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A B S T R A C T

This paper investigates the galloping stability of a two-dimensional three-degree-of-freedom (3DOF) system with
an eccentric shape, such as an iced cable or power transmission line, incorporating inertial coupling along with
the aerodynamic damping. The inertial coupling is a result of the offset of the centre of mass with respect to the
elastic centre. A theoretical model is firstly constructed for the derivation of the aerodynamic damping matrix,
based on quasi-steady theory, as well as the inertial coupling components in the mass matrix. The model is then
employed to investigate the effects on the aeroelastic stability of the system of incorporating the inertial coupling
and the results are compared with both dynamic test results and predictions from previous models. The com-
parisons indicate that even small eccentricity can lead to significant change of the stability of the system, for both
detuned and perfectly tuned natural frequencies of the different degrees of freedom. For a system with perfectly
tuned natural frequencies, and neglecting structural damping, analytical solutions of the eigenfrequencies and
eigenvectors allowing for the inertial coupling, are derived for the case of no wind. Subsequently, an approximate
solution is found for the prediction of the galloping stability of a system coupled by the aerodynamic damping as
well as the inertial coupling. Finally, the approximate solution is verified against numerical results using examples
with two cross-section shapes, showing excellent agreement.
1. Introduction

Galloping has been a major problem for decades for slender struc-
tures, especially transmission lines and bridge cables. One of the most
common methods of predicting galloping is to use theoretical models,
based on quasi-steady theory, which only requires static aerodynamic
coefficients measured in wind tunnel tests. Den Hartog (1932) proposed a
simple expression to forecast across-wind galloping of transmission lines
with ice accretion, which is still widely used today. However, it is only
valid for wind normal to the body and only considers the
single-degree-of-freedom (1DOF) case.

It is common to consider aerodynamic couplings between the vertical
and torsional motion of a section in flutter analysis. Flutter instability is a
well-known phenomenon which could cause structural failure of aircraft
wings, long-span bridges, etc. The stability is normally assessed by a
numerical approach based on flutter derivatives which, similar to the
aerodynamic coefficients, can also be measured in wind tunnel tests, but
more dynamic tests must be involved. Chen and Kareem (2006) suc-
cessfully derived a closed-form solution of coupled flutter instability of
cdonald@bristol.ac.uk (J. Macdonald
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long-span bridges, which showed good agreement with test results. It
should be noted that flutter derivatives are functions of reduced velocity,
which is rather low for large bodies such as bridge decks, leading to a low
accuracy of quasi-steady theory. However, if cross-sections with much
smaller diameters are considered, such as cables and power lines,
quasi-steady theory, as well as the term “galloping”, is more applicable.
Also, the static aerodynamic coefficients are much easier to measure in
comparison with flutter derivatives.

For iced transmission line conductors, Den Hartog proved that the ice
accretion plays a significant role in modifying the aerodynamics,
potentially leading to aerodynamic instability in the pure across-wind
direction. However, if the torsional motion is also considered, the ef-
fects of inertial coupling due to the eccentric mass of the ice coating could
be equally important. There has been extensive literature on two-degree-
of-freedom (2DOF) galloping (coupled plunge and torsion), based on
quasi-steady theory (Slater, 1969; Blevins and Iwan, 1974; Modi and
Slater, 1983; Yu et al., 1995a, 1995b), as reviewed by Blevins (1994) and
Païdoussis et al. (2010). Slater (1969) was the first to investigate this
problem using a right angle section, with both aerodynamic and inertial
).
ng Building; Engineering South Campus, Edgbaston, Birmingham, B15 2TT, UK.
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Fig. 1. The 2 dimensional model of the 3DOF system.
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coupling. Interaction between torsion and plunge was expected, due to
the misalignment of the mass centre and shear centre. However, only
distinct vertical or torsional motion was identified in the dynamic ex-
periments, which was believed to be because the inertial coupling was
weak. A similar cross-section was also studied by Blevins and Iwan
(1974), who neglected inertial coupling from the outset and focused on
internally resonant and non-resonant cases. Yu et al. (1995a) used a
2DOF model representing a single conductor with ice coating to not only
identify the onset of the coupled transverse-torsion galloping but also to
investigate the significance of the eccentricity. In their companion work
(Yu et al., 1995b), the methodology was applied to periodic motions.
Although it is generally not possible to derive simple analytical solutions
for such complicated problem, they managed to show the trends of the
galloping onset threshold due to the eccentricity in a tabular manner for
practical purposes.

