
 
 

University of Birmingham

Towards real time diffuse optical tomography:
Doulgerakis, Matthaios; Eggebrecht, Adam T; Wojtkiewicz, Stanislaw; Culver, Joseph;
Dehghani, Hamid
DOI:
10.1117/1.JBO.22.12.125001

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Doulgerakis, M, Eggebrecht, AT, Wojtkiewicz, S, Culver, J & Dehghani, H 2017, 'Towards real time diffuse
optical tomography: Accelerating light propagation modeling employing parallel computing on GPU and CPU',
Journal of Biomedical Optics, vol. 22, no. 12, 125001 . https://doi.org/10.1117/1.JBO.22.12.125001

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Copyright 2017 Society of Photo Optical Instrumentation Engineers (SPIE).  J. of Biomedical Optics, 22(12), 125001 (2017).
doi:10.1117/1.JBO.22.12.125001
One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this
publication for a fee or for commercial purposes, or modification of the contents of the publication are prohibited.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 30. Apr. 2024

https://doi.org/10.1117/1.JBO.22.12.125001
https://doi.org/10.1117/1.JBO.22.12.125001
https://birmingham.elsevierpure.com/en/publications/9cededcf-4bbf-4aec-90ab-87b4e180f89f


1 

 

Towards real time diffuse optical tomography: Accelerating light 

propagation modeling employing parallel computing on GPU and CPU

Matthaios Doulgerakisa, Adam Eggebrechtb, Stanislaw Wojtkiewicza Joseph Culverb,c,d and 

Hamid Dehghania 

a School of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK 

b Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA 

c Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA 

d Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA 

 

 

Abstract—Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, 

especially when used for large and complex volumes, as in the case of human brain functional imaging. The 

modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery 

algorithm, whereby the lack of a real-time solution is impeding practical and clinical applications. The objective 

of this work is the acceleration of the forward model, within a Diffusion Approximation based finite element 

modeling framework, employing parallelization to expedite the calculation of light propagation in realistic adult 

head models. The proposed methodology is applicable for modelling both continuous wave and frequency domain 

systems with the results demonstrating a tenfold speed increase when GPU architectures are available, whilst 

maintaining high accuracy. It is shown that for a very high resolution finite element model of the adult human 

head with ~600,000 nodes, consisting of heterogeneous layers, light propagation can be calculated at ~0.25 

seconds per excitation source. 

Keywords—NIRFAST, Parallel Computing, GPU, Diffuse Optical Tomography, Finite Element Method 

 

1. INTRODUCTION  

Functional neuroimaging provides an essential tool in the study of the brain. It has been used to 

detect, localize, and classify brain activations during physical and psychological events, 

propelling applications in a myriad of areas, such as guiding treatment and monitoring the 

rehabilitation progress in cases of stroke, depression, or schizophrenia 1–3. Diffuse optical 
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tomography (DOT) is a soft tissue imaging technique based on injecting near-infrared (NIR) 

light in a volume and measuring the re-emerging light. In brain related studies, the measured 

alterations in the attenuation of the resurfacing NIR light reflect changes in blood oxygenation 

and concentration induced by tissue metabolism within the brain due to local neuron activations. 

Therefore, DOT has been used for functional brain imaging4,5, neonatal brain monitoring 6,7, as 

well as for measuring absolute oxygenation values in the brain8. NIR light is non-ionizing, and 

requires relatively low-cost equipment, which is wearable and therefore allows some movement 

of the subject. Additionally, DOT is relatively portable and can be used in clinical applications 

where use of fMRI or PET is not possible, for example as a bedside monitoring tool.  

DOT specifically is concerned with tomographic reconstruction of volumetric and spatially 

distributed optical parameters from finite boundary measurements. This is commonly solved as 

an optimization problem using model-based approaches, whereby accurate modeling of light 

propagation within the volume, known as the forward model, is required. Therefore, to allow a 

real-time parameter recovery from measured data, both fast and accurate forward modeling is 

essential.  

The objective of this work is the acceleration of the forward light propagation model, while 

maintaining numerical accuracy. Specifically, the focus is on the application of DOT for 

functional imaging on adult human head, employing the finite element method (FEM) to solve 

the diffusion approximation (DA) for modeling of light propagation as implemented within the 

NIRFAST9 modeling and image reconstruction software package.  

The proposed acceleration approach relies on employing parallel computing to expedite the 

solution of the forward problem, an option that has recently become popular due to the relatively 

low cost of GPUs and that has attracted the attention of researchers for solving similar problems 

in medical imaging10–12. In DOT the acceleration of the forward model with GPUs has been 

employed for Monte-Carlo algorithms13–15, where simulating the behavior of each photon can 
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be efficiently parallelized, with reported accelerations in the scale of 102 − 103. However, 

millions of photons must be simulated to achieve an accurate solution, so modeling the total 

fluence for a geometrically large volume and multiple excitation sources still requires time in 

the order of tens of minutes.  

Accelerating the forward model of DOT using GPU parallelization has also been reported 

with FEM formulation. Specifically, the acceleration of the forward model solution has been 

proposed for frequency domain simulations16. Unfortunately, due to a lack of sparse arithmetic 

architecture, computationally tractable mesh sizes have been limited to ~9,000 nodes, due to the 

excessive memory requirements. Solving the forward model employing GPU parallelization, in 

continuous wave, with parallelization over the nodes and over the excitation sources 

simultaneously, using a block based formulation of the forward linear system has also been 

proposed17. However, due to the size of the augmented block matrix, this approach is only 

applicable in small size meshes, with up to ~2,500 nodes. Using multiple GPUs to solve the 

forward problem in continuous wave, for infant brain studies has been suggested18  but has been 

only evaluated qualitatively in a homogenous phantom head model, again in meshes with ~9,000 

nodes. An approach combining CPU and GPU parallelization was proposed19 where the imaging 

