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ABSTRACT 1 

Excessive glucocorticoid exposure has been shown to be deleterious for pancreatic beta cell 2 

function and insulin release. However, glucocorticoids at physiological levels are essential 3 

for many homeostatic processes, including glycemic control. Here, we show that 4 

corticosterone and cortisol and their less active precursors, 11-dehydrocorticosterone (11-5 

DHC) and cortisone, suppress voltage-dependent Ca2+ channel function and Ca2+ fluxes in 6 

rodent as well as human beta cells. However, insulin secretion, maximal ATP/ADP responses 7 

to glucose and beta cell identity were all unaffected. Further examination revealed the 8 

upregulation of parallel amplifying cAMP signals, and an increase in the number of 9 

membrane-docked insulin secretory granules. Effects of 11-DHC could be prevented by 10 

lipotoxicity and were associated with paracrine regulation of glucocorticoid activity, since 11 

global deletion of 11β-hydroxysteroid dehydrogenase type 1 normalized Ca2+ and cAMP 12 

responses. Thus, we have identified an enzymatically-amplified feedback loop whereby 13 

glucocorticoids boost cAMP to maintain insulin secretion in the face of perturbed ionic 14 

signals. Failure of this protective mechanism may contribute to diabetes in states of 15 

glucocorticoid excess such as Cushing’s syndrome, which are associated with frank 16 

dyslipidemia.  17 

  18 
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INTRODUCTION 1 

Circulating glucocorticoids exert potent metabolic effects including lipolysis, hepatic 2 

gluconeogenesis, amino acid mobilization and reduced skeletal muscle glucose uptake (1). 3 

This is facilitated by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (HSD11B1), 4 

which (re)activates glucocorticoid in a tissue-specific manner to determine bioavailability (2). 5 

As such, states of excess glucocorticoids (e.g. Cushing’s syndrome) are pro-diabetic, since 6 

they cause profound glucose intolerance and insulin resistance.  7 

While systemic administration of glucocorticoids induces a compensatory increase in 8 

beta cell mass, and eventually insulin secretory failure due to insulin resistance (3), effects 9 

directly on beta cell function are less well understood. Suggesting an important link between 10 

glucocorticoids and insulin release, beta cell-specific glucocorticoid receptor (GR) 11 

overexpression reduces glucose tolerance (4). However, in vitro studies using isolated islets 12 

have shown inhibitory or no effect of glucocorticoids on glucose-stimulated insulin secretion 13 

depending on the steroid potency, concentration and treatment duration (5-9). By contrast, 14 

HSD11B1 increases ligand availability at the GR by converting less active to more active 15 

glucocorticoid (11-dehydrocorticosterone (11-DHC) -> corticosterone in rodents; cortisone -16 

> cortisol in man), impairing beta cell function in islets both in vitro and in vivo (6; 10; 11). 17 

Whereas 11-DHC has consistently been shown to impair beta cell function in islets from 18 

obese animals, conflicting reports exist regarding its effects on normal islets (7; 10). 19 

More generally, the signaling components targeted by glucocorticoids are not well 20 

defined. While exogenous application of glucocorticoid subtly decreases insulin release, and 21 

nicotinamide adenine dinucleotide phosphate, 3',5'-cyclic adenosine monophosphate (cAMP) 22 

and inositol phosphate production (5), these studies were performed using high dose 23 

dexamethasone (25x relative potency compared to cortisol). Conversely, administration of the 24 

same glucocorticoid in drinking water augments insulin release by increasing the number of 25 

Page 3 of 52

For Peer Review Only

Diabetes



4 

 

docked exocytotic vesicles, as well as beta cell mitochondrial potential/metabolism (12). 1 

However, indirect effects of insulin resistance cannot be excluded, as studies in high fat diet-2 

fed mice have shown that compensatory beta cell responses, including proliferation, occur 3 

within a few days (13). Lastly, glucocorticoid administration or GR deletion in the early 4 

neonatal period alters beta cell development, leading to reductions in the expression of key 5 

maturity markers including Pdx1, Nkx6.1 and Pax6 (14; 15). Whether this is also seen in 6 

adult islets, as may occur during diabetes (16), is unknown. 7 

In the present study, we therefore sought to investigate the mechanisms by which the 8 

endogenous glucocorticoids corticosterone and cortisol affect beta cell function. Using in situ 9 

imaging approaches together with biosensors, we reveal that glucocorticoids perturb cytosolic 10 

Ca2+ concentration through effects on voltage-dependent Ca2+ channel (VDCC) function, 11 

without altering beta cell maturity, glucose-induced changes in ATP/ADP ratio or incretin 12 

responsiveness. This however does reduce insulin secretion, since glucocorticoids upregulate 13 

parallel cAMP signaling pathways. The less active glucocorticoids 11-DHC and cortisone 14 

showed identical effects, which could be reversed in mouse following global deletion of 15 

Hsd11b1. Thus, a steroid-regulated feedback loop, encompassing an enzymatic amplification 16 

step, maintains normal insulin secretory output in the face of impaired beta cell ionic fluxes.  17 

  18 
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MATERIALS AND METHODS 1 

Animals 2 

CD1 mice (8-12 weeks, males) were used as wild-type tissue donors. Hsd11b1-/- mice were 3 

generated as described (17). Studies were regulated by the Animals (Scientific Procedures) 4 

Act 1986 of the United Kingdom, and approval granted by the University of Birmingham’s 5 

Animal Welfare and Ethical Review Body. 6 

Islet isolation 7 

Islets were isolated using collagenase digestion and cultured in RPMI supplemented with 8 

10% fetal calf serum, 100 U/mL penicillin and 100 µg/mL streptomycin. Vehicle (ethanol 9 

0.2%), 11-DHC (20/200 nM) or corticosterone (20 nM) (i.e. within the circulating free 10 

glucocorticoid range) were applied for 48 hrs. BSA-conjugated palmitate was applied at 0.5 11 

mM.  12 

Human islet culture 13 

Islets were obtained from isolation centers at Alberta (IsletCore) (18), Pisa and Milan, with 14 

local and national ethical permissions. Islets were cultured  in RPMI containing 10% fetal 15 

calf serum, 100 U/ml penicillin, 100 µg/ml streptomycin, and 0.25 µg/ml fungizone, 16 

supplemented with 5.5 mM D-glucose, and treated with either vehicle (ethanol 0.2%), 17 

cortisone (200 nM) or cortisol (20 nM) for 48 hrs. See Supplemental Table 1 for donor 18 

characteristics. Studies were approved by the National Research Ethics Committee (NRES), 19 

REC reference 16/NE/0107. 20 

Calcium, ATP/ADP and cAMP imaging 21 

Islets were loaded with 10 µM Fluo8 AM for 45 mins at 37 °C before washing and 22 

incubation in buffer for a further 30 min to allow cleavage by intracellular esterase. Imaging 23 

was conducted using either: 1) a Crest X-Light spinning disk and 10 x/0.4 NA objective; or 24 