Jones (1992) was the first to investigate the 2DOF translational
galloping problem (along- and across-wind) experimentally and analyt-
ically for a perfectly tuned system and found that aerodynamic coupling
between the two degrees of freedom was important. Macdonald and
Larose (2006) generalised the Den Hartog criterion by allowing for
Reynolds number effects and three-dimensional geometry of the inclined
cable in a skew wind. They then extended it to apply to 2DOF trans-
lational galloping (Macdonald and Larose, 2008a,b). They provided a
closed-form solution for the minimum structural damping required to
prevent galloping of a system with the same natural frequencies in the
two planes. The companion paper looked at some detuning cases based
on numerical solutions. Meanwhile, Carassale et al. (2005) derived
equivalent expressions of the aerodynamic damping matrix, but
excluding and questioning the relevance of Reynolds number effects.
Furthermore, Luongo and Piccardo (2005) proposed an analytical
approximation for the onset of galloping of a 2DOF translational system
with arbitrary natural frequencies, employing a perturbation approach.
The above analyses were reviewed by Nikitas and Macdonald (2014).
However, inertial coupling was not considered in any of them.

The afore-mentioned research implies that there could be interactions
between heave, sway and torsion simultaneously, which poses the ne-
cessity of studying coupled 3DOF galloping. Yu et al. (1993a,b) devel-
oped the work by Jones (1992) and established a galloping threshold,
based on the Routh-Hurwitz criterion, for a 3DOF system with mass
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eccentricity. Wang and Lilien (1998) studied single and bundled trans-
mission lines covered by ice coating and similarly proposed a model
taking all three degrees of freedom into account. However, both these
studies concentrated on multi-span effects rather than a simple criterion
for the onset of galloping. The Routh-Hurwitz criterion utilised by Yu
et al. (1993a,b) is rather inefficient for determining how stable or un-
stable the system is. In the latter study, the galloping stability was eval-
uated by numerical time history analysis.

Very few dynamic wind tunnel tests on 2 or 3DOF galloping have
been reported in the literature. Chabart and Lilien (1998) carried out
both static and dynamic wind tunnel tests on a heavily iced cable which
shed some light on the galloping mechanism of a 3DOF cable with large
eccentricity. Gjelstrup and Georgakis (2011) extended the model by
Macdonald and Larose (2008a, b) to include the torsional degree of
freedom and also the case where the mass centre and elastic centre do not
coincide. The theoretical galloping threshold was determined using the
Routh-Hurwitz criterion and reasonable comparisons were found with
the observations from the experiments by Chabart and Lilien (1998).
Gjelstrup et al. (2012) further carried out some experiments to examine
the galloping stability of bridge cables and hangers with various ice
shapes. The test results were also comparedwith the theoretical model by
Gjelstrup and Georgakis (2011). However, the experiments only allowed
for vertical and torsional motions andmass eccentricity was not explicitly
considered. More recent contributions on 3DOF galloping include work
by Piccardo et al. (2014) who presented the full aerodynamic damping
matrix in a more general form, while Demartino and Ricciardelli (2015)
compared various existing quasi-steady models for galloping, using wind
tunnel measurements for bridge cables and hangers with ice accretion,
shedding some light on the application of each model. He andMacdonald
(2016) extended the work by Nikitas and Macdonald (2014) and rigor-
ously studied 3DOF galloping of a system coupled only by aerodynamic
damping and proposed a simple closed-form solution for galloping of a
perfectly tuned 3DOF system. They also numerically investigated the
effects of the tuning of the structural natural frequencies (He and Mac-
donald, 2015).

The aim of this paper is to extend the previous 3DOF analytical model
by He and Macdonald (2016) to include inertial coupling. Firstly, the
inertial coupling terms in the mass matrix are derived in the same way as
in Gjelstrup and Georgakis (2011). Then, the significance of the inertial
coupling for the galloping behaviour is investigated. Subsequently,
having found analytical solutions to the eigenvalue problem for an
eccentric 3DOF system, without wind or structural damping, approxi-
mate analytical solutions are found for the galloping stability of the
system in the presence of wind. Finally, the approximate analytical so-
lutions are validated against conventional numerical solutions for the
same system.

