
 
 

University of Birmingham

Two-Phase and Graph-Based Clustering Methods
for Accurate and Efficient Segmentation of Large
Mass Spectrometry Images
Dexter, Alex; Race, Alan M.; Steven, Rory T.; Barnes, Jennifer R.; Hulme, Heather; Goodwin,
Richard J. A.; Styles, Iain B.; Bunch, Josephine
DOI:
10.1021/acs.analchem.7b01758

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Dexter, A, Race, AM, Steven, RT, Barnes, JR, Hulme, H, Goodwin, RJA, Styles, IB & Bunch, J 2017, 'Two-
Phase and Graph-Based Clustering Methods for Accurate and Efficient Segmentation of Large Mass
Spectrometry Images', Analytical Chemistry, vol. 89, no. 21, pp. 11293-11300.
https://doi.org/10.1021/acs.analchem.7b01758

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1021/acs.analchem.7b01758
https://doi.org/10.1021/acs.analchem.7b01758
https://birmingham.elsevierpure.com/en/publications/4719bacb-950b-4bd8-a3ec-5cee177007a9


 

 

Two-phase and graph based clustering methods for accurate and efficient 

segmentation of large mass spectrometry images  

Alex Dexter1,2, Alan M. Race2, Rory T. Steven2, Jennifer R. Barnes3, Heather Hulme3,4, Richard 

J.A. Goodwin3, Iain B. Styles5, Josephine Bunch2,6*, 

1PSIBS Doctoral Training Centre, University of Birmingham, Edgbaston, Birmingham, B15 

2TT, United Kingdom; 2National Physical Laboratory, Teddington, Middlesex TW11 0LW, UK; 

3AstraZeneca, Drug Safety and Metabolism, Cambridge CB4 0WG, UK; 4University of 

Glasgow, University Avenue, Glasgow, G12 8QQ; 5School of Computer Science, University of 

Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom; 6School of Pharmacy, 

University of Nottingham, Nottingham, Nottinghamshire NG7 2RD, UK 

E-mail: josephine.bunch@npl.co.uk.  



 

 

Abstract 

Clustering is widely used in MSI to segment anatomical features and differentiate tissue 

types, but existing approaches are both CPU and memory-intensive, limiting their application to 

small, single datasets. We propose a new approach that uses a graph-based algorithm with a two-

phase sampling method that overcomes this limitation. We demonstrate the algorithm on a range of 

sample types and show that it can segment anatomical features that are not identified using 

commonly employed algorithms in MSI, and we validate our results on synthetic MSI data. We show 

that the algorithm is robust to fluctuations in data quality by successfully clustering data with a 

designed-in variance using data acquired with varying laser fluence. Finally, we show that this 

method is capable of generating accurate segmentations of large MSI datasets acquired on the 

newest generation of MSI instruments, and evaluate these results by comparison with 

histopathology. 

Introduction 

Mass spectrometry imaging (MSI) is a label free molecular imaging technique capable of 

spatially mapping molecules in a sample.1 Typically MSI is performed on biological samples such as 

thin tissue sections.2 Since there are a huge number of different molecules in biological tissues, 

computational analysis of the MSI data is required to mine the large amount of data generated in 

these experiments3, and a common task is spatial segmentation which is often performed using 

methods such as k-means or hierarchical clustering.4,5 These algorithms partition the pixels of the 

image into groups based on some measure of similarity between them. This enables the different 

categories of spectra within the data to be identified and separated, thereby segmenting features 

such as different anatomical structures, or distinguishing between tumour and non-tumour 

tissues.6,7  

A number of clustering algorithms have been applied to MSI data. In early studies, k-means 

and agglomerative hierarchical clustering were used to segment anatomies in rat tissue.4 Recently 



 

 

algorithms were developed by Alexandrov et al. to overcome the pixel-to-pixel variability observed 

in MSI data and provide a more accurate segmentation of coronal mouse brain images.8 Since then, 

the more efficient bisecting k-means hierarchical clustering has been used to cluster large MSI 

datasets including 3D MSI images.9   

There are a number of underlying difficulties in clustering of MSI data. Since a full mass 

spectrum is acquired at each pixel location, the data is high-dimensional and the distance metrics 

that are typically used to measure inter-pixel similarity converge to the same value and are not 

useful for discrimination.10 Consequently, clustering on high dimensional data is often unable to 

converge or falls into local minima, resulting in poor segmentation. In addition to this high 

dimensionality, MSI data suffers from a high degree of inter-pixel variability, stemming from a 

number of sources, and tissue regions with very similar molecular composition may yield spectra 

with significant differences. Despite these challenges, clustering algorithms used in MSI have been 

shown to be able to distinguish between different anatomies, tumour types, and even distinguish 