2) a Zeiss LSM780 and 10 x/0.45 NA objective. For the Crest system, excitation was 25 
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delivered at λ = 458–482 nm (400 ms exposure; 0.33 Hz) and emitted signals detected at λ = 1 

500–550 nm using an EMCCD. For the Zeiss system, excitation was delivered at λ = 488 nm, 2 

and emitted signals detected at λ = 499–578 nm using a PMT. Fura2 was loaded as for Fluo8 3 

and imaging performed using LEDs (excitation λ = 340/385 nm; emission λ = 470-550 nm). 4 

ATP/ADP ratios and cAMP responses were measured using adenovirus harboring 5 

either Perceval (excitation/emission as for Fluo8) or the FRET probe Epac2-camps 6 

(excitation λ = 430-450 nm; emission λ = 460-500 nm and 520-550 nm) (19; 20). For 7 

Perceval, glucose was increased from 3-11 mM, which leads to plateau responses (21). An 8 

effect of glucocorticoid on Epac2-camps expression was unlikely, since single and dual 9 

channel fluorescence under maximal stimulation was similar for all treatments (Supplemental 10 

Table 2). In all cases, HEPES-bicarbonate buffer was used, containing (in mM): 120 NaCl, 11 

4.8 KCl, 24 NaHCO3, 0.5 Na2HPO4, 5 HEPES, 2.5 CaCl2, 1.2 MgCl2, 3-17 D-glucose. Ca2+, 12 

cAMP and ATP/ADP traces were normalized as F/Fmin, where F = fluorescence at any given 13 

time point and Fmin = minimum fluorescence during the recording (i.e. under basal 14 

conditions). 15 

Electrophysiology 16 

VDCC currents were recorded from dispersed mouse beta cells, as previously described (22). 17 

Patch electrodes were pulled to a resistance of 3-4 MΩ then filled with an intracellular 18 

solution containing (in mM): 125 CsCl, 10 tetraethylammonium Cl (TEA), 1 MgCl2, 5 19 

EGTA, 10 HEPES, 3 MgATP, pH 7.22 with CsOH. Cells were patched in HEPES-buffered 20 

solution + 17 mM glucose. Upon obtaining the whole-cell configuration with a seal resistance 21 

> 1 GΩ, the bath solution was exchanged for a modified HEPES-buffered solution containing 22 

(in mM): 62 NaCl, 20 TEA, 30 CaCl2, 1 MgCl2, 5 CsCl, 10 HEPES, 17 glucose, 0.1 23 

tolbutamide, pH 7.35 with NaOH. Beta cells were perfused for 3 mins with this solution prior 24 

to initiating the VDCC recording protocol. Voltage steps of 10 mV were applied from a 25 
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holding potential of -80 mV; linear leak currents were subtracted online using a P/4 protocol. 1 

Data were analyzed using Clampfit (Molecular Devices). 2 

Immunohistochemistry and super-resolution imaging 3 

Islets were fixed overnight at 4ºC in 4% parafolmadehyde before immunostaining using 4 

rabbit monoclonal anti-insulin (Cell Signaling Technology; 1:400) and goat anti-rabbit 5 

Alexa568 (1:1000). Super-resolution imaging was performed using a VisiTech iSIM and a 6 

100x/1.49 NA objective. Excitation was delivered using a λ = 561 nm and emitted signals 7 

captured at λ = 633-647 nm using a sCMOS. Image stacks were cropped to include only the 8 

near-membrane regions and exclude out-of-focus signal, converted to 8-bit grayscale, before 9 

obtaining the maximum intensity projection. Auto-thresholding was performed in Fiji (NIH) 10 

to produce a binary snapshot from which the area occupied by insulin granules could be 11 

quantified as a unitary ratio (V/v) versus the total membrane area using the analyze particle 12 

plugin, as previously described (20).  13 

Real-time PCR 14 

Relative mRNA abundance was determined using SYBR Green chemistry and fold-change in 15 

mRNA expression calculated compared to Actb using the 2–∆∆Ct method (see Supplemental 16 

Table 3 for primer sequences). Hsd11b1 mRNA abundance was determined using TaqMan 17 

assays for mouse (Cat. # 4331182) and human (Cat. # 4331182) tissue, Hsd11b1 expression 18 

calculated using 2–∆Ct x 1000, and transformed values presented as arbitrary units. 19 

Measurements of insulin secretion and ATP in isolated islets 20 

Batches of eight islets were placed in low-bind Eppendorf tubes, incubated for 30 mins at 37 21 

°C in HEPES-bicarbonate buffer containing 3 mM glucose, before addition of either 3 mM 22 

glucose, 17 mM glucose or 17 mM glucose + 10 mM KCl for a further 30 mins and 23 

collection of supernatant. Total insulin was extracted into acid-ethanol. Insulin concentration 24 

was determined using a Homogeneous Time Resolved Fluorescence (HTRF)-based assay 25 
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(Cisbio) according to the manufacturer’s instructions. Total ATP at 3 and 17 mM glucose 1 

was measured in batches of 25 islets using a luciferase-based assay (Invitrogen), and values 2 

normalized to total protein.   3 

Statistical analyses 4 

Pairwise comparisons were performed using paired or unpaired Student’s t-test. Interactions 5 

between multiple treatments were determined using one-way ANOVA (adjusted for repeated 6 

measures as necessary), followed by  Bonferonni’s or Tukey’s post hoc test. Analyses were 7 

conducted using Graphpad Prism and IgorPro.  8 

  9 
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RESULTS 1 

Glucocorticoids alter ionic but not metabolic fluxes  2 

Fluo8-loaded beta cells residing within intact islets of Langerhans were subjected to 3 

multicellular Ca2+-imaging approaches (23). Individual beta cells responded to elevated 4 

glucose (3 mM -> 17 mM) with large increases in cytosolic Ca2+ levels (Fig. 1A and B). 5 

Whereas 11-DHC 20 nM was without effect, higher (200 nM) concentrations suppressed the 6 

amplitude and area-under-the-curve (AUC) of Ca2+ rises in response to glucose and glucose + 7 

10 mM KCl by ~30% (Fig. 1A-E) (Supplemental Fig. 1A and B) (Supplemental Fig. 2A-C), 8 

and this reached ~50% in the presence of corticosterone 20 nM. Results were confirmed 9 

using the ratiometric Ca2+ indicator Fura2, excluding a major contribution of basal Ca2+ 10 

levels to the magnitude changes detected here (Supplemental Fig. 2A-C). No effect of 11 

glucocorticoid on the time to onset of Ca2+ rises was detected (lag period ± SD = 22.5 ± 7.7 12 

versus 26.3 ± 9.7 versus 24.0 ± 6.2 s for control, 11-DHC and corticosterone, respectively; 13 

non-significant, one-way ANOVA). The peak Ca2+ response to KCl depolarization in low ((3 14 

mM) glucose was unaffected by 11-DHC and significantly increased by corticosterone 15 

(Supplemental Fig. 2D and E), although both glucocorticoids reduced Ca2+ amplitude when 16 

KCl concentration was increased from 10 to 30 mM (Supplemental Fig. 2F and G) (24). 17 