2. 3DOF model and equations of motion

Recently, He and Macdonald (2016) presented a 2-dimensional 3DOF
model and derived the aerodynamic damping matrix in a simple form,
including all three degrees of freedom, based on quasi-steady theory.
Inertial coupling was excluded, implying coincidence of the elastic centre
(O) and mass centre (G), which is applicable for sections with symmet-
rical geometry and lightly iced sections with a negligible offset of the
centre of mass. A modified model is presented herein to include the
inertia effects, as illustrated in Fig. 1, where G is offset from O. The
incorporation of all three degrees of freedom results in a difficulty of
quasi-steady theory, namely suitable treatment of the rotational velocity.
The approach employed follows the common approach in the literature
(Slater, 1969; Blevins and Iwan, 1974; Nakamura and Mizota, 1975;
Blevins, 1994; Gjelstrup and Georgakis, 2011; He and Macdonald, 2016),
where an aerodynamic centre is defined to emulate the effect of the
rotational velocity on the aerodynamic forces using the wind velocity
relative to that point.

Fig. 1 shows the definitions of all the geometric parameters. x and y
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indicate the directions of the principal structural axes of the system and θ
is the rotation of the cross-section, measured between the x axis and a
reference line on the body (the dashed line in Fig. 1, fixed to the cross-
sectional shape). θ consists of two parts, namely the static rotation of
the shape, θ0 (e.g. due to the mean wind load or the weight of accreted
ice), and the dynamic component, θd. The structural stiffness of each
degree of freedom is denoted kx, ky and kθ, which can also be expressed as
mω2

x , mω2
y and Jθω2

θ , respectively. m is the mass per unit length of the
structure and Jθ is the polar mass moment of inertia per unit length about
point O. ωx; ωy and ωθ are the angular natural frequencies of the
uncoupled structural system in each degree of freedom. α0 is the angle
between the wind direction and the x axis while α represents the angle
between the wind direction and the body reference line (α ¼ α0þθ). The
mass centre (G) differs from the elastic centre (O), for example, due to the
ice accretion, and is positioned at a radius Lg at an angle αg from the body
reference line. Similarly, the offset distance and angle of the aerodynamic
centre (A) from the elastic centre are respectively defined by La and γr
from the reference line. It should be noted that the aerodynamic centre
(A) in Fig. 1 is shown in an arbitrary position for illustration of the
general case. The specific point used for the numerical examples later in
the current paper is defined in Section 3.1.

The position of any point on the shape can be defined in the absolute
coordinate system, indicated by X and Y axes in Fig. 1. The absolute
coordinates of the centre of mass are:

X ¼ x� Lgcos
�
αg þ θ

�
; Y ¼ yþ Lgsin

�
αg þ θ

�
(1)

Hence,

_X ¼ _xþ Lg
_θ sin

�
αg þ θ

�
; _Y ¼ _yþ Lg

_θ cos
�
αg þ θ

�
(2)

The equations of motion can then be obtained by applying the Euler-
Lagrange equation, which involves the kinetic (T) and potential (V) en-
ergy, expressed as:

T ¼ 1
2
m
�
_X
2 þ _Y

2�þ 1
2
JG _θ

2
(3)

V ¼ 1
2
kxx2 þ 1

2
kyy2 þ 1

2
kθθ2 (4)

With the Lagrangian defined as L¼ T-V, the force on the body in the x
direction, excluding the damping component, satisfies:

Fx ¼ ∂
∂t

�
∂L
∂ _x

�
� ∂L

∂x
(5)

The force in the y direction, Fy , and themoment on the body Fθ, can be
expressed similarly. Hence, the full equations of motion, with damping
forces included, are:

Fx ¼ m€xþ 2mωxζx _xþ kxxþ mLg

�
€θ sin

�
αg þ θ

�þ _θ
2
cos

�
αg þ θ

� �
(6)

Fy ¼ m€yþ 2mωyζy _yþ kyyþ mLg

�
€θ cos

�
αg þ θ

�� _θ
2
sin

�
αg þ θ

� �
(7)

Fθ ¼ Jθ €θ þ 2mωθζθ _θ þ kθθ þ mLg€xsin
�
αg þ θ

�þ mLg€ycos
�
αg þ θ

�
(8)

where ζx, ζy and ζθ are the structural damping ratios for each degree of
freedom and Jθ ¼ JG þmL2g ¼ mr2 is the polar mass moment of inertia
per unit length about point O, as mentioned earlier and r is the radius of
gyration about O. JG is the polar mass moment of inertia per unit length

about point G. It should be noted that the terms associated with _θ
2
can be

neglected when linearising the force at the initial steady state condition.
The equations of motion can be written in matrix form as:
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M€x þ Cs €x þ Kx ¼ F (9)
where