intra tumour heterogeneity.5,6,11 In order to be clinically applicable, spatial segmentation of 

pathological regions must be extremely reliable and accurate since poor accuracy would ultimately 

lead to poor diagnostic accuracy and the possibility of incorrect treatment or intervention. For 

simple applications such as segmentation of tissue from matrix, or of highly differentiated tissues, 

simple clustering algorithms such as k-means and hierarchical clustering are sufficient.5,6,12 However 

when a larger number of fairly similar anatomies need to be segmented, the performance of these 

algorithms decreases significantly.8 This can be overcome by the use of more sophisticated 

algorithms but this comes with increased computational cost, and may require additional 

dimensionality reduction steps.8 

Graph theory-based clustering algorithms are frequently used in image segmentation and 

have been shown to produce more accurate clustering results than simple algorithms such as k-

means.13-15 In graph based clustering, the data is represented as a graph in which each pixel is 

represented as a node in the graph, and the graph edges represent the similarity of the connected 



 

 

nodes. The graph can be represented by its connectivity or similarity matrix M which can be 

constructed in one of two ways. In the first, the matrix is constructed such that its elements Mij 

represent the similarity of the spectra at pixels i and j by some measure.  16 In the second method, 

Mij = 1 if the spectra at pixels i and j are within a specified threshold similarity, or Mij = 0 otherwise. 

The clustering itself is then performed using any algorithm (usually k-means) on a the number of the 

eigenvectors specified in table 1 of this connectivity matrix, selected in order of their eigenvalues 

(from second smallest to largest). The eigenvectors of this similarity matrix allow the optimal 

partitions of the pixels that maximally preserve connectivity within these data. Three of the most 

widely used algorithms that use this approach are spectral clustering which clusters the eigenvectors 

by the k-means algorithm16, minimum cuts which bipartitions the graph such that the connection 

between the two subsets is minimal17, and normalised cuts which bipartitions the  graph based on 

some threshold of the eigenvector with the second smallest eigenvalue14. Since the k-means 

clustering or bipartition step is performed on only a few eigenvectors (or even a single one), this 

potentially alleviates some of the issues associated with high dimensional data, and the spectral 

clustering is related to non-linear dimensionality reduction. The main use of graph based clustering 

has been in image segmentation14,18, and offers an alternative  method for accurate segmentation of 

MSI datasets in clinical analysis. However, in graph cuts algorithms, it is normally necessary to 

specify a number of nearest neighbours in order to construct the connectivity matrix to reduce 

memory requirements. This added variable can be difficult to select, without a priori knowledge of 

the data as the number of nearest neighbours should be approximately equal to the expected 

cluster size.19 Since MSI is often used as an exploratory technique this will not always be known. This 

can be alleviated by forming a fully weighted graph where the connectivity of two spectra is 

weighted by their spectral similarity as determined by an appropriate distance metric. This however 

imposes additional memory requirements as the similarity between every pixel and every other pixel 

must be calculated and stored. 



 

 

As well as issues with accuracy of clustering, new developments in instrumentation mean 

that the size of MSI datasets are continually increasing, both in terms of the number of spectral 

channels observed and in term of the number of pixels in a given dataset.20,21 This is a significant 

problem because datasets are becoming too large to fit into the available RAM of a standard PC, and 

even high performance computers, limiting the ability to routinely perform multivariate analysis. 

This usually necessitates the reduction of the data, either to minimal peak lists or using multivariate 

dimensionality reduction methods such as principal component analysis (PCA), random projection or 

t-distributed stochastic neighbour embedding (t-SNE).3,6,22 An alternative approach to handling large 

data used in many other fields is the divide and conquer approach.23 This works by recursively 

breaking a problem down into smaller pieces that can be dealt with easily. These pieces can then be 

recombined to solve the original problem. This approach is used to efficiently solve numerous 

problems in computer sciences, from data sorting24 to the fast Fourier transform25. For example, the 

two-phase k-means clustering algorithm uses this principle to group items from large databases that 

cannot be stored in RAM.26 The basic algorithm is as follows; 

1) Assign the data to one of a predetermined number of subsets s 

2) Load in one subset and apply necessary preprocessing 

3) Cluster the subset into k groups using k-means 

4) Use the cluster centroids to form a compressed representation of this subset 

5) Combine all cluster centroids into one dataset and cluster the compression set into k 

groups using k-means. 

6) Propagate clustering assignments back to original data 

For full details of the algorithm see supporting information algorithm S2. 