While both 11-DHC and corticosterone led to more sustained Ca2+ influx in response to 3 18 

mM glucose + 10 mM KCl (Supplemental Fig. 2E), this was not the case with 30 mM KCl 19 

(Supplemental Fig. 2G). An effect of treatment on basal Ca2+ levels at 3 mM glucose was 20 

unlikely, since the Fura2 340/385 ratio was not significantly affected by 11-DHC or 21 

corticosterone (Supplemental Fig. 2H). 22 

Supporting an action on later steps in ionic flux generation, 11-DHC and 23 

corticosterone reduced Ca2+ oscillation frequency at moderately (11 mM) elevated glucose 24 

concentration (Fig. 1F and G). Glucocorticoids (cortisone and cortisol) also suppressed Ca2+ 25 
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responses to glucose and glucose + 10 mM KCl in human islets (Fig. 1H-J), without 1 

significantly altering basal Ca2+ concentration (Supplemental Table 4). The reported 2 

glucocorticoid actions were specific to glucose, as both 11-DHC and corticosterone were 3 

unable to influence Ca2+ responses to exendin-4 in mouse islets in terms of oscillation 4 

frequency and AUC (Fig. 1K-M), these parameters being the primary drivers of incretin-5 

stimulated Ca2+ fluxes in this species (23).  6 

Beta cells remain differentiated in the presence of glucocorticoids 7 

Immature or de-differentiated beta cells fail to respond properly to glucose, a defect that can 8 

partly be explained by lowered transcription factor expression, and impairments in 9 

metabolism and Ca2+ flux generation (25). This was unlikely to be the case here, however, as 10 

11-DHC and corticosterone did not significantly affect mRNA abundance of the key beta cell 11 

maturity markers Pdx1 (Fig. 2A-C) and Nkx6.1 (Fig. 2D-F). Moreover, maximal ATP/ADP 12 

increases in response to glucose, measured using the biosensor Perceval (26), were not 13 

significantly different (Fig. 2G and H). 11-DHC and corticosterone did not affect the time to 14 

onset (Supplemental Fig. 3A) or the amplitude (Supplemental Fig. 3B) of the initial, transient 15 

decrease in ATP/ADP. No significant effects of glucocorticoid on basal or glucose-stimulated 16 

ATP levels were detected using luciferase-based assays (Supplemental Fig. 4). Patch-clamp 17 

electrophysiology revealed abnormal VDCC function in the presence of glucocorticoids, with 18 

voltage-current (I-V) curves showing a marked reduction in Ca2+ conductance (Fig. 2I and J). 19 

Suggestive of changes in VDCC function rather than expression, transcript levels of the 20 

major alpha and beta subunits Cacna1c (Fig. 2K and L), Cacnb2 (Fig. 2M and N) and 21 

Cacna1d (Fig. 2O and P) were not significantly altered.  22 

Glucocorticoids do not affect insulin secretory responses 23 

In response to glucose, increases in ATP/ADP ratios lead to closure of KATP-channels, 24 

opening of VDCCs and Ca2+-dependent insulin secretion (27). Thus, perturbed cytosolic Ca2+ 25 
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fluxes/levels generally translate to reductions in insulin secretory output (27). However, 1 

glucose and glucose + KCl-stimulated insulin release were not significantly different 2 

following 48 hr exposure of islets to 11-DHC or corticosterone (Fig. 3A). This was not due to 3 

an increase in insulin expression, since Ins1 mRNA levels were similar in the presence of 4 

both glucocorticoids (Fig. 3B-D). Likewise, total insulin content was not significantly 5 

different between treatments under all stimulation conditions examined (Fig. 3E). Insulin 6 

secretion was also unaffected by cortisone and cortisol treatment in primary human islets 7 

(Fig. 3F and G) (Supplemental Table 1).  8 

cAMP signals are upregulated by glucocorticoids 9 

Granule release competency can be increased by signals including cAMP, which acts directly 10 

upon protein kinase A (PKA) and exchange protein directly activated by cAMP 2 (Epac2) 11 

(28). Using the FRET probe Epac2-camps to dynamically report cytosolic cAMP (20), 12 

glucose induced a robust increase in levels of the nucleotide (Fig. 4A). Both 11-DHC and 13 

corticosterone upregulated cAMP responses to glucose by ~1.5-fold (Fig. 4A-C). This 14 

appeared necessary for maintenance of secretory output, since chemical inhibition of PKA 15 

significantly reduced glucose-stimulated insulin release in 11-DHC-treated islets (Fig. 4D). 16 

Indeed, more granules were present at the membrane in glucocorticoid-treated islets, revealed 17 

using super-resolution structured illumination microscopy (SIM) (Fig. 4E and F). Similar 18 

results were seen in human islets, with cortisone and cortisol both augmenting cAMP 19 

responses to glucose (Fig. 4G and H). As for Ca2+, the actions of glucocorticoid were 20 

glucose-specific, as neither 11-DHC nor corticosterone altered cAMP responses to exendin-4 21 

(Fig. 4I and J). Supporting a central role for adenylate cyclase (Adcy) in this effect, 22 

expression of Adcy1 was increased by both glucocorticoids (Fig. 4K and L), and induction of 23 

lipotoxicity with palmitate- shown previously to lower Adcy9 mRNA (29)- prevented 24 

glucocorticoid from augmenting cAMP responses to glucose (Fig. 4M and N).  25 
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Hsd11b1 is expressed in islets of Langerhans 1 

HSD11B1 is responsible for catalyzing the conversion of 11-DHC to corticosterone and is an 2 

important mechanism that determines local glucocorticoid activity (30). Expression of 3 

Hsd11b1 in islets has previously been shown to be sufficient for 11-DHC � corticosterone 4 

conversion (7). We therefore repeated studies in islets obtained from mice globally lacking 5 

one (Hsd11b1+/-) or both (Hsd11b1-/-) alleles of Hsd11b1. While Hsd11b1 mRNA levels were 6 

low in mouse islets compared to liver and muscle, it was still detectable (∆Ct = 7.33. ± 1.80) 7 

(Supplemental Fig. 5A). Moreover, Hsd11b1 mRNA abundance was 55-75% lower in islets 8 

from animals expressing a single copy of Hsd11b1 and undetectable in those deleted for both 9 

alleles (Supplemental Fig. 5B), as assessed using specific TaqMan assays. Quantification of 10 

HSD11B1 mRNA revealed similar levels in human and mouse islets, with expression an 11 

order of magnitude lower than in human subcutaneous and omental adipose tissue 12 

(Supplemental Fig. 5C), a major site of enzyme activity and steroid reactivation (31).  13 

Hsd11b1
 
deletion reverses the effects of glucocorticoids on beta cell Ca

2+
 and cAMP 14 

signaling  15 

As expected, both 11-DHC and corticosterone impaired cytosolic Ca2+ fluxes in beta cells 16 

residing within islets from Hsd11b1+/- animals (Fig. 5A-D) (Supplemental Fig. 6A and B). 17 

However, deletion of Hsd11b1-/- throughout the islet reversed these effects, with 11-DHC and 18 

corticosterone no longer able to suppress Ca2+ rises in response to glucose- or glucose + KCl 19 