domain is decomposed into overlapping subdomains, therefore allowing a high level of 

parallelization for the forward problem. However, this approach was only evaluated in 

continuous wave, on a simplified cylindrical geometry with homogenous optical properties 

where the decomposition in regular overlapping subdomains is a straightforward procedure; 

while in the case of a complex volume, as the adult head, such decompositions are not a trivial 

task. Finally, a framework for the solution of the forward problem in continuous wave and 

frequency domain, accelerated in the GPU, was proposed and evaluated in homogenous 

cylindrical models with up to 330,000 nodes20. It was shown that relation between error of the 

iterative solution and optical properties of the volume was identified while the single precision 
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numerical accuracy was found to be insufficient for solving for a wide range of optical 

properties. However, none of the previous work has evaluated the accuracy and computational 

speed of iterative solvers on anatomically realistic head models, with high resolution meshes 

and high density (HD) DOT system. 

 This work provides tractable solutions to overcome the current computational time and 

memory limitations arising when dealing with high resolution FEM meshes and HD source-

detector (SD) pairs, both important features for high quality functional DOT (fDOT) brain 

imaging.  Additionally, an extended evaluation is performed, on high resolution meshes with up 

to ~600,000 nodes, based on a realistic anatomical head model, with five tissue layers, focusing 

in achieving the desired numerical accuracy for functional brain imaging. Furthermore, support 

for complex numbers for the cases of frequency domain simulations is incorporated. 

Specifically, section 2 outlines a DOT implementation using the NIRFAST package along with 

details highlighting the computational complexity of parameter recovery, and the proposed 

parallelization approaches. In section 3 the results are presented and discussed in the context of 

employing iterative solvers for the forward problem in DOT. Section 4 concludes with the 

remaining challenges and opportunities for further optimizations and applications. 

2. METHODOLOGY 

The procedure followed in DOT image reconstruction can be summarized by the following 

consecutive steps: modelling the light propagation through the medium, also known as the 

forward problem and a parameter recovery process based on the forward model and NIR 

measurements, also known as the inverse problem. This section provides an overview of the 

underlying mathematics that directly affect the computational aspects of DOT and emphasizes 

the necessity of parallelization, specifically considering the existing implementation within 

NIRFAST. Currently, the most computationally expensive procedure is the solution of large 

FEM sparse linear systems, involved in estimating light propagation in the forward problem. 



5 

 

 Forward problem 

The first step of the DOT algorithm, the forward problem, is the basis for the application of 

model-based image reconstruction therefore it must be as accurate as possible, numerically and 

geometrically, as any errors will affect the formulation of the inverse problem.  

 The accuracy of the numerical solutions of FEM is greatly affected by the prior 

knowledge of the underlying tissue geometry; therefore the maximum potential is reached when 

FEM is combined with input from other standard imaging techniques 21,22 or generic atlas  

 

 

Fig. 1 The modeled high-density DOT system with 158 sources (red) and 166 detectors (yellow), on an adult 

head model with 5 tissue layers. 
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models 23. Mesh generation based on structural images from other modalities, usually MRI, is a 

well-studied problem. There are existing algorithms that automatically segment tissue layers 

and create surface-based meshes 24. When the model volume remains constant, but meshes with 

more elements are created, what effectively changes is the resolution of the mesh. Higher 

resolution meshes have elements with smaller volume and therefore minimize partial volume 

effects due to mesh elements integrating over multiple segmented tissue regions. The fine 

complex structures, such as the brain cortex in a head model, can be modeled more accurately 

with a high-resolution mesh, providing optical properties assigned to each node (or element) 

that are more likely to represent the underlying baseline optical properties of the tissue at each 

position. 

When the volume is meshed, FEM is employed to formulate a discretized weak form 

representation of the DA for each node of the mesh. It follows that as the volume of each element 

tends towards zero (increasing the mesh resolution), the calculated approximation becomes 

more accurate, therefore in fDOT very high resolution meshes, with up to 600,000 nodes are 

used (Table 1). This is a domain size dependent problem, a smaller volume such as an infant’s 

head, will require fewer nodes to achieve elements of sufficiently small volume. Additionally, 

dividing the volume into a higher resolution mesh minimizes the discretization error introduced 

by FEM. However, increasing the mesh resolution results in the requirement of solving a bigger 

linear system to estimate the light fluence, which, until now, has dramatically increased 

computational time. The focus of this work is optimizing numerical approaches employing 

FEM-DA to estimate light propagation - a well-studied problem that assumes the DA is valid 

for all tissue properties used 9,25,26. However, the advancements described herein can be applied 

to any models (e.g. Radiative Transport Equation) based on discretized approximations. 
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 FEM is a numerical technique where a heterogeneous problem is divided into many smaller 

parts, creating a non-uniform mesh, consisting of elements defined by connected nodes. The 

diffusion equation can then be discretized and represented as a set of linear equations, describing 

simultaneously all the nodes and hence the entire medium. The problem thus reduces to a sparse, 

well-posed linear problem of the form: 

𝑴𝜱 = 𝒒 (1) 

where 𝐌 is a sparse matrix with dimensions 𝑁 by 𝑁, with 𝑁 denoting the number of nodes; 𝐪 

represents the sources and has dimension 𝑁 by the number of sources 𝑄 of the DOT system, 

and 𝚽 is the photon fluence rate for all nodes for each source, as has dimensions 𝑁 by 𝑄. 