Using this method significantly reduces the RAM required to perform clustering, since only a 

small subset needs to be in memory at any one time. Since MSI data is both large and high 

dimensional, we combine graph-based clustering with the two phase divide and conquer approach 

to accurately cluster large MSI datasets. We demonstrate superior segmentation results using these 



 

 

algorithms on coronal, sagittal and transverse brain datasets. Following this, we validate these 

results on synthetic MSI data, and finally go on to demonstrate their application to a large MSI 

dataset from mouse colon. 

Experimental section 

Mass spectrometry imaging 

 Coronal, and transverse sections were obtained from mouse brain, sagittal from rat brain. 

All sectioning was carried out at 12 μm thickness and thaw mounted onto either glass slides 

(Superfrost, Thermo Fisher Scientific, Waltham, MA USA) for mouse brain, or stainless steel MALDI 

target plates for sagittal rat brain. Following mounting, samples were coated with CHCA matrix (5 

mg/mL, 80% MeOH 0.1% TFA) using an automated pneumatic sprayer (TM-sprayer, HTX imaging, 

Chapel Hill, NC, USA). Coronal and transverse MALDI images were acquired using a Synapt G2Si 

(Waters, Manchester, UK), using a pixel size of 45 x 45 and 30 x 30 μm respectively, over an m/z 

range of 100-1200 Da. Full experimental details on the sagittal rat brain data acquisition was 

described by Carter et al.27 

Full details of the variable fluence experiments have been described previously.28 Briefly, 

serial coronal mouse brain sections were thaw mounted onto a single stainless steel MALDI plate. 

These were then coated in CHCA as above. Mass spectrometry images were then acquired using a 

QSTAR XL Qq-ToF mass spectrometer fitted with an oMALDI II ion source (Sciex, Warrington, UK) in 

continuous raster mode. Data from the second to sixth sections using the 100 μm diameter round 

core fibre were used as described in the study by Steven et al.28  

Synthetic data were generated using a statistical modelling approach, modelling clusters of 

MSI data as multivariate normal distributions from the reference data as described by Dexter et 

al.29Synthetic datasets with three anatomical regions (from brain stem, lateral septal complex, and 

isocortex) were generated with between 3,000 and 300,000 pixels in increments of 3,000 pixels, with 

equal numbers of pixels from each region. The large synthetic brain MSI image was generated based 



 

 

on the original masks from Dexter et al.29 scaled up by a factor of 3 in x and y to give a total of 

187,425 pixels.  

Mouse colon samples were collected, prepared using the ‘Swiss Roll’ technique30 and 

embedded in 2.5% carboxymethyl cellulose (Sigma-Aldrich) in sterile water. Full details on sample 

preparation can be found in the supporting information. High spatial resolution MS images were 

acquired using a RapiFlex MALDI ToF/ToF (Bruker Daltonics, Germany) in reflectron positive ion 

mode, using a pixel size of 5 x 5 μm, over an m/z range of 200-1000 Da. 

Data processing and analysis 

Data processing was performed on an Intel Xeon quad core CPU E5-2637 v2 (3.50 GHz) with 

64 GB of RAM. All data were converted from proprietary format to the mzML format using the 

msconvert tool in the ProteoWizard31 software, and then into imzML using imzMLConverter32. This 

was then imported into MATLAB (version R2014a and statistics toolbox, The Math-Works, Inc., 

Natick, MA, USA) using the SpectralAnalysis software package33.  QSTAR data were zero-filled using 

the QSTARZeroFilling routine in SpectralAnalysis, followed by three iterations of Savitzky-Golay 

smoothing with a window size of 7 and second order polynomial, and the negative signals produced 

by the smoothing were then removed by truncating to zero. The data acquired on the Synapt were 

zero filled using the interpolated rebinning function in SpectralAnalysis with a bin size of 0.01 and no 

smoothing applied. Total spectra were then generated from each dataset, peak picked using the 

gradient method, and the peak intensities were extracted for individual pixels. k-means clustering 

was performed using the function kmeans from the Matlab Statistics toolbox using the parameters 

given in the Results and Discussion section with three replicates and random starting clusters. The 

spectral clustering algorithm (SI Algorithm S1) was used in all cases of graph based clustering, and 

the full weighted similarity graph representation was used in each case where the edges were 

represented by cosine similarity. 