(Fig. 5E-H) (Supplemental Fig. 6C and D). This suggests that local regulation of 20 

glucocorticoid activity in the islet may mediate the effects of 11-DHC and corticosterone on 21 

beta cell Ca2+ fluxes. 11-DHC was able to significantly elevate cAMP responses to glucose in 22 

Hsd11b1
+/- (Fig. 6A-D) (Supplemental Fig. 7A), but not Hsd11b1-/- islets (Fig. 6E-H) 23 

(Supplemental Fig. 7B). However, corticosterone still improved cAMP responses to glucose, 24 

even following deletion of Hsd11b1 (Fig. 6A-H) (Supplemental Fig. 7A and B). Glucose-25 
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stimulated insulin secretion was significantly higher in corticosterone- versus control- or 11-1 

DHC-treated Hsd11b1-/- islets (Fig. 6I), consistent with the Ca2+ and cAMP results. Similarly, 2 

QRT-PCR analyses revealed upregulation of Adcy1 expression by corticosterone, but not by 3 

11-DHC, in Hsd11b1-/- islets (Fig. 6J and K). Ca2+ responses to glucose, glucose + KCl and 4 

KCl were not significantly decreased by 11-DHC (Fig. 7A-D) (Fig. 7E and F) (Supplemental 5 

Fig. 8A and B) in islets pre-treated with RU486. Similarly, corticosterone was unable to 6 

impair Ca2+ responses to glucose and KCl in RU486-treated islets (Fig. 7E) (Supplemental 7 

Fig. 8C and D), although Ca2+ responses to glucose + KCl were unaffected (Fig. 7F). Thus, 8 

the inhibitory actions of the glucocorticoids are partly mediated by the GR. 9 

  10 

Page 13 of 52

For Peer Review Only

Diabetes



14 

 

DISCUSSION 1 

We show here that corticosterone and cortisol and their less active precursors, 11-DHC and 2 

cortisone, impair glucose-, glucose + KCl- and KCl-stimulated ionic fluxes in rodent and 3 

human beta cells. However, insulin secretory output is likely preserved because both 4 

glucocorticoids upregulate cAMP signals to increase insulin granule number at the 5 

membrane. Invoking a critical role for glucocorticoid interconversion, the effects of 11-DHC 6 

could be prevented following islet-wide deletion of HSD11B1. Thus, an enzyme-assisted 7 

steroid-regulated feedback loop maintains insulin secretion in the face of altered beta cell 8 

ionic signaling (Fig. 8).  9 

 Both corticosterone and 11-DHC have previously been shown to exert inhibitory 10 

effects on insulin release (6; 7; 10; 11). However, these studies either used islets from ob/ob 11 

mice that display highly upregulated Hsd11b1 expression (6; 10), or incubated wild-type 12 

islets with glucocorticoid for only two hours (7; 11), which is unlikely to fully compensate 13 

the loss of adrenal input that occurs following islet isolation. Likewise, studies in which 14 

glucocorticoids are administered in the drinking water are confounded by insulin resistance 15 

and compensatory islet expansion (12). Thus, the effects observed in the present study more 16 

likely reflect the cellular/molecular actions of circulating glucocorticoids under normal 17 

conditions.  18 

Cytosolic Ca2+ responses to glucose were impaired in the presence of either 11-DHC 19 

or corticosterone. This was unlikely due to defects in metabolism and KATP-channel function, 20 

since glucose-induced ATP/ADP maximal rises were unaffected. However, KCl- and KCl + 21 

glucose-induced Ca2+ influx, as well as VDCC conductance, were markedly suppressed, 22 

although QRT-PCR analyses of expression levels of the key L-type VDCC subunits showed 23 

no differences. Paradoxically, glucocorticoid improved the sustained Ca2+ responses to 3 mM 24 

glucose + 10 mM KCl. While this may reflect basal cAMP generation due to upregulated 25 
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Adcy1, it should be noted that VDCCs do not open fully under these conditions 1 

(Supplemental Table 5), meaning that true defects in their activity are likely to be missed. 2 

Indeed, glucocorticoids may induce changes that only restrict Ca2+ entry when VDCC open 3 

probability increases to support insulin secretion (i.e. 17 mM glucose and/or 30 mM KCl). 4 

Ca2+ oscillation frequency was also affected, suggesting that glucocorticoids may 5 

conceivably target more distal steps in Ca2+ flux generation, such as intracellular stores (e.g. 6 

by depleting them through cAMP-sensitization of IP3 receptors (32)), upregulate ion channels 7 

involved in voltage-inactivation (i.e. large-conductance Ca2+-activated K+ channels (33)), or 8 

alter glucose-regulated inputs other than cAMP (34). These effects are presumably specific to 9 

glucose-stimulated Ca2+ rises, as responses to the incretin-mimetic exendin 4 remained 10 

unchanged by glucocorticoid exposure, possibly due to PKA-mediated rescue of VDCC 11 

function or organellar Ca2+ release (35).  12 

Recent RNASeq analyses of purified mouse beta cells have shown that Hsd11b1 13 

mRNA levels are unusually low in these and other islet neuroendocrine cells (i.e. it is an islet 14 

“disallowed” gene) (36). Likewise, HSD11B1 mRNA levels were low in human beta and 15 

alpha cells (37). These findings contrast with reports that protein expression co-localizes with 16 

glucagon or insulin in rodent islets depending on the antibody used (7; 38). The reasons for 17 

these discrepancies are unclear, but in the present study specific TaqMan assays showed 18 

consistently detectable mRNA levels in both rodent and human islets. Moreover, 11-DHC 19 

effects could be prevented in global Hsd11b1-/- islets in which mRNA was largely absent, and 20 

HSD11B1 expression in human islets was an order of magnitude lower than in adipose tissue, 21 

a major site for steroid reactivation after the liver (31). Thus, 11-DHC likely affects beta cell 22 

function in a paracrine manner, possibly through the actions of HSD11B1 in non-endocrine 23 

islet cell types (e.g. endothelial cells where expression levels are higher (37)). This may form 24 

the basis of an adaptive mechanism to prevent the build-up of high local 25 
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corticosterone/cortisol concentrations. Together, these data highlight the importance of the 1 

islet context for the regulation of insulin secretion, and underline the requirement to consider 2 

cell-cell cross-talk when assessing the functional consequences of beta cell gene 3 

disallowance.  4 

Global deletion of Hsd11b1 prevented the effects of 11-DHC on ionic and cAMP 5 

fluxes, as expected, suggesting that local regulation of glucocorticoid activity is important for 6 

beta cell function. However, corticosterone was unable to impair Ca2+ responses in Hsd11b1-/- 7 

islets, whereas potentiation of cAMP remained intact. Together, these observations raise the 8 

possibility that corticosterone may undergo substantial oxidation to 11-DHC via HSD11B2 9 

(37), with local concentrations dropping below the threshold for suppression of Ca2+ but not 10 

cAMP following Hsd11b1 knockout. While previous studies have shown that a single 11 