M ¼ m

2
4 1 0 Lg sin

�
αg þ θ

�
0 1 Lg cos

�
αg þ θ

�
Lg sin

�
αg þ θ

�
Lg cos

�
αg þ θ

�
r2

3
5,

Cs ¼
2
42mωxζx 0 0

0 2mωyζy 0
0 0 2Jθωθζθ

3
5, K ¼

2
4mω2

x 0 0
0 mω2

y 0
0 0 Jθω2

θ

3
5,

x ¼
8<
:

x
y
θd

9=
;, F ¼

8<
:

Fx
Fy
Fθ

9=
;.

Neglecting any applied forces other than the aerodynamic forces due
to the motion of the body in the wind, and linearising the force vector
with respect to the velocity vector, about the static equilibrium config-
uration (in where x ¼ 0), the force vector can be expressed as

F ¼ �Cax (10)

Ca is the aerodynamic damping matrix, given by:

Ca ¼
2
4 cxxa cxya cxθa
cyxa cyya cyθa
cθxa cθya cθθa

3
5 ¼

2
66666664

�∂Fx

∂ _x
�∂Fx

∂ _y
�∂Fx

∂ _θ

�∂Fy

∂ _x
�∂Fy

∂ _y
�∂Fy

∂ _θ

�∂Fθ

∂ _x
�∂Fθ

∂ _y
�∂Fθ

∂ _θ

3
77777775

_x¼ _y¼ _θ¼θd¼0

(11)

which, based on quasi-steady theory and for any wind direction and
orientation of the body, has been shown to be (He andMacdonald, 2016):

Ca ¼ ρDU
2

2
42CD 2CL

�
C0

L þ CD

� �
CL �C0

D

�
0 0

2CL �2CD

�
CL � C'

D

� ��
C'

L þ CD

�
0 0

0 0 0 0 2DCM DC0
M

3
5

�

2
6666664

c2 cs Lasαθγ c
�cs �s2 �Lasαθγ s
s2 �cs �Lacαθγ s
cs �c2 �Lacαθγ c
c s Lasαθγ
�s c Lacαθγ

3
7777775

(12)

where ρ is the density of air, D is a reference dimension of the body and
CD, CLand CM are, respectively, the static drag, lift and moment co-
efficients of the cross-section, which are taken to be only functions of the
angle of attack, α. The primes indicate derivatives with respect to the
angle of attack. In addition, c ¼ cos α0; s ¼ sin α0; cαθγ ¼
cos ðα0 þθ0 þ γrÞ and sαθγ ¼ sin ðα0 þ θ0 þ γrÞ.

The equations of motion and the asymmetric mass matrix due to ec-
centricity are equivalent to those derived by Gjelstrup and Georga-
kis (2011).

It should be emphasised that the force coefficients and their de-
rivatives should be evaluated at the angle between the wind and the
shape in the static equilibrium configuration about which the dynamic
stability is considered, i.e. at α0 þ θ0 (¼ α for θd ¼ 0). To address the
stability, i.e. the conditions for the onset of galloping, it is sufficient to
use the linearised representation of the aerodynamic forces above.

He and Macdonald (2016) found that the determinant of the 3DOF
quasi-steady aerodynamic damping matrix Ca is always zero, which is not
generally true for any pair of two DOFs. The reason is that the motion of
the aerodynamic centre due to the rotational velocity can be decomposed
into components in the x and y directions, leading to the third column of
the 3� 3 aerodynamic damping matrix being a linear combination of the



Fig. 2. Static force coefficients for a cable with heavy ice (Chabart and Lilien, 1998).

Fig. 3. Stability predicted by the present model and Gjelstrup model, and as observed in
the dynamic tests. U ¼ 9 m/s; fx ¼ 0.960 Hz, fy ¼ 0.845 Hz; fθ ¼ 0.865 Hz; ζx ¼ ζy ¼ 0.8%;
ζθ ¼ 3.0%.
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first and second columns.
In addition, there are aerodynamic stiffness terms, namely �∂F

∂θ

����
θd¼0

,

which could have an effect, especially for cross-sections with large side
ratios or width to depth ratios. However, for the present work, the cross-
sections investigated are normally referred to as compact cross-sections,
i.e., the side ratios are normally less than 2, for which the effects of
aerodynamic stiffness are usually assumed to be negligible compared to
the structural stiffness (Gjelstrup and Georgakis, 2011). Therefore, the
aerodynamic stiffness is excluded in the present analysis.