Table 1 Different resolution meshes based on linear tetrahedral elements for an adult head model 

Number of nodes Number of 

elements 

Element volume average and 

standard deviation (mm3) 

50721 287547 9.26 ± 3.43 

68481 393863 6.76 ± 2.29 

101046 589658 4.51 ± 1.64 

139845 821926 3.24 ± 1.18 

205568 1215434 2.19 ± 0.78 

235564 1395242 1.90 ± 0.68 

271135 1609152 1.65 ± 0.59 

305058 1813036 1.46 ± 0.52 

324756 1931374 1.37 ± 0.49 

360777 2149250 1.23 ± 0.43 

411567 2454350 1.08 ± 0.37 

515837 3084689 0.86 ± 0.29 

610461 3656890 0.72 ± 0.24 

 

 Inverse problem 

The second step of DOT image reconstruction, the inverse problem, estimates tissue optical 

properties based on the forward model and NIR boundary measurements. To acquire the 

required measurements, NIR light is injected into the imaging volume by optical fibers or LEDs 
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positioned on its surface (light source) while the transmitted and reflected diffused light is 

measured, using optical fibers or detector arrays (light detectors), as it remerges from the surface 

of the volume in nearby positions.  

There are three categories of NIR measurement systems: continuous wave (CW), frequency 

domain (FD) and time resolved (TR) 27. TR and FD systems are advantageous because the 

measured transient time or phase shift information allows the determination of scattering and 

absorption simultaneously, while CW systems are unable to make quantitative absorption 

measurements without a-priori assumptions of the scattering 28. However, modeling of light 

propagation in FD has increased computational cost due to complex arithmetic, whilst TR 

requires multiple light propagation models to be estimated for consecutive time instances. 

 DOT acquires boundary data from multiple and overlapping SD pairs, therefore provides 

valuable spatial depth information, and improves lateral image reconstruction resolution. 

Studies have shown that the density of the SD pairs can directly affect the spatial resolution and 

localization accuracy of reconstructed images 29,30. HD-DOT, an arrangement with dense SD 

pairs, is considered to produce superior results and is particularly effective in brain functional 

imaging 4,7,29,31–33. 

 In fDOT, models of estimated light propagation based on assumptions of the underlying 

tissue scattering and attenuation are used to create a sensitivity matrix, also known as the 

Jacobian. The Jacobian is the basis for solving the inverse problem, allowing the recovery of 

spatiotemporal changes of internal optical properties for the whole volume, using temporal 

derivatives of measurements obtained on the surface of the volume, known as boundary data, 

then performing single step (linear) reconstruction. 

 The approach employed to form the Jacobian is the adjoint method34, where the direct 

fluence for each source and the adjoint fluence for each detector must be calculated; then the 
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sensitivity is calculated as the product of the direct and the adjoint field, with regard to the basis 

function for each element, the result of which is a dense matrix. The construction of the Jacobian 

therefore requires the forward problem to be solved twice; once for all sources and once for all 

detectors. 

 Computational problem 

The solution of large sparse linear systems involved in the forward model is currently the 

computational bottleneck of the DOT algorithm. In this presented example, the fluence 

throughout the volume, must be calculated for all 158 sources and for all 166 detectors to create 

the Jacobian for the modeled DOT system illustrated in Fig.1. To solve the linear systems arising 

in the forward modeling, in the form 𝐀𝐱 =  𝐛, for 𝐱, where A has dimensions 𝑁 × 𝑁, where 𝑁 

is the number of uknowns, the inverse of 𝐀 must be calculated. However, calculating a matrix 

inverse is computationally inefficient, therefore a variety of algorithms have been proposed that 

can solve linear systems without explicitly calculating a matrix’s inverse. These algorithms can 

be either direct, providing an exact solution, or an approximate, usually employing an iterative 

algorithm. The storage convention used in this work to represent sparse matrices within memory 

is the compressed row storage, which requires 2𝑁𝑁𝑍 + 𝑁 +1 space in memory for a 𝑁 ×𝑁 

matrix with 𝑁𝑁𝑍 non-zero entries. 

2.3.1. Direct solvers 

The most popular direct solver is the Gaussian Elimination, also known as row reduction, where 

the echelon form of 𝐀 is calculated through row operations on the augmented matrix (𝐀|𝐛). The 

echelon form of 𝐀 is an upper triangular matrix, making the solution of the linear system easy 

through backward substitution. However, Lower Upper (LU) factorization is considered the 

standard efficient computational approach for direct solution of a linear system. The LU 

factorization decomposes 𝐀 into lower (𝐋) and upper (𝐔) triangular matrices. Substituting 𝐋 and 

𝐔 in 𝐀𝐱 = 𝐛 gives 𝐋𝐔𝐱 = 𝐛, and letting 𝐔𝐱 =  𝐘, then 𝐋𝐘 =  𝐛. Now it is trivial to solve 𝐋𝐘 =
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𝐛 for 𝐘 through forward substitutions and then solving 𝐔𝐱 = 𝐘 through backwards substitutions. 

The advantage of LU factorization over the traditional Gaussian elimination is that decomposing 

𝐀 into 𝐋 and 𝐔 is independent of 𝐛, also known as the right-hand-side vector. This allows 𝐋 and 

𝐔 to be used for solving for multiple right-hand side vectors. However, this approach has very 

large memory requirements of 𝑁2 + 𝑁 and high computational cost, of  
2

3
𝑁3 floating point 

operations (FLOPS), to solve a full linear system. A more efficient alternative, that can be used 

only if 𝐀 is Hermitian, therefore symmetric when real, is the Cholesky factorisation, where 𝐀 is 

decomposed to 𝐋 𝐋∗, where * denotes the transpose conjugate operator, requiring 
1

2
𝑁2 + 𝑁 

memory for a full system. The linear system can be solved as with the LU method, substituting 

𝐔 = 𝐋∗, with computational cost, for the solution of full systems, of 
𝑁3

3
 FLOPS. However, in the 

case of sparse linear systems, such as resulting from the FEM formulation, memory and 

computational costs are related to the number of non-zero elements of 𝐀 rather than the size 𝑁 

and, additionally, there are reordering strategies that when applied on sparse matrices allow 

more sparse factorizations. Specifically, in this work, the approximate minimum degree 

permutation algorithm was found to produce the most sparse factorizations, therefore was used 

for all the direct solvers. Nevertheless, factorization approaches rely on forward and/or 

backward substitutions to provide a solution, therefore they cannot be efficiently parallelized.  