Data partitioning for the different subsets in two-phase k-means and two-phase graph cuts 

clustering was performed by pseudo-random assignment of each pixel into a predefined number of 



 

 

subsets such that the subsets were of equal size, and all spectra were assigned to a subset. The 

subset sizes were 17,000 spectra for the synthetic data, 25,000 spectra for the transverse brain data, 

and 19,000 for the gut data. In all cases, the cosine similarity measure was used for weighted graph 

construction and k-means clustering based on previous literature on distance metric choice in MALDI 

MSI.29 

When clustering the smaller datasets using graph cuts, k-means clustering was performed on 

the smallest 250 eigenvectors of the connectivity graph. For the two-phase graph cuts of the large 

synthetic brain data, k-means was performed on the smallest 500 eigenvectors of the connectivity 

graph of the subsets, and the smallest 20 eigenvectors of the graph of the compression set. For the 

two-phase graph cuts of the transverse brain data, k-means was performed on the smallest 600 

eigenvectors of the connectivity graph of the subsets, and the smallest 10 eigenvectors of the graph 

of the compression set. In the two-phase graph cuts of the mouse colon data, k-means was 

performed on the smallest 600 eigenvectors of the connectivity graph of the subsets, and the 

smallest 10 eigenvectors of the graph of the compression set. For a summary of these parameters 

see table 1. The number of eigenvectors selected represent approximately 2% of the total number of 

eigenvectors present. A range of values were investigated and this was found to produce the best 

segmentation based on visual inspection. A method for a more objective selection of this value 

would make an interesting topic for future research. The subset sizes were chosen based on a 

compromise between efficiency and having subsets that were representative of the whole dataset. 

Full details on the spectral clustering, two phase k-means and two phase graph cuts 

algorithm see supporting information. 

 

Table 1 Two-phase graph cuts parameters used 

Dataset Eigenvectors used to 
cluster subsets 

Eigenvectors used to 
cluster compression set 

Subset size (pixels) 

Large synthetic brain 500 20 17,000 

Transverse brain 600 10 25,000 

Mouse colon 600 20 19,000 

 



 

 

Results and Discussion 

To evaluate performance of different clustering approaches, MALDI MSI data from coronal 

and sagittal murine brain sections were processed using k-means, agglomerative clustering, graph 

cuts and bisecting k-means algorithms. A summary of the results from this comparison is shown in 

Figure 1 alongside images from the Allan brain atlas from the same anatomical location in the brain. 

Using graph cuts clustering on MSI images of coronal and sagittal brain produces much clearer 

anatomical segmentation based on a visual comparison with the Allen brain atlases34 when 

compared to other clustering methods such as k-means and hierarchical clustering (Figure 1). In the 

sagittal brain data, only the graph cuts algorithm is able to clearly segment caudate putamen 

(turquoise), cerebral cortex (orange and grey), thalamus (light green), midbrain (cream and blue) and 

hippocampus (purple). Similarly, in the coronal brain data, only the graph cuts segmentation 

separates the isocortex (green) from olfactory areas (purple), and identifies the caudoputamen (dark 

blue) and brain stem (red) areas. Additional results from k-means and graph cuts clustering with 

different values of k are provided in the supporting information figure S1. 

This gives a good initial indication that graph cuts based clustering can accurately segment 

MSI data. These initial results are not readily generalisable as it cannot be ruled out that the 

inherent characteristics of these datasets are more favourable to this approach and more controlled 

experiments are required. We perform several experiments to test the applicability of the proposed 

methods across different datasets. 

In a clinical setting, the result of the clustering must be robust to any noise or spectral 

differences in the data that result from the pixel to pixel variability derived from experimental 

sources within an MS image such as the effects of inhomogeneous sample preparation and laser 

instability.35,36 In order to analyse a dataset with a controlled and known reduction in the spectral 

quality of the data, a series of mouse brain datasets acquired at decreasing laser fluence were 

studied. The spectral quality of these data decreases as the fluence falls below the threshold for 

ionisation (Figures S2– S6).28 These data present an extreme, but controlled, example of variable 



 

 

quality spectra – in this case due to decreasing laser energy. This reflects the variability within MSI 

data, where artefacts, e.g. those from inhomogeneous matrix deposition, cause localised deviations 

in spectra quality. In this situation, the graph cuts clustering algorithm is visibly superior to k-means 

clustering at segmenting the anatomical features in the tissue (Figure 2). This makes it more suitable 

for use when anatomical segmentation is the desired result of the clustering, for example in 

biomedical imaging applications. This result can be attributed to the preservation of connectivity 

when using the graph cuts clustering algorithm. The data acquired at 35 Jm-2 will be similar to that 

acquired at 51 Jm-2, which will in turn be similar to that acquired at 78 Jm-2 and so on. Therefore 

there is a continuous path of connectivity between the data acquired at the lowest and highest 

fluences. If the connectivity is broken, as would happen if only the lowest and highest fluence 

datasets are clustered, the graph cuts algorithm is able to distinguish between these experimental 

variances (Figure S7). Therefore, in studies where there is likely to be an incremental changes within 

the data, graph cuts clustering should be used when the desired result is to ignore these incremental 

changes. If the desire is to segment and identify these incremental changes, then the k-means 

clustering algorithm is more suitable.  