Hsd11b1 allele is sufficient for full enzymatic activity (39), further studies are required to 12 

determine whether this is also the case in islets.  13 

Consistent with upregulated cAMP signaling, an increase in the number of sub-14 

membrane insulin granules was observed in glucocorticoid-treated islets. cAMP has been 15 

shown to recruit non-docked insulin granules to the membrane, as well as increase the size of 16 

the readily-releasable granule pool via Epac2 and PKA (40; 41), and this may account for the 17 

intact secretory responses to glucose and KCl. The exact mechanisms by which 11-DHC and 18 

corticosterone boost cAMP signaling are unknown, but likely involve specific adenylate 19 

cyclases, since Adcy1 gene expression was increased in 11-DHC- and corticosterone-treated 20 

islets compared to controls. Moreover, palmitate, which downregulates Adcy9 and impairs 21 

cAMP responses to glucose (29), prevented 11-DHC from increasing cAMP levels. While 22 

Adcy9 mRNA expression was not significantly affected by glucocorticoid, other mechanisms 23 

can account for cAMP generation, including organization of the enzyme into microdomains 24 

(42). Pertinently, Adcy1 and Adcy9 knockdown have been shown to reduce glucose-25 
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stimulated cAMP rises and insulin secretion in beta cells (29; 43). Further studies are thus 1 

warranted in glucocorticoid-treated Adcy1- and Adcy9-null islets. Upregulated cAMP 2 

signaling may represent a protective mechanism that is disrupted by free fatty acids to induce 3 

beta cell failure/decompensation in the face of excess glucocorticoid. Of note, endogenous 4 

elevation of glucocorticoids leads to dyslipidemia due to lipolysis, de novo fatty acid 5 

production/turnover and hepatic fat accumulation (44).  6 

It has previously been shown in mouse islets that cAMP responses to glucose are 7 

oscillatory (29), albeit noisier than those in MIN6/INS-1E cells (45). However, the latter 8 

studies used TIRF microscopy to study sub-membraned cAMP responses, whose changes 9 

may be larger and more dynamic than those recorded throughout the cytosol (46). Similar 10 

studies using epifluorescence techniques show non-oscillatory cAMP increases in response to 11 

high glucose concentrations (47). Thus, further studies are required to investigate the impact 12 

of glucocorticoids on cAMP oscillations, which were not detectable at the axial resolutions 13 

employed here. While ATP/ADP responses were oscillatory in single islets, a transient dip 14 

was present following introduction of high glucose. This has also been seen in previous 15 

studies (19) and may reflect net ATP consumption secondary to Ca2+ transporter activity (48), 16 

glucokinase activity (49) and the initial steps of exocytosis (50), or an uncoupling effect of 17 

highly elevated Ca2+ levels on mitochondrial function (21). While similar results were seen 18 

using luciferase-based ATP measures, a change in intracellular pH and Perceval intensity 19 

cannot be excluded.  20 

 In summary, we have identified a novel mechanism by which glucocorticoids 21 

maintain beta cell function in rodent and human beta cells through engagement of parallel 22 

cAMP pathways. Failure of this protective feedback loop may contribute to impaired insulin 23 

release during states of glucocorticoid excess (e.g. Cushing’s syndrome).  24 

25 
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FIG.S AND LEGENDS 1 

Figure 1 - Glucocorticoids suppress cytosolic Ca2+ fluxes in response to glucose and glucose 2 

+ KCl. A: Mean ± S.E.M intensity-over-time traces showing glucose- and glucose + KCl-3 

stimulated Ca2+ rises in mouse islets treated for 48 hrs with 11-DHC or corticosterone (n = 4 

14-28 islets from 6 animals). B: Representative max intensity projection images showing 5 

impaired Ca2+ signaling in glucose-stimulated control (Con)-, 11-DHC 200 nM-, and 6 

corticosterone (Cort)-treated islets (scale bar, 20 µm) (images cropped to show a single islet). 7 

C: Summary bar graph showing a significant reduction in the amplitude of glucose- 8 

stimulated Ca2+ rises following treatment with either glucocorticoid (n = 14-28 islets from 6 9 

animals). D: As for C, but area-under-the-curve (AUC). E: As for C but glucose + KCl. F: 10 

Corticosterone and 11-DHC significantly decrease Ca2+ spiking frequency at high glucose 11 

(representative traces shown) (n = 14 islets from 3 animals). G: As for F, but summary bar 12 

graph showing Ca2+ oscillations per min. H. Cortisone and cortisol blunt glucose- and 13 

glucose + KCl-stimulated Ca2+ rises in human islets (representative traces shown) (n = 15-18 14 

islets from 3 donors, 48 hrs). I and J: As for H, but summary bar graphs showing amplitude 15 

of Ca2+ responses to glucose (I) and glucose + KCl (J). K: 11-DHC and corticosterone do not 16 

affect Ca2+ responses to the incretin-mimetic, exendin 4 (Ex4) 10 nM (representative traces 17 

shown) (n = 14-17 islets from 3 animals). L and M: As for K, but summary bar graphs 18 

showing oscillation frequency (L) and AUC (M). G3 = 3 mM glucose; G11 = 11 mM 19 

glucose; G17 = 17 mM glucose. KCl was applied at 10 mM. *P<0.05, **P<0.01 and NS, 20 

non-significant; one-way ANOVA (Bonferroni’s post hoc test). Corticosterone was applied at 21 

20 nM for 48 hr. Traces in F, H and K share the same F/Fmin scale but are offset in the y-axis. 22 

Unless otherwise stated, data represent the mean ± S.D. 23 

 24 
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Figure 2 – Glucocorticoids impair VDCC function despite preserved beta cell identity and 1 

metabolism. A-F: Expression of mRNA for the beta cell maturity markers Pdx-1 (A-C) and 2 

Nkx6.1 (D-F) are similar in control and 11-DHC/corticosterone-treated islets (n = 4-7 3 

animals, 48 hrs). G: Mean ± S.E.M traces showing no effect of glucocorticoids on maximal 4 

ATP/ADP responses to glucose, measured using the biosensor Perceval. H: As for G, but 5 

summary bar graph showing the amplitude of ATP/ADP rises (n = 7 islets from 4 animals). I: 6 

11-DHC and corticosterone reduce VDCC conductance, as shown by the voltage-current (I-7 

V) relationship (n = 4 animals) (* 11-DHC versus control; # corticosterone versus control). J: 8 

As for I, but representative Ca2+ current traces. K-P: Expression levels of the VDCC α/β 9 

subunits Cacna1c (K and L), Cacnb2 (M and N) and Cacna1d (O and P) are not significantly 10 

altered by 11-DHC or corticosterone (n = 4-6 animals, 48 hrs). G3 = 3 mM glucose; G17 = 11 

17 mM glucose. #/*P<0.05, ##/**P<0.01 and NS, non-significant; Student’s t-test, Student’s 12 

paired t-test or one-way ANOVA (Bonferroni’s post hoc test). Corticosterone was applied at 13 