In MATLAB when solving linear systems invoking the backslash operator, the Cholesky 

approach is used when the matrix is Hermitian, otherwise the LU approach is employed. The 

“spparams”35 command was used to confirm that all the real linear systems were solved with 

Cholesky solver and all the complex with LU. The MATLAB backslash operator is considered 

as the numerical ground truth for the solution of linear systems throughout this work. 

2.3.2. Iterative solvers 
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To overcome the computational limitations of direct solvers a variety of approximate solvers 

have been proposed that can be classified into three general categories: iterative, multigrid, or 

domain decomposition methods36. Multigrid and domain decomposition methods can be very 

efficiently parallelized, with solving speed not greatly affected by the size of the linear system. 

However, these methods require additional input parameters (e.g., the range of eigenvalues of 

the system, restriction and prolongation parameters, smoothing operators) that might be difficult 

to define and may vary for different systems to efficiently converge to adequate approximations. 

As such, these methods work best when they are tailored to solve a very specific problem. In 

contrast, iterative solvers are generic, and require little or no additional input from the user, and 

thus are traditionally chosen for the solution of linear systems describing light propagation.  

 Iterative approaches approximate a solution vector 𝐱𝑛 and then attempt to minimize the 

residual 𝑟𝑛  = ‖𝐛 −  𝐀𝐱𝑛‖ through n iterations, until 𝑟𝑛 is lower that a user defined residual 

threshold 𝑟th. However, in practice, the termination criteria are defined relatively as 𝑡c = 
𝑟𝑛

𝑟0
 , 

where 𝑟0 is the residual after the initial guess, with the initial guess 𝐱0 set usually as a vector of 

zeros. Using a relative threshold ensures that the iterations will converge with a final 𝑟𝑛 usually 

within the same order of magnitude as the 𝑡c, even when the number of unknowns is very large. 

Iterative approaches usually work on a projection space for increased computational efficiency. 

The most established projection scheme is the Krylov subspace, which is based on the Cayley-

Hamilton theorem that implies that the inverse of a matrix can be found as a linear combination 

of its powers. The Krylov subspace generated by a 𝑁 × 𝑁 matrix 𝐀, and a vector 𝐛 of dimension 

𝑁, is the linear subspace spanned by images of 𝐛 under the first 𝛼 powers of 𝐀. 

𝐾𝛼(𝑨, 𝒃) = 𝑠𝑝𝑎𝑛{𝒃, 𝑨𝒃, 𝑨
2𝒃,… , 𝑨𝛼−1𝒃} (2) 

This formulation avoids matrix to matrix operations, and instead utilizes matrix to vector 

operations which can be very efficiently implemented in parallel architectures. The Krylov 
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subspace is generated while the solver seeks to find the minimum of the projection space.  

Usually least square or gradient based optimization techniques are employed to solve such 

problems. There are many proposed algorithms to implement a Krylov space solver but there is 

no clear conclusion on which one is fastest when the same termination criteria is required37. The 

most popular approaches for the Krylov space gradient optimization is the Conjugate Gradient 

(CG), but is not guaranteed to work in non-Hermitian linear systems38. However, there are 

appropriate Krylov subspace solvers that can handle non-Hermitian systems with relatively low 

additional computational cost, like the Biconjugate Gradient Stabilized (BiCGStab). 

2.3.3. Preconditioners 

Iterative solvers do not have robust performance, and can be very slow, when the condition 

number of the system is very large. To overcome this, preconditioned versions of the solvers 

have been developed. Efficient preconditioning can largely reduce the condition number of a 

linear system leading to a dramatically reduced number of iterations to convergence. The 

preconditioner 𝐏, in effect is changing the geometry of the Krylov subspace to a simpler one, 

making the solution of the system much easier by providing an approximation of the matrix 

inverse that is easy to compute and solve. Instead of trying to minimize ‖𝐛 −  𝐀𝐱𝑛‖,the 

expression to minimize becomes  ‖𝐏−1𝐀𝐱𝑛 − 𝐏
−1𝐛‖, to be effective, the preconditioner 𝐏 

must be of much lower condition than 𝐀. In general, the P-1A product should be as close as 

possible to identity matrix or in other words P-1 ≈ A-1. It is hard to theorize what consists a good 

preconditioner, the main diagonal of 𝐀, also known as Jacobi preconditioner, can be very 

effective in diagonally dominant systems, however, usually an incomplete factorization of 𝐀 is 

used; as incomplete LU or incomplete Cholesky (IC) factorization. Recent research on solving 

linear systems focuses mainly on the choice of efficient preconditioners, emphasizing 

preconditioners that can be implemented in parallel architectures 39, rather than improving the 

solvers themselves. This happens because the time within each iteration is greatly reduced due 
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to the high level of parallelism offered by GPUs40, whilst preconditioning reduces the number 

of iterations needed to converge. Nevertheless, in practice, choosing the best preconditioner is 

usually a trial and error procedure. There are block-based preconditioners that are favourable 

for GPU parallelization41,42. In practice, the IC with no prior permutation or pivoting scheme 

was found to be the best preconditioning option for fast convergence of the MATLAB based 

iterative solvers, whilst the Factorized Sparse Approximate Inverse (FSAI)43 was found to be 

the option that produced the fastest overall result with the CUDA and OpenMP 

implementations. FSAI is constructed by solving local linear systems for each column of 𝐀 to 

approximate an 𝐀−1with sparsity pattern defined by powers of 𝐀. Additionally, a preconditioner 

inspired by FSAI was implemented, where the local linear systems were solved in parallel and 

only for the three larger values for each column, achieving similar preconditioning effectiveness 

whilst reducing the computational time for the construction of the preconditioner. This 

preconditioner is referred to as “FSAIP” for the rest of this work. 