In studies where k-means is to be used, the memory requirement and speed of this 

algorithm can be improved through the use of the two-phase approach. The time complexity of k-

means clustering is 𝑂(𝑛. 𝑑. 𝑘. 𝑖) where n is the number of pixels, d the number dimensions, k the 

number of clusters and i the number of iterations.37 The number of iterations, however, can itself  

increase exponentially with d and k.38 Using the two-phase k-means approach, clustering is only 

performed on a small subset of the whole data thereby reducing the complexity by reducing both n 

(directly) and i (indirectly). The two-phase k-means clustering is at its most memory efficient when 

the subset and compression set are of equal size and at this point, time complexity scales as 

𝑂(𝑠. √𝑛 . 𝑑. 𝑘. 𝑖) where s is the number of subsets used. While this may not initially appear to be an 

improvement, since the number of iterations i scales exponentially with number of pixels n, the 

improvements seen in time complexity are increasingly significant as n increases. To demonstrate 



 

 

these improvements, synthetic MSI datasets consisting of 3 regions (from brain stem, lateral septal 

complex, and isocortex), with a varying number of pixels (3000 to 300,000) and 8,193 mass channels 

were generated using a statistical modelling approach29 and clustered using k-means and two-phase 

k-means clustering. The time taken to perform k-means clustering was around three times greater 

than two-phase k-means (Figure S8) in all cases, with no significant difference in accuracy (as 

measured by Rand indices close to  0.9) when using two-phase k-means clustering (Figure S9). In 

addition to the reduction in time complexity, the memory requirement for two-phase k-means 

scales by √𝑛 × 𝑘. However, since k<<n, this method scales much more efficiently than the standard 

k-means algorithms. The memory requirements of both k-means and bisecting k-means algorithms 

scale linearly with number of pixels (requiring the full data to be stored in memory). This becomes 

increasingly important as n increases, such as in high spatial resolution or 3D MSI images, where the 

data becomes too large to store in RAM.9,21,39 The main issue with this is that as the number of pixels 

increases with newer developments in instrument design, the number of mass channels that can be 

retained decreases, often requiring reduction of spectra to minimal peak lists that may lose critical 

low intensity features in the data (Figure S10).6,22 For example, given a PC with 8 GB of RAM, and a 

dataset with 1,000,000 pixels, 1,000 peaks can be retained when loading these data into memory 

before considering any processing. 

The alternative to this is to perform dimensionality reduction via methods such as PCA or 

random projection, however this then requires additional computation, and in other fields has been 

shown to degrade cluster quality in some cases.40 Using the two phase clustering methods allow 

even the largest of MSI datasets to be clustered without having to compromise on the information 

retained in the data (Figure S11). It is worth noting however that the two-phase algorithms assume 

that the subsets used for clustering are representative of the full dataset. Therefore, larger subsets 

will generally produce more accurate clustering results and therefore subset size should be chosen 

based on the available RAM to the user.  



 

 

While the graph cuts clustering algorithm gives clearer anatomical segmentation, it is 

important to quantify these improvements in order to give a non-subjective measure of how this 

clustering performs. In any biological sample there will always be inherent unknowns, preventing 

any quantitative analysis of these results. Recently, statistical modelling has been shown to be 

capable of producing datasets with known spatial distributions, suitable for quantitative evaluation 

of clustering in MSI.29  Therefore, in order to evaluate the different clustering algorithms with 

respect to one another, a synthetic dataset comprising of 7 regions and 20,825 pixels was generated 

using the statistical modelling method. This was clustered using some of the existing algorithms in 

the MSI literature (k-means, bisecting k-means, and agglomerative hierarchical) as well as the new 

graph cut-based method. In all cases 7 clusters were used, with the cosine similarity, and in the case 

of the k-means based methods, 3 replicates were used. The results of the clustering were then 

evaluated using the Rand index.41 Graph cuts clustering was found to outperform all other clustering 

algorithms with indices of > 0.9 compared to < 0.7 for the other algorithms (Figure S12).  

While the graph cuts clustering produces better clustering results than existing clustering 

algorithms, this comes with an increased computational cost reducing its effectiveness as an 

algorithm for clustering large MSI data. In order to perform graph cuts clustering, the full pairwise 

distance matrix must be calculated, along with the eigenvectors of this distance matrix. In a dataset 

with n pixels and d dimensions, the time complexity of this scales as 𝑂(𝑛2. 𝑑) and the memory 

required for this with n2. This becomes increasingly intractable as n increases, rapidly approaching 

memory requirements beyond even the most powerful processing PC (Figure 3).  