20 nM for 48 hr. Unless otherwise stated, data represent the mean ± S.D. 14 

 15 

Figure 3 - Insulin secretion from islets is maintained in the face of excess glucocorticoid. A: 16 

Basal, glucose-stimulated and glucose + KCl-stimulated insulin secretion is unaffected 17 

following 48 hr treatment of mouse islets with either 11-DHC or corticosterone (n = 5 18 

animals). B-D: QRT-PCR analyses of Ins1 mRNA expression shows no significant changes 19 

in response to 11-DHC 20 nM (B), 11-DHC 200 nM (C) or corticosterone (D) exposure (n = 20 

4-7 animals). E: Total insulin content is unaffected by exposure to 11-DHC or corticosterone 21 

(n = 3 animals). F: Basal, glucose-stimulated and glucose + KCl-stimulated insulin secretion 22 

is unaffected following 48 hr treatment of human islets with either cortisone 200 nM or 23 

cortisol 20 nM (n = 3 donors). G: As for F, but stimulation index to better account for 24 

differences in basal secretion between islet batches from the different isolation centres. 25 

Page 28 of 52

For Peer Review Only

Diabetes



29 

 

*P<0.05, **P<0.01 and NS, non-significant; Student’s t-test, one-way ANOVA (Bonferroni’s 1 

post hoc test) or two-way ANOVA. G3 = 3 mM glucose; G17 = 17 mM glucose. 2 

Corticosterone was applied at 20 nM for 48 hr. KCl was applied at 10 mM. Unless otherwise 3 

stated, data represent the mean ± S.D or range. 4 

 5 

Figure 4 - Glucocorticoids potentiate cAMP signaling. A: Both 11-DHC and corticosterone 6 

(Cort) amplify glucose-stimulated cAMP generation, as measured online using the biosensor 7 

Epac2-camps (FSK, forskolin; positive control) (mean ± S.E.M traces shown) (n = 20-24 8 

islets from 5 animals). B: Summary bar graph showing significant effects of either 9 

glucocorticoid on the AUC of cAMP responses to glucose. C: Representative images of 10 

FRET responses in control-, 11-DHC- and corticosterone (Cort)-treated beta cells expressing 11 

Epac2-camps (scale bar, 10 µm). D: Inhibition of PKA decreases glucose-stimulated insulin 12 

in the presence of 11-DHC but not control (n = 3 animals) (mean and range shown). E: 11-13 

DHC and corticosterone (Cort) increase the fraction of the cell membrane occupied by insulin 14 

granules (V/v). F: Representative Structured Illumination Microscopy (SIM) images showing 15 

insulin granules in control-, 11-DHC- and corticosterone (Cort)-treated islets (n = 8 cells 16 

from 3 animals) (scale bar = 5 µm) (lower panel shows zoom-in). G: Cortisone and cortisol 17 

augment glucose-stimulated cAMP generation in human islets (mean ± S.E.M traces shown). 18 

H: Summary bar graph showing significant effects of cortisone and cortisol on the AUC of 19 

cAMP responses to glucose (n = 10-11 islets from 3 donors). I: Glucocorticoid does not 20 

affect cAMP responses to exendin-4 (Ex4) 10 nM (n = 24-46 islets from 4 animals). J: As for 21 

I, but summary bar graph showing AUC of cAMP responses. K and L: Relative (fold-change) 22 

expression levels of Adcy1, 5, 6, 8 and 9 in 11-DHC (K) and corticosterone (L)-treated islets 23 

(n = 4-5 animals). M: Palmitate but not BSA control prevents 11-DHC from augmenting 24 

cAMP responses to glucose (Palm, palmitate) (n = 23-27 islets from 4 animals) (traces 25 
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represent mean ± S.E.M). N. As for M, but summary bar graph showing AUC of cAMP 1 

responses. G3 = 3 mM glucose; G11 = 11 mM glucose; G17 = 17 mM glucose. *P<0.05, 2 

**P<0.01 and NS, non-significant; Student’s t-test or one-way ANOVA (with Bonferroni’s 3 

or Tukey’s post hoc test). 11-DHC and corticosterone were applied for 48 hr at 200 nM and 4 

20 nM, respectively. Unless otherwise stated, data represent the mean ± S.D. 5 

 6 

Figure 5 - Deletion of Hsd11b1 reverses the effects of glucocorticoids on Ca2+ signaling. A: 7 

Mean intensity-over-time traces showing a reduction in glucose- and glucose + KCl-8 

stimulated Ca2+ rises in Hsd11b1+/- islets treated for 48 hrs with 11-DHC or corticosterone 9 

(Cort) (n = 15-19  islets from 3 animals). B and C: As for A, but summary bar graphs showing 10 

the amplitude of Ca2+  responses to glucose (B) and glucose + KCl (C). D: Representative 11 

max intensity projection images showing impaired glucose-stimulated Ca2+ rises in 11-DHC- 12 

and corticosterone- compared to control (Con)-treated Hsd11b1+/- islets (scale bar, 20 µm) 13 

(images cropped to show a single islet). E: Mean ± S.E.M intensity-over-time traces showing 14 

intact glucose- and glucose + KCl-stimulated Ca2+ rises in Hsd11b1-/- islets treated for 48 hrs 15 

with 11-DHC or corticosterone (n = 19-28  islets from 3 animals). F and G: As for E, but 16 

summary bar graphs showing the amplitude of Ca2+ responses to glucose (F) and glucose + 17 

KCl (G). H: Representative max intensity projection images showing similar glucose-18 

stimulated Ca2+ rises in 11-DHC- and corticosterone- compared to control (Con)-treated 19 

Hsd11b1
-/- islets (scale bar, 20 µm) (images cropped to show a single islet). G3 = 3 mM 20 

glucose; G17 = 17 mM glucose. *P<0.05, **P<0.01 and NS, non-significant, one-way 21 

ANOVA (Bonferroni’s post hoc test). 11-DHC and corticosterone were applied for 48 hr at 22 

200 nM and 20 nM, respectively. KCl was applied at 10 mM. Unless otherwise stated, data 23 

represent the mean ± S.D. 24 
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Figure 6 - Deletion of Hsd11b1 reverses the effects of 11-DHC on cAMP signaling. A: Mean 1 

± S.E.M intensity-over-time traces showing cAMP responses to glucose in 11-DHC- and 2 

corticosterone (Cort)-treated Hsd11b1+/- islets (FSK, forskolin; positive control) (n = 15-19 3 

islets from 3 animals). B and C: As for A, but summary bar graphs showing the amplitude (B) 4 

and AUC (C) of cAMP responses. D: Representative images of cAMP responses to glucose 5 

in control (Con)-, 11-DHC- or corticosterone-treated Hsd11b1+/- islets expressing Epac2-6 

camps (scale bar, 10 µm). E: Mean ± S.E.M intensity-over-time traces showing that cAMP 7 

responses to glucose are potentiated by 11-DHC, but not corticosterone, in Hsd11b1-/- islets 8 