2.3.4. Numerical accuracy 

The iteration residual 𝑟𝑛, and to an extent, the realization of the termination criteria 𝑡c, is bound 

to the numerical binary representation precision of numbers that the machine, the programing 

language and the employed libraries allow. In modern systems, this is double precision, 

represented by 64 bits of memory, which in practice can represent numbers with relative 

differences no smaller than 2−52, this is ~2.22 × 10−16, which is the minimum value defined 

in MATLAB. Any difference smaller than this is lost due to the quantization involved in 

converting a number that belongs to the real set ℝ into the binary set 𝔹2
64, where 𝔹2 = {0,1}. 

Therefore, requesting termination residual lower than a scale of 10−16, will not result in a more 

accurate solution, since any additional variation would be under the double precision 

quantization bin size of MATLAB and will be rounded to the nearest bin. Apart from the binary 

rounding errors, when solving a linear system with an iterative solver, the maximum solving 
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precision that can be achieved is analogic to the condition number of the system. The condition 

number of a linear system 𝐀 can be estimated as 𝜅(𝚨) =  ‖𝐀‖‖𝐀−1‖, where ‖ ‖ is a matrix 

norm (see section 2.6). The condition number of a linear system is large if there are big 

differences in its eigenvalues, therefore when solving large condition linear systems with 

iterative solvers good preconditioning is essential to achieve convergence to low errors.  

2.3.5. Complex numbers support 

The existing open source libraries that provide low-level functions and primitive data structures 

for parallel programming support on CPU and GPU are the Open Multi-Processing language 

(OpenMP)44 and Compute Unified Device Architecture (CUDA)45. However, up to the current 

version, OpenMP 4.5, does not provide native complex numbers support; and CUDA, whilst it 

provides support for complex numbers, does not come with high level mathematical functions 

such as sparse iterative linear solvers and preconditioners, therefore implementations that allow 

complex support are not a trivial task. Additionally, open source mathematical libraries that 

provide iterative solving of sparse linear systems on parallel architectures, as PARALUTION46  

and ViennaCL47, do not provide complex numbers support. However, when formulating the 

forward problem for systems operating in the frequency domain, the resulting linear system 

consists of complex numbers. Nevertheless, there are algebraic schemes that allow a linear 

system of complex numbers to be represented as an equivalent system of real numbers, solved 

in the real number domain, and then the solution can be converted back to a complex 

representation. There are four possible formulations of equivalent real systems as described in 

48, the approach chosen for this work is the K1 approach, that is formulates as: 

𝐀c = (𝑥 + 𝑦𝑖)  ↔  (
𝑥 −𝑦
𝑦 𝑥 ) = 𝐀r  

(3) 

where  𝐀c is the complex form and 𝐀r the equivalent real representation generalising, the 𝑛th 

dimensional complex linear system 𝐀c𝐱c = 𝐛c with entries: 
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(

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑛
𝑎2,1 𝑎2,2 … 𝑎2,𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑛,1 𝑎𝑛,2 ⋯ 𝑎𝑛,𝑛

)× (

𝑥1
𝑥2
⋮
𝑥𝑛

) = (

𝑏1
𝑏2
⋮
𝑏𝑛

) 

 

(4) 

is equivalent to the real linear system 𝐀r𝐱r = 𝐛r with entries: 

(

 
 
 
 
 

ℜ𝑎1,1 −ℑ𝑎1,1 ℜ𝑎1,2 −ℑ𝑎1,2 ⋯ ℜ𝑎1,𝑛 −ℑ𝑎1,𝑛
ℑ𝑎1,1 ℜ𝑎1,1 ℑ𝑎1,2 ℜ𝑎1,2 ⋯ ℑ𝑎1,𝑛 ℜ𝑎1,𝑛
ℜ𝑎2,1 −ℑ𝑎2,1 ℜ𝑎2,2 −ℑ𝑎2,2 … ℜ𝑎2,𝑛 −ℑ𝑎2,𝑛
ℑ𝑎2,1 ℜ𝑎2,1 ℑ𝑎2,2 ℜ𝑎2,2 ⋯ ℑ𝑎2,𝑛 ℜ𝑎2,𝑛
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

ℜ𝑎𝑛,1 −ℑ𝑎𝑛,1 ℜ𝑎𝑛,2 −ℑ𝑎𝑛,2 ⋯ ℜ𝑎𝑛,𝑛 −ℑ𝑎𝑛,𝑛
ℑ𝑎𝑛,1 ℜ𝑎𝑛,1 ℑ𝑎𝑛,2 ℜ𝑎𝑛,2 ⋯ ℑ𝑎𝑛,𝑛 ℜ𝑎𝑛,𝑛 )

 
 
 
 
 

×
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ℜ𝑥1
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=

(

 
 
 
 

ℜ𝑏1
ℑ𝑏1
ℜ𝑏2
ℑ𝑏2
⋮
ℜ𝑏𝑛
ℑ𝑏𝑛)

 
 
 
 

 

 

 

(5) 

The equivalent real system has the same sparsity pattern and sparsity factor as the original 

complex system, however the new system has double the time of unknowns, therefore requires 

double the computations, and additionally FEM-DA linear systems in FD are no longer 

Hermitian, therefore the BiCGStab solver is employed for FD simulations. 

In addition, a BiCGStab solver, based in CUDA, operating directly on the complex domain was 

implemented and used with the developed parallel constrained FSAI version (FSAIP) to solve 

FD simulations. 

