frequencies. Although there is no magic bullet,
we recommend searching for complementary evidence,
as follows:

• Accumulate evidence from complementary modalities.
For instance, human data recorded by EEG and MEG
can be related to intracranial electrocorticographic re-
cordings from patients. Use spike-field data in rodents
or monkeys to elucidate whether the gamma activity in
question can be associated with the coordination of
neural firing.

• Investigate coupling between cortical layers or regions.
For instance, if alpha or theta phase drives gamma
power in a neighboring region more strongly than within
the phase-providing region itself, concerns on spurious
PAC are reduced.

• Relate modulations in low-frequency power to modula-
tions in PAC. A lack of correlation or a negative corre-
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Figure 4. Gamma power in superficial cortical layers is coupled
to alpha phase in deeper layers. a, Epochs of data in the alpha
range are phase aligned according to the peaks in each epoch.
For each epoch, the time–frequency representation of power is
calculated and averaged. These data were obtained from laminar
recordings in visual cortex of the monkey. Note that coupling
was stronger across sites than within sites. This would not have
been the case if the coupling was explained by nonsinusoidal
alpha oscillations. b, The PAC measure applied to the data from
the deep and superficial layers. Reproduced with permission
from Cell Press (Spaak et al., 2012).
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lation makes the interpretation as a harmonic artifact
less likely.

We encourage a continued debate on when measures
of PAC can be considered to reflect neuronal coupling
between oscillations and fast neuronal activity. Given
careful interpretation, we believe PAC measures are an
essential tool for understanding the temporal organization
of hierarchical neuronal computation.
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