(n = 22-23 islets from 3 animals). F and G: As for E, but summary bar graphs showing the 9 

amplitude (F) and AUC (G) of cAMP responses. H: Representative images of cAMP 10 

responses to glucose in control (Con)-, 11-DHC- and corticosterone-treated Hsd11b1-/- islets 11 

expressing Epac2-camps (scale bar, 10 µm). I: Insulin secretion in response to glucose is 12 

significantly improved in corticosterone- compared to control and 11-DHC-treated Hsd11b1-/- 13 

islets (n = 4 animals). J and K: Relative (fold-change) expression levels of Adcy1, 5, 6, 8 and 14 

9 in 11-DHC (J) and corticosterone (K)-treated Hsd11b1-/- islets (n = 5 animals). G3 = 3 mM 15 

glucose; G17 = 17 mM glucose. *P<0.05, **P<0.01 and NS, non-significant, Student’s t-test 16 

or one-way ANOVA (Bonferroni’s post hoc test). 11-DHC and corticosterone were applied 17 

for 48 hr at 200 nM and 20 nM, respectively. KCl was applied at 10 mM. Unless otherwise 18 

stated, data represent the mean ± S.D. 19 

 20 

Figure 7 - 11-DHC effects are mediated through the glucocorticoid receptor. A: The 21 

glucocorticoid receptor antagonist RU486 prevents the suppressive effects of 11-DHC on 22 

glucose- and glucose + KCl-stimulated Ca2+ signals (mean ± S.E.M traces shown) (n = 12-13 23 

islets from 4 animals). B and C: As for, A but summary bar graphs showing that 11-DHC 24 

does not affect Ca2+ responses to glucose (B) or glucose + KCl (C) in RU486-treated islets. 25 
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D: Representative max intensity projection images showing impaired Ca2+ rises in 11-DHC-1 

treated islets, which can be reversed using the glucocorticoid receptor antagonist RU486 2 

(scale bar, 20 µm) (images cropped to show a single islet). E: RU486 blocks the effects of 3 

corticosterone (Cort) on Ca2+ responses to glucose (n = 14-17 islets from 6 animals). F: As 4 

for E, but RU486 is unable to significantly affect Ca2+ responses to glucose + KCl in 5 

corticosterone-treated islets (n = 14-17 islets from 6 animals). *P<0.05, **P<0.01 and NS, 6 

non-significant, one-way ANOVA (Bonferroni’s post hoc test). 11-DHC and corticosterone 7 

were applied for 48 hr at 200 nM and 20 nM, respectively. KCl was applied at 10 mM. 8 

Unless otherwise stated, data represent the mean ± S.D. 9 

 10 

 Figure 8 - Glucocorticoids impair KATP-independent signals to reduce ionic fluxes in 11 

glucose-stimulated beta cells. This is further exacerbated by Hsd11b1, which increases 12 

availability of more active glucocorticoid (11-DHC/cortisone -> corticosterone/cortisol) in a 13 

paracrine manner. However, insulin secretion is preserved, since glucocorticoids are able to 14 

reprogram the beta cell signaling cassette towards a cAMP phenotype, most likely through 15 

upregulation of specific Adcy isoforms. 16 
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SUPPLEMENTAL INFORMATION 

Supplemental Figure 1 - Delta Ca
2+

 rises in response to glucose and KCl at high glucose in 

glucocorticoid-treated islets.  

Supplemental Figure 2 - Glucocorticoids impair Ca
2+

 responses to glucose and KCl at high glucose 

as measured using Fura2.  

Supplemental Figure 3 - Glucocorticoids do not influence the time to onset or amplitude of 

ATP/ADP responses to glucose. 

Supplemental Figure 4 - Glucocorticoids do not affect glucose-stimulated ATP production 

Supplemental Figure 5 - Hsd11b1 and HSD11B1 mRNA expression in mouse and human tissue.  

Supplemental Figure 6 -11-DHC suppresses delta Ca
2+

 rises in Hsd11b1
+/-

 but not Hsd11b1
-/- 

islets.  

Supplemental Figure 7 -11-DHC augments delta cAMP rises in Hsd11b1+/- but not Hsd11b1-/- islets. 

Supplemental Figure 8 - R486 blocks the effects of glucocorticoids on Ca
2+ 

rises. 

Supplemental Table 1 - Human islet donor characteristics. 

Supplemental Table 2 – Epac2-camps single and dual channel fluorescence under maximal 

stimulation in mouse islets 

Supplemental Table 3 - Primer sequences. 

Supplemental Table 4 – Basal intracellular Ca2+ concentration in human islets. 

Supplemental Table 5 – Effect of KCl concentration on amplitude Ca2+ responses at 3 mM glucose. 
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Supplemental Figure 1 - Delta Ca2+ rises in response to glucose and KCl at high glucose in 

glucocorticoid-treated islets. A: Gluococorticoids significantly impair the amplitude of Ca
2+

 responses 

to glucose. B: As for A, but Ca2+ responses to 10 mM KCl (amplitude measured versus 17 mM 

glucose; G17). *P<0.05, **P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni’s post hoc 

test). 11-DHC and corticosterone were applied at 200 nM or 20 nM, respectively. Data represent the 

mean ± S.D. N numbers as for Figure 1.  
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Supplemental Figure 2 - Glucocorticoids impair Ca2+ responses to glucose and KCl at high glucose 

as measured using Fura2. A: Ratiometric Fura2 recordings showing glucose- and glucose + 10 mM 

KCl-stimulated Ca
2+

 rises in mouse islets treated for 48 hrs with 11-DHC or corticosterone (mean ± 

S.E.M intensity-over-time traces shown) (n = 16-17 islets from 4 animals). B-C: Summary bar graphs 

showing a significant reduction in the amplitude of glucose- (B) and 10 mM KCl- (C) stimulated Ca2+ 

rises following treatment with either glucocorticoid (KCl amplitude measured versus 17 mM glucose; 

G17). D: Peak Ca2+ responses to 10 mM KCl at low (3 mM) glucose are not affected or significantly 

increased by 11-DHC or corticosterone exposure, respectively. Sustained Ca2+ responses to 10 mM 

KCl at low (3 mM) glucose are significantly increased by both glucocorticoids. E: As for D, but 

summary bar graph (peak Ca2+ responses, left panel; sustained Ca2+ responses, right panel) (n = 7-9 

islets from 2 animals). F: Peak and sustained Ca
2+

 responses to 30 mM KCl at low (3 mM) glucose 

are significantly reduced by treatment with 11-DHC or corticosterone (n = 31-35 islets from 9 

animals).  G: As for F, but summary bar graph (peak Ca2+ responses, left panel; sustained Ca2+ 

responses, right panel) (n = 31-35 islets from 9 animals). H: Glucocorticoid does not significantly 

alter the Fura2 340/385 ratio (n = 8-10 islets from 3 animals). G3 = 3 mM glucose; G17 = 17 mM 

glucose. **P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni’s posthoc test). 11-DHC 

and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. Unless otherwise stated, 

data represent the mean ± S.D.  
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Supplemental Figure 3 - Glucocorticoids do not influence the time to onset or amplitude of 

ATP/ADP responses to glucose. A: Bar graph showing no effect of 11-DHC or corticosterone (Cort) 

on the time to the initial decrease in ATP/ADP. B: As for, A but amplitude of the decrease. 11-DHC 

and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. NS, non-significant; 

one-way ANOVA (Bonferroni’s posthoc test). Data represent the mean ± S.D.  
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Supplemental Figure 4 - Glucocorticoids do not affect glucose-stimulated ATP production. High (17 

mM) glucose concentration significantly increases ATP levels under all conditions examined. No 

differences were detected between control-, 11-DHC- and corticosterone-treated islets (n = 12 

animals). 11-DHC and corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. 