 GPU/CPU parallelization   

The proposed approach for accelerating fluence estimation relies on employing efficient 

libraries for linear algebra operations, and performs remarkably faster when GPU based parallel 

architectures are available. Over the last decade, the technical advancements in GPUs, and their 

relatively low cost, has made GPU computing a very attractive option. Specifically, many linear 

algebra operations can be parallelized very efficiently in GPU architectures49 while using sparse 

representations, resulting in massive reductions of computational time. This can be applied on 

the solution of the forward model, dramatically decreasing the computational time required to 

estimate the Krylov subspace. Solvers based on libraries that can be used both in CPU and GPU 
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were implemented, to guarantee accessibility by all users. Additionally, the solvers were 

compiled as MATLAB executable files (mex files) for both Windows and Linux 64 bit systems, 

to allow easy invocation from within the MATLAB environment where the NIRFAST package 

is based. Specifically, to take advantage of the GPU computing power, implementations based 

on CUDA45 were produced, which require the CUDA runtime that is provided with the NVIDIA 

drivers, and the CUDA Software Developer Kit (SDK) that is free to download. For CPU 

environments the OpenMP backend was used, that is also publicly available with all standard 

C/C++ compilers. The mathematical library employed to provide efficient implementations of 

high level linear algebra operations is PARALUTION46 which offers a wide variety of linear 

solvers and preconditioners, supports sparse matrix and vector formats, and allows a high level 

of abstraction between code and hardware, making the code highly portable and efficiently 

scalable to the available hardware. The produced CUDA based implementations will retreat to 

OpenMP, if there is no GPU available in the system. 

 An algorithm to distribute workload between the CPU and GPU was implemented, the 

workload was distributed by balancing the right-hand side input (sources) between CPU and 

GPU. Benchmarking tests were performed on all mesh resolutions to define the best workload 

distribution in each case. However, it was found that in all meshes above 70,000 nodes the solely 

GPU based solution was faster, whilst with meshes with smaller number of nodes (~50,000), 

the computational time reduction was less than a second. On the other end, the CPU 

implementation is faster than the equivalent GPU implementation in meshes with less than 

15.000. This is primarily due to time consuming data transfer and device initialisation 

procedures. Nevertheless, this is depended on hardware, number of right-hand side vectors and 

complexity of the imaging domain.  

MATLAB provides sparse linear solvers on the CPU, that can be easily parallelized over the 

right-hand side vectors using the parallel computing toolbox. Though, there are overhead data 
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transfers between memories (RAM, CPU cache memory, GPU memory) and between 

computational threads and memory that do not allow computational accelerations to scale 

linearly with the number of available computational cores. 

 Experimental set-up 

Data from MRI of an adult head was segmented and meshed into thirteen different resolution 

meshes using the algorithm proposed by Jermyn et al24. The modeled DOT instrument is a high-

density system with 158 NIR light sources and 166 detectors. Each detector is related to sources 

in separation distance configurations from 1.3 to 4.6cm, resulting to 3500 associated source-

detector pairs. More details about the resolution of the meshes can be found in Table 1 and the 

optical properties for each layer of the anatomical model are described in Table 2 32. 

Table 2 Optical properties of tissue layers at 750nm wavelength 32 

Tissue Layer 𝜇a  

(mm-1) 

𝜇s
′  

(mm-1) 

Refractive 

Index 

Scalp 0.0170 0.74 1.33 

Skull 0.0116 0.94  1.33 

Cerebrospinal fluid 0.004  0.3  1.33 

Gray Matter 0.0180 0.84  1.33 

White Matter 0.0167 1.19  1.33 

 

 The light propagation model was calculated for all 158 sources in all experiments, in 

continuous wave mode and in frequency domain mode at a modulation frequency of 100 MHz, 

for one NIR wavelength of 750nm. All the experiments were performed on a desktop computer 

with 16GB of RAM, an Intel Core I7-4790 CPU with 4 physical cores, allowing two threads per 

core, resulting to 8 logical cores @ 3.6GHz, and a NVIDIA GTX970 graphics card with 1664 

logical cores @ 1050MHz with 4GB dedicated memory. 
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 Metrics 

It is important to ensure that employing an iterative linear solver will not increase the error of 

the solution. To this end, the accuracy of the proposed solvers was compared against the direct 

solution, calculated with the backslash operator in MATLAB. There is no standard way of 

comparing two matrices, 𝚽ref, for the fluence calculated with a direct solver, and 𝚽ite, for the 

fluence calculated with an iterative solver, however the first step for all approaches is taking the 

difference 𝚽dif = |𝚽ite −𝚽ref|. The most common metrics to quantify the difference 𝚽dif are 

the ones induced from vector norms: the 1-norm ‖𝚽dif‖1 which is the maximum of the column 

sums of 𝚽dif, the ∞-norm ‖𝚽dif‖∞ which is the maximum of the row sums of 𝚽dif, and the l2-

norm ‖𝚽dif‖2 which is the maximum singular value of 𝚽dif, also known as the spectral norm.  

However, those metrics do not provide easily comprehensible quantities, therefore the 

relative error per node 𝑟,was calculated as: 

𝜀𝑟𝑒𝑙(𝑟) =  
|𝜱(𝑟)𝑟𝑒𝑓 − 𝜱(𝑟)𝑖𝑡𝑒|

|𝜱(𝑟)𝑟𝑒𝑓|
 × 100% (6) 

This relative error representation is useful for visualisation of the error on the mesh nodes and 

boundary data, and provides more comprehensible numbers than the matrix norms. 