As with two-phase k-means clustering, by using a two-phase clustering approach, the 

memory requirement and time complexity required to perform graph cuts clustering can be 

significantly reduced. In two-phase graph cuts clustering, the pairwise distances matrices are 

calculated on the smaller subsets, thereby reducing the complexity to O(n.d) and the memory 

requirement now scales linearly with the number of pixels. This means that even the largest of MSI 



 

 

datasets can be clustered using this method on a standard desktop PC (Figure 3). For a full analysis of 

the complexity of the proposed method can be found in the supporting information. 

To test the accuracy of the two-phase graph cuts algorithm on large datasets, a large 

synthetic dataset comprising 7 regions totalling 187,425 pixels and 8,193 mass channels was 

generated using statistical modelling. This would require 11.4 GB to load into RAM, within the 

capabilities of some higher end PC’s but not all standard PC’s or laptops. Additionally, in order to 

calculate and store a full pairwise distance matrix for this dataset would require over 260 GB of 

RAM, well beyond even high performance PC’s. While large, this dataset is still well below the size of 

datasets often acquired on newer generation instruments or large 3D MSI datasets.9,21,42 This dataset 

was clustered using k-means, two-phase k-means and two-phase graph cuts clustering algorithms. 

The two phase k-means clustering produced almost identical results to the standard k-means 

algorithm (Figure 4), but the clustering required 1.5 GB RAM for two-phase k-means vs 11.5 GB for 

standard k-means. Additionally, the two-phase graph cuts clustering produces much more accurate 

results than both the k-means and two-phase k-means, as measured by the Rand index (Figure 4), 

while still requiring less RAM than the k-means clustering algorithm (< 3 GB). 

Two-phase graph cuts clustering was then applied to a large MS image of a transverse 

mouse brain acquired with a pixel size of 30 μm comprising of 101,390 pixels. This represents both a 

large number of pixels (> 100,000), rich and complex lipid spectra (>7,000 peaks), and a large 

number of image features (> 10 anatomical regions). As with the smaller image from the coronal 

mouse brain image, the two-phase graph cuts clustering produces a clearer anatomical 

segmentation than two-phase k-means clustering with respect to the expected anatomies (Figure 5).  

A larger dataset from an MSI image of gut tissue acquired with a pixel size of 5 μm was also 

segmented by two-phase graph cuts, and by two-phase k-means clustering. This dataset contained 

400,625 pixels, and 6,886 spectral channels, is too large to load into RAM on a standard PC (>20GB), 

and would require >1TB memory to store a full pairwise distance matrix. In addition to MSI analysis, 

histopathological assessment was performed using a haematoxylin and eosin (H&E) stained serial 



 

 

tissue section (Figure 6A). Four distinct anatomical layers are readily apparent; the mucosa, the sub-

mucosa, the muscularis propria (externa) and the serosa. The mucosa (red) represents the 

innermost layer of the colon and can be sub-divided further into the epithelium, a supportive lamina 

propria and an outer muscularis mucosae. The mucosal epithelial layer is formed from tightly packed 

glands (or crypts) that open onto the surface epithelium. The neck of the glands are lined by 

absorptive epithelial cells, goblet cells and enteroendocrine cells, whereas stem cells and transit 

amplifying cells are located towards the base of the glands. The sub-mucosa (green) lies directly 

beneath the mucosa. The muscularis propria (grey) surrounds the sub-mucosa and consists of the 

inner circular and outer longitudinal smooth muscle layers. The outermost layer, the serosa (blue), 

consists of a thin layer of connective tissue lined by a single layer of mesothelial cells forming the 

visceral peritoneum. It is important to note that due to the orientation of the colon within the Swiss 

roll, minor region differences in the plane of the tissue are evident within the section. In addition, in 

some areas, the serosa and muscularis propria in particular are variably intact. 

Comparison of the area of the H&E section analysed and the two-phase k-means clustering 

clearly demonstrates that the clustering provides little or no discrimination between the various 

anatomical regions of the colon (Figure 6B). In contrast, the two-phase graph cuts method can 

discriminate tissue from ‘non-tissue’ and appears to start to identify specific regions (Figure 6C). The 

differentiation between mucosa (red in H&E stain) and underlying sub-mucosa (green in H&E) / 

muscularis externa (grey in H&E stain) is particularly clear. Although the limits of resolution do not 

allow individual cell identification, the appearance of the clustering within the mucosa is consistent 

with the histological appearance of the mucosa and may partially capture the glandular structure of 

the epithelium. The slight differences observed in the two-phase clustering between the sections of 

colon within the Swiss roll may be a consequence of the variability in the section of plane as previous 

described. 