*P<0.05, **P<0.01; Student’s t-test. NS, non-significant; one-way ANOVA. Data represent the mean 

and range.  
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Supplemental Figure 5 - Hsd11b1 and HSD11B1 mRNA expression in mouse and human tissue. A: 

Relative Hsd11b1 gene expression in muscle, liver and islets in mice (n = 5 animals). B: Hsd11b1 is 

expressed in islets from Hsd11b1
+/+

 and Hsd11b1
+/- 

mice, but not Hsd11b1
-/- 

animals (n = 3-4 

animals). C: HSD11B1 levels in human islets are only an order of magnitude lower than in 

subcutaneous (SC) and omental (OM) fat (n = 4-5 donors). Data represent the mean ± S.D. 
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Supplemental Figure 6 -11-DHC suppresses delta Ca2+ rises in Hsd11b1+/- but not Hsd11b1-/- islets. 

A: Both 11-DHC and corticosterone significantly impair the amplitude of Ca
2+

 responses to glucose in 

Hsd11b1+/- islets. B: As for A, but 10 mM KCl (amplitude measured versus 17 mM glucose; G17). C: 

Deletion of Hsd11b1 (Hsd11b1-/-) restores Ca2+ responses to glucose. D:  As for A, but 10 mM KCl 

(amplitude measured versus 17 mM glucose; G17). Data represent the mean ± S.D. *P<0.05, 

**P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni’s post hoc test). 11-DHC and 

corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. Data represent the mean ± 

S.D. N numbers as for Figure 5. 
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Supplemental Figure 7 - 11-DHC augments delta cAMP rises in Hsd11b1+/- but not Hsd11b1-/- islets. 

A: Both 11-DHC and corticosterone potentiate cAMP responses to glucose in Hsd11b1
+/-  

islets. B: 

Only corticosterone potentiates cAMP responses to glucose in Hsd11b/-/-  islets. *P<0.05, **P<0.01 

and NS, non-significant; one-way ANOVA (Bonferroni’s post hoc test). 11-DHC and corticosterone 

were applied for 48 hrs at 200 nM or 20 nM, respectively. Data represent the mean ± S.D. N numbers 

as for Figure 6. 
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Supplemental Figure 8 - R486 blocks the effects of glucocorticoids on Ca
2+ 

rises. A: RU486 prevents 

11-DHC from impairing Ca2+ responses to glucose.  B: As for A, but 10 mM KCl (amplitude 

measured versus 17 mM glucose; G17). C: RU486 prevents corticosterone (Cort) from impairing Ca2+ 

responses to glucose. D: As for C, but 10 mM KCl (amplitude measured versus G17).  *P<0.05, 

**P<0.01 and NS, non-significant; one-way ANOVA (Bonferroni’s post hoc test). 11-DHC and 

corticosterone were applied for 48 hrs at 200 nM or 20 nM, respectively. Data represent the mean ± 

S.D. N numbers as for Figure 7. 
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Age Gender BMI Source 

55 F 26 Milan 

49 F 23.9 Milan 

73 F 28.4 Alberta 

71 F 35.5 Alberta 

54 M 26.5 Milan 

57 F 26 Milan 

64 M 24.5 Pisa 

44 M 34.4 Alberta 

 

Supplemental Table 1 - Human islet donor characteristics. 

 

Treatment YFP intensity ± SD (AU) CFP/YFP ± SD 

Control 2.3 x 10
4 
± 6.7 x 10

3
 1.08

 
± 0.03 

11-DHC 2.4 x 10
4 
±8.8 x 10

3
 
NS

 1.08 ± 0.05 
NS

 

Corticosterone 2.7 x 10
4 
± 5.0 x 10

3 NS
 1.07

 
± 0.04

 NS
 

 

Supplemental Table 2 – Epac2-camps single and dual channel fluorescence in mouse islets during 

maximal stimulation with forskolin. NS, non-significant versus control, one-way ANOVA 

(Bonferroni’s post hoc test). 

 

Gene Forward Reverse 

Ins1 GCTGGTGGGCATCCAGTAA AATGACCTGCTTGCTGATGGT 

Pdx-1  CCAAAGCTCACGCGTGGA TGTTTTCCTCGGGTTCCG 

Nkx6.1  GCCTGTACCCCCCATCAAG GTGGGTCTGGTGTGTTTTCTCTT 

Cacna1d  GAAGCTGCTTGACCAAGTTGT AACTTCCCCACGGTTACCTC 

Cacna1c CCAACCTCATCCTCTTCTTCA ACATAGTCTGCATTGCCTAGGAT 

Cacnb2  GCAGGAGAGCCAGATGGA TCCTGGCTCCTTTTCCATAG 

Adcy1 CGGAATTGCATGCCTTGAA TCCATTCTTTTGTGCATGCTACAT 

Adcy5  CTTCACCAGCCCCAAGAAAC GAAGCGGCAGAGCACAGAAC 

Adcy6  AGCCTTGGATAGGAAGGGACTACT CTCCCTGCTTTGGCTTATATACCT 

Adcy8 TTGGGCTTCCTACACCTTGACT CGGTAGCTGTATCCTCCATTGAG 

Adcy9 CATACAGAAGGCACCGATAG CCGAACAGGTCATTGAGTAG 

β-actin CGAGTCGCGTCCACCC CATCCATGGCGAACTGGTG 

 

Supplemental Table 3 - Primer sequences 
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Treatment Ca
2+

 concentration ± SD (nM) 

Control 61.1 ± 16.2 

Cortisone 60.9 ± 18.2 
NS

 

Cortisol 52.7 ± 19.8 
NS

 

 

Supplemental Table 4 - Basal intracellular Ca
2+

 concentration in human islets. Free Ca
2+ 

concentrations were calculated using Kd*(F-Fmin)/(Fmax-F) where Fmax and Fmin represent fluorescence 

in the presence of 10 µM ionomycin or 0.1% Triton + 5 mM EGTA, respectively, and Kd = 389 nM.  

NS, non-significant versus control, one-way ANOVA (Bonferroni’s post hoc test). 

 

Treatment ∆Ca
2+

 ± SD (340/385) 

3 mM glucose + 10 mM KCl  0.76 ± 0.12 

3 mM glucose + 30 mM KCl 1.85 ± 0.24** 

 

Supplemental Table 5 – Effect of KCl concentration on amplitude Ca
2+

 responses at 3 mM glucose. 

**P<0.01 versus 3 mM glucose + 10 mM KCl, Student’s t-test. 
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