3. RESULTS AND DISCUSSION 

The evaluation is performed in one adult head model using a HD-DOT system with 158 sources 

and 166 detectors (Fig. 1). The behaviour of the solvers is examined under varying error 

demands, and in different mesh resolutions, considering the accuracy and the computational 

time. The focus is on the relation between mesh resolution (and hence problem size), termination 

criteria, computational time, and solution error. The direct solutions are only possible to 

calculate up to the 400,000 nodes mesh for continuous wave (CW) and up to 200,000 nodes 

in frequency domain (FD) systems, due to high memory requirements, so all quantitative 

comparisons are performed in the subset of the meshes where a direct solution is available. 
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 Qualitative and quantitative comparisons 

Considering that there is already some error introduced by the discretization of the diffusion 

approximation within the FEM formulation, the error from solving the linear systems should be 

kept at a minimum. However, the amount of error that can be afforded in the modelling 

procedure is dependent to the error tolerance for the application. Error! Reference source not 

found. shows the surface fluence when utilizing the CUDA based solver at different termination 

criteria; the simulated light source is near the back of the head, indicated by the blue dot and 

arrow.  

 

When high termination criteria are set, the fluence is not estimated for the distant nodes as 

the solution iterates to a stable solution quickly. The fluence approximately follows an 

exponential decay through tissue, therefore its value dramatically decreases with distance from 

Surface loagithmic fluence scale log10 (mm
2 s)⁄   

 

Direct solution CUDA solution , tc= 10-16            

CUDA solution , tc= 10-12  CUDA solution , tc= 10-8 
Fig. 2 Visual comparison of surface fluence whilst using different termination criteria. Simulation in continuous 

wave, for one source indicated in blue, in a 400,000 nodes mesh, solving with CUDA CG. 
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the source, therefore the required termination criteria are reached while only partially calculating 

the solution for the highest fluence values. 

As FD simulations provide amplitude and phase information, the errors for each were 

examined separately. Fig. 3 and 4 provide a quantification of the relationship between distance 

from the source and the relative nodal amplitude and phase errors arising from solving with an 

iterative solver. The demonstrated simulation is in the frequency domain, at 100MHz, for a mesh 

with 200,000 nodes, solving with a CUDA BiCGStab & FSAI. In Figs 3 and 4, the maximum 

relative error for all nodes as a function of distance from the source is extracted for different 

termination criteria.  

 

As evident, the relative errors are small and located away from the source with low 

termination criteria of 10-16, but they become larger and manifest nearer the source as the 

termination criteria rises. Similar results (not shown) were acquired for amplitude errors from 

continuous wave simulations.  

  
Fig. 3 Maximum relative amplitude errors per node (Eq.6) as a function of distance from source. Comparison 

between different termination criteria.  Simulation 100MHz frequency, on a 200,000 nodes mesh, solving 

with CUDA BiCGStab. 
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Lower termination criteria will provide smaller numerical errors, but also slower solver 

convergence, as a larger number of iterations is required. In the modelled DOT system, the 

maximum SD separation typically considered to acquire boundary data is at 46 mm. The 

performed evaluation in Figs 3 and 4 reveal that for anatomically accurate adult head models, 

the termination criteria can be selected in the range of 10-8 or lower, for CW and FD systems, to 

ensure that minimal error is introduced in the parameter recovery, when acquiring measurements 

from SD separation distances less than 46 mm. The sensitivity matrix will have approximately 

square of the error of the forward solution. Therefore, termination criteria chosen to be large, a 

practise often employed to accelerate reconstructions, while the boundary data is measured in 

large SD separations, can lead to large errors in the sensitivity matrix and, consequently, large 

errors in the parameter recovery and image reconstruction. 

 
Fig. 4  Maximum relative phase errors per node (Eq.6) as a function of distance from sources. Comparison 

between different termination criteria.  Simulation 100MHz frequency, on a 200,000 nodes mesh, solving 

with CUDA BiCGStab. 
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  Computational Time Comparisons 

Three parameters mainly affect the computational speed of iterative linear solvers: the size of 

the problem, which in our case is the number of nodes, the number of right hand side vectors, 

which in our case is the number of excitation sources, and finally the termination criteria. All 

the experiments were performed 10 times, the mean time is shown in all figures, while the 

standard deviation in all cases was small, at around 1 second for CPU implementations and 0.1 

second for GPU, therefore is not shown in the figures. 

 Fig. 5 shows the computational time for fluence estimation for 158 sources in a 400,000 

noded mesh as a function of termination threshold. The direct solver provides an exact solution 

to the linear system, therefore does not introduce any error. However, is displayed as a horizontal 

line through all the termination criteria in Fig. 5, to serve as point of reference. The GPU based 

solver yields the best termination criteria to computational time ratio. Employing 

implementations that do not require much additional time to converge to smaller errors can  

 

Fig. 5 Computational time as a function of termination criteria, comparison between different linear solvers. 

Simulation in continuous wave, for 158 sources in a 400,000 nodes mesh. 
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increase the accuracy of the estimated light propagation model whilst keeping the computational 

time low.  

Each source is represented by one right-hand side vector in the linear system resulting from 

the FEM Equation (1), and the fluence must be calculated for all sources. To achieve this, the 

iterative solvers must create the Krylov space under the projections of each right-hand side 

vector, which, as expected increases the computational cost and therefore the computational 

time required. Fig. 6 demonstrates how the number of sources (right hand side vectors) affects 

the computational time of the solution, showing that the computational time increases linearly 

with the number of sources. It is interesting to note that the direct solver, that yields the exact 

solution relying on Cholesky decomposition followed by forward and backward substitutions, 

is almost as efficient for each additional source as the GPU based solver. However, the time 

spent initially for the factorisation is very large, which in combination with the very high  

 

Fig. 6 Computational time as a function of excitation sources number, comparison between different linear 

solvers. Simulation in continuous wave, in a 400,000 nodes mesh, with 10-12 termination criteria. 
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memory requirements as discussed in section 2.3.1, render the direct solver impractical. 

Nevertheless, the factor that affects computational time the most is the resolution of the mesh. 