Conclusions 



 

 

Graph based clustering is shown to produce better anatomical segmentations of MSI data 

than other algorithms used in these challenging application areas on both synthetic and 

experimental datasets. This segmentation is more robust towards spectral changes caused by 

experimental factors, provided that the variability maintains spectral connectivity in the data. In 

cases where the full pairwise distance matrix cannot be stored in memory, or the data itself is too 

large to load into RAM, the two-phase clustering approach can be used to reduce this cost and speed 

up the clustering process. This comes with only a very minimal reduction in segmentation 

performance. With new developments in instrumentation, along with a growing need and capability 

to combine multiple datasets together, MSI datasets are rapidly growing in size. The algorithms 

presented in this work provide a means to accurately and efficiently segment the next generation of 

MSI data. Future research should consider the effect of different subset sizes on the accuracy of the 

two-phase clustering; how the numbers of eigenvectors affects the clustering results; and the 

efficiency of these algorithms for segmentation of image data collected using high mass resolution 

MS instruments where the number of peaks vastly exceeds the numbers handled here.  
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Figures 

Figure 1. Comparison of existing clustering algorithms used in MSI, and graph cuts clustering applied 

to an MSI images of a coronal (k = 7) and sagittal (k = 20) brain sections as compared to the Allen 

brain atlas (bottom). Coronal mouse brain data was acquired with 45 x45 μm pixels and contained a 

total of 20,000 pixels, sagittal rat brain was acquired with 100 x 100 μm pixels and contained 12,500 

pixels. 

   



 

 

Figure 2. Comparison of graph cuts and k-means clustering on data acquired at decreasing laser 

fluence showing consistent anatomical segmentation with graph cuts, compared to separation of 

experimental parameters with k-means clustering  

 

  



 

 

Figure 3. Graph of memory requirements against number of pixels when using the graph cuts and 

two-phase graph cuts algorithms 



 

 

Figure 4. Comparison of two-phase graph cuts, bisecting k-means, and k-means clustering on a large 

synthetic dataset containing seven regions and 187,425 pixels. 

 

  



 

 

Figure 5. Comparison of two-phase k-means and two-phase graph cuts clustering on transverse brain 

data acquired using 30 x 30 μm pixels, containing over 100,000 pixels. 

 

 

 

 

  



 

 

Figure 6. Comparison of two-phase k-means (b) and two-phase graph cuts (c) clustering on large gut 

image data acquired using 5 x 5 μm pixels, containing over 400,000 pixels. Compared to H&E stained 

image labelled by a pathologist (a) (mucosa in red, sub-mucosa green, muscularis propria grey, and 

serosa blue). Scalebar in (a) represents 500 μm. 
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Experimental for mouse colon data 

Mouse colons were collected, prepared using the ‘Swiss Roll’ technique and embedded in 2.5% 

carboxymethyl cellulose (Sigma-Aldrich) in sterile water. The embedded colons were frozen in a 

slurry of ethanol and crushed dry ice, and then stored at -80°C. The colons were cut to 10 µm 

sections in a cryostat microtome at -18°C. The sections were cut in a specific order to take 3 sections 

for histology and 2 sections for MSI. Sections for MSI were thaw mounted on conductive indium tin 

oxide coated (ITO) slides (Bruker Daltonics, Germany) and sections for histology onto normal 

microscope slides. Slides were stored at -80°C until imaging or staining. Tissue sections thaw 

mounted onto ITO slide for imaging were dried in a stream of nitrogen when removed from -80°C 

storage. Optical images were taken using a standard flatbed scanner (Seiko Epson, Negano, Japan) 

prior to sample preparation and MALDI matrix application. Sections were treated with 2,4-diphenyl-

pyranlium tetrafluoroborate (DPP-TFB) to derivitize endogenous primary amines as previously 

described.1 Briefly, DPP-TFB, 9.6 mg was dissolved in 1.2 ml of 100% methanol and sonicated for 10 

min and 3.5 µl of trimethylamine was added to 6 ml of 70% methanol. The DPP-TFB solution was 

gradually added to the 70% methanol and this final solution was sprayed onto slides using an 

automatic matrix sprayer (TM-Sprayer, HTX Technologies) at 0.08 mL/min, 80°C with 30 passes. The 

slide was incubated in a chamber with 50% methanol for 15 min, and dried every 5 min under a 

nitrogen stream.  
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Two phase k-means complexity 

Given a dataset of n pixels being divided into k clusters by the two-phase k-means clustering 

algorithm with s subsets. Assuming the mass channels remain constant, the subset of size n/s and 

compression of size sk need to be in RAM at any given time. Therefore the total RAM requirement is 

n/s + sk. To find the minima of this (where the requirement is lowest) we can differentiate this with 

respect to the number of subsets s to give  

(1) 

𝑑 (
𝑛

𝑠
+ 𝑠𝑘)

𝑑𝑠
= 0 

Which re-arranges to  

 (2) 

−
𝑛

𝑠2
+ 𝑘 = 0 

Then 

 (3) 

𝑠𝑘 =
𝑛

𝑠
 

As previously established, sk is the compression set, and n/s the subset size. The RAM required at 

this optimal number of subsets will be related to the number of subsets which in this case will be  

 (4) 

𝑅𝐴𝑀𝑚𝑖𝑛 =
𝑛

𝑠
+ 𝑠𝑘 

Since at the optimal number of subsets 

(5) 

𝑠 = √
𝑛

𝑘
 

Then 

(6) 

𝑅𝐴𝑀𝑚𝑖𝑛 =
𝑛

√
𝑛

𝑘

+√
𝑛

𝑘
𝑘 

Which re-arranges to give 
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(7) 

𝑅𝐴𝑀𝑚𝑖𝑛 = 2√𝑛𝑘 

Therefore the space complexity of the algorithm scales by 𝑂(√𝑛. 𝑘) 

 

Two phase graph cuts complexity 

For the two-phase graph cuts clustering algorithm, or any algorithm that requires a full pairwise 

distance matrix calculation, the number of mass channels d will also affect the optimum number of 

subsets, and there are two possible RAM limiting steps. The first is the storage of the subset of data, 

𝑛𝑑

𝑠
, the associated pairwise distance matrix (

𝑛

𝑠
)
2

 and the compression set storage sk and its 

associated pairwise distance matrix (sk)2.  The most efficient possibility will be when these are of 

equal size and so; 

(8) 

𝑛𝑑

𝑠
+ (
𝑛

𝑠
)
2

+ 𝑠𝑘 = 𝑠𝑘 + (𝑠𝑘)2 

Which rearranges to 

(9) 

s4k2snd +n2 = 0 

Quartic equations such as this can be solved using Ferrari’s solution, and since the terms b 
and c (s3 and s2) are both zero, and a, d and e (s4, s1, and s0) are all positive, this will result in 
one real, positive solution for the most efficient number of subsets s.2 If, as is the case for 
large MSI datasets, n>>d then only the pairwise distance matrices of either subsets or the 
compression set need be considered, resulting in a more general RAM requirement of the 
algorithm to be the pairwise distances of either a single subset of data or the compression 

set (
𝑛

𝑠
)
2

 or (𝑠𝑘)2. The minima of this will be when these are of equal size so (
𝑛

𝑠
)
2

= (𝑠𝑘)2 

or as with the two phase k-means, 
𝑛

𝑠
= 𝑠𝑘. As with the two phase k-means this gives the 

optimal number of subsets as 𝑠 = √
𝑛

𝑘
 and so  

(10) 

𝑅𝐴𝑀𝑚𝑖𝑛 =

(

 
𝑛

√
𝑛

𝑘)

 

2

 

This rearranges to  
(11) 

𝑅𝐴𝑀𝑚𝑖𝑛 = 𝑛𝑘 
Therefore the space complexity of the two phase graph cuts approximates to O(n.k) 
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Algorithm S1. Spectral clustering algorithm 

 

 
 

Algorithm S2. Two-phase k-means clustering algorithm 
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Algorithm S3. Two-phase graph cuts clustering algorithm 
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Figure S1. Comparison of k-means vs. graph cuts clustering on the brain datasets from figure 

1 with different values of k (5, 10 and 15). 

 

Figure S2. Example spectrum from coronal mouse brain acquired at 35.6 J m-2. 
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Figure S3. Example spectrum from coronal mouse brain acquired at 51.3 J m-2. 
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Figure S4. Example spectrum from coronal mouse brain acquired at 78.7 J m-2. 

 

  



 

S11 
 

Figure S5. Example spectrum from coronal mouse brain acquired at 114.5 J m-2. 
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Figure S6. Example spectrum from coronal mouse brain acquired at 149.8 J m-2. 
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Figure S7. Result of graph cuts clustering on only the variable and control tissues acquired at 

51.3 and 149.8 J m-2. 
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Figure S8. Time taken to perform k-means clustering and two-phase k-means clustering on 

synthetic data of varying sizes 
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Figure S9. Sensitivity of k-means clustering and two-phase k-means clustering on synthetic 

data of varying sizes. Errorbars  represent one standard deviation from the mean. 

  



 

S16 
 

 

Figure S10. Number of peaks that can be retained vs. number of pixels in the image when 

loading a dataset into RAM. 
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Figure S11. Number of peaks that can be retained vs. number of pixels in the image when 

loading subsets of the data into RAM using the two-phase clustering methods. 
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Figure S12. Comparison of clustering algorithms on a small synthetic dataset comprising of 

seven regions and 20,825 pixels, generated via statistical modelling. 
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