The more nodes a mesh contains, the bigger the linear systems that needs to be solved is, 

therefore more mathematical operations have to be applied to create the Krylov space. Fig. 7 

presents the computational time needed as the mesh resolution increases. The fastest of the 

solvers is the CUDA based solver, which achieves computational time of ~42 seconds for 

calculating the fluence for all 158 excitation sources in a 600,000 node mesh, this is ~0.25 

second to calculate the fluence for one source. The CUDA based solver performs almost 11 

times faster than the MATLAB based iterative solver without any parallelization, which takes 

~460 seconds for the same calculation. The direct solver can only solve up to systems with 

500,000 nodes before the 16GB hardware memory availability becomes an underlying issue.  

Fig. 8 displays the computational time for different mesh resolutions for frequency domain 

simulations at a modulation frequency of 100 MHz. The direct solver can only handle up to 

 
Fig. 7 Computational time with respect to mesh resolution, comparison between different linear 

solvers. Simulation in continuous wave, for 158 sources with 10-12 termination criteria. 
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200,000 nodes, due to the increased memory requirements for storing complex numbers. The 

displayed computational time includes the computations to create the equivalent real system and 

transform the fluence back to complex after solving the system where is necessary. 

 
Fig. 8 Computational time with respect to mesh resolution, comparison between different linear 

solvers. Simulation in 100 MHz frequency, for 158 sources with 10-12 termination criteria. 

 

The direct solver takes 4,612 seconds to calculate the fluence for the 200,000 nodes mesh, 

however Fig.8 was limited to 1,100 seconds to provide a better scale.  The direct solver becomes 

intractable due to the increased memory requirements for complex arithmetic storage and 

because of the non-Hermitian nature of the FEM matrix, which is also reflected as increased 

memory and computational requirements for the required LU decomposition (in comparison 

with the Cholesky for the real cases).A linear system resulting from a frequency domain FEM 

mesh does not have the same condition number as the same mesh in continuous wave, due to 

different attenuation coefficients for frequency modulated light, which makes the FD problem 

harder to solve, therefore, there is not a direct analogy between their computational costs. 
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Though, one can roughly assume that for a given mesh if a CW solution requires 𝑂  operations 

the FD will require 2𝑂. This is confirmed on our demonstrated results in Figs 6 and 8.  

Furthermore, the “OMP BiCGStab with FSAI on K1” operates on the complex to real 

transformed (K1) matrix, resulting in double computations in comparison to the “Matlab 

BiCGStab with IC” which operates directly on the complex domain. As an approximation one 

could assume that if a mesh in CW requires O number of operations, it requires 2O in the 

complex domain but 4O when the complex to real transformation is used. Also, the Matlab 

parallel version requires almost half the computational time of the non-parallel Matlab version, 

and the OpenMP version is slightly faster than the Matlab parallel version when operating in the 

same space (O). Then it is possible to observe the following: a solution on CW would take T 

seconds for Matlab non-parallel, T/2 for Matlab parallel, and slightly faster than T/2 for OpenMP 

(note that all these cases do O operations). In contrast a solution on FD domain would take 2T 

for Matlab non-parallel (operates in 2O), T for Matlab parallel (operates in 2O) and slightly 

faster than 2T for OpenMP (operates on 4O). Furthermore, the implemented complex CUDA 

version, which operates on 2O, requires approximately half the computational time in 

comparison with the CUDA on the K1 (4O) space. 

4. CONCLUSION  

DOT is a promising imaging modality, steadily gaining ground amongst the established imaging 

techniques. The harmless and patient friendly procedure enables use in applications where other 

techniques are inadequate. However, the DOT reconstruction algorithm, especially when 

employed for functional brain imaging, suffers from large computational time, mainly due to 

solving large sparse linear systems. This work provides fast GPU and CPU implementations of 

efficient and stable linear solvers, based on CUDA and OpenMP respectively, compiled as mex 

files, to be directly accessible from MATLAB and will become publicly available in the next 

release of the NIRFAST package (www.nirfast.org). It is shown that numerical errors introduced 
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by iterative solvers are spatially located away from the excitation source. However, the distance 

of the numerical errors from the excitation source is related to the termination criteria, indicating 

that choosing large termination criteria to accelerate the modelling procedure, could negatively 

affect the quality of the reconstruction, depended on the application. Nevertheless, if the 

application allows, the computational time of any iterative solver can be greatly reduced by 

increasing the termination criteria. For example, for the models examined in this work, 

increasing the termination to 10-6 from 10-12 will reduce the computational time by half, but will 

increase the modelling error above 1% for the farthest SD separation. Therefore, the underlying 

physics, and the modelling and reconstruction procedure must be considered before attempting 

to solve with higher termination criteria. However, it is now computationally feasible to select 

lower termination criteria for the iterative solvers, practically eliminating any error induced by 

the approximate solving or the complexity of the volume, as the GPU parallelized approach has 

overly significantly lower computational time. Furthermore, the proposed approaches can be 

very efficient for systems with large number of sources and detectors since the computational 

time is not greatly affected by solving for multiple sources; and in addition, can be employed in 

frequency domain simulations. Based on the performed experiments, the fastest approach is to 

parallelize the matrix to vector operations involved in iterative solvers in GPU architectures. 

The produced solvers allow researchers to explore new approaches in DOT, that until now 

were out of reach due to the slowness of the algorithm. Simulations of light propagation that 

would take a long time, now can be done in a few minutes, forging a path towards real-time 

DOT. The work presented here is based on systems with one GPU node; though, the same 

philosophy can be applied in systems with multiple GPUs and extended to cloud computing to 

achieve real-time solutions. Parallelization approaches can also be applied for the optimization 

of the inverse problem of DOT, where the creation and the inversion of the Jacobian are 

currently the most computationally expensive parts of the algorithm, especially when recovering 
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absolute optical parameters. In functional brain imaging, creating sparse Jacobians enables to 

solve the linear inverse problem directly in the GPU in real-time speed for each temporal set of 

measurements. 
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