3. The effects of inertial coupling

In this section, the 3DOF model is first examined for its applicability
in comparison with wind tunnel tests results (Chabart and Lilien, 1998)
and a similar 3DOF model by Gjelstrup and Georgakis (2011), referred to
as the Gjelstrup model hereinafter. Afterwards, the effects of the inertial
coupling are investigated using the proposed 3DOF model.
322
3.1. Application of the proposed model

Due to a lack of experimental data of 3DOF dynamic tests of compact
sections, the present analysis is largely based on data and results from the
wind tunnel tests conducted by Chabart and Lilien (1998). The test sec-
tion was an aluminium alloy conductor covered by thick silicone ice,
giving large eccentricity. The force coefficients and the ice shape with the
aerodynamic force sign conventions are depicted in Fig. 2:

Apart from the inertial coupling and aerodynamic damping, the 3DOF
model developed by Gjelstrup and Georgakis (2011) also took into ac-
count both wind skew angle and Reynolds number effects. The stability is
determined by the Routh-Hurwitz criterion, which, as discussed earlier,
is convenient in finding out whether the system is stable or not but rather
cumbersome for quantifying how unstable the system is. In addition, this
model only succeeded in predicting part of the unstable region observed
in the tests, i.e. from 25� to 45�, 70�–135� and 170�–180�, while
galloping was found to occur from 20� to 180� in the dynamic
experiments.

Through eigenvalue analysis, the stability of the proposed model,
described by Eqs. (9), (10) and (12), is identified. Fig. 3 shows the
galloping stability of the system, over the full range of angles of attack
tested in the wind tunnel, as predicted by the present model and the
Gjelstrup model. The observed unstable region in the experiments is also
indicated. The stability is assessed in terms of the non-dimensional
aerodynamic damping coefficient, S3D, which is also employed in the
galloping analyses by Nikitas and Macdonald (2014) and He and Mac-
donald (2016). It is defined as

S3D ¼ 4mωnζa
ρDU

(13)

where ζa indicates the effective aerodynamic damping ratio, which is
comparable to the structural damping ratios (ζx, ζy and ζθ). A negative
sign of S3D or ζa means galloping would occur if insufficient structural
damping is provided. It should be noted the curves in Fig. 3 represent the
most critical solution of the eigenvalue results, i.e. the minimum S3D of all
three modes.

From Fig. 3, it is manifest that the proposed model predicts the whole
unstable region observed in the experiments, which was reported by
Chabart and Lilien (1998). It should be noted that all the parameters in
the present analysis are consistent with those in (Gjelstrup and



Fig. 4. Comparison of the galloping stability of the aeroelastically coupled cross-section
with and without inertial coupling. Well-detuned system. fx ¼ 0.96 Hz, fy ¼ 0.85 Hz;
fθ ¼ 1.54 Hz; ζx ¼ ζy ¼ 0.8%; ζθ ¼ 3.0%; U ¼ 9 m/s.

Fig. 5. Comparison of the galloping stability of the aeroelastically coupled cross-section
with and without inertial coupling. Vertical and torsional frequencies closely tuned.
fx ¼ 0.995 Hz, fy ¼ 0.845 Hz; fθ ¼ 0.865 Hz; ζx ¼ ζy ¼ 0.8%; ζθ ¼ 3.0%; U ¼ 9 m/s.

Fig. 6. Comparison of the galloping stability of the aeroelastically coupled cross-section
with and without inertial coupling. All three frequencies perfectly tuned
fx ¼ fy ¼ fθ ¼ 0.845 Hz; ζx ¼ ζy ¼ 0.8%; ζθ ¼ 3.0%; U ¼ 9 m/s.
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Georgakis, 2011) to be more comparable, except the definition of the
aerodynamic centre. Moreover, their definitions of some of their angles
are unclear, hence the reproduction of their results has to be under
certain assumptions. Nevertheless, it seems that the main reason for the
different predictions by the two similar models is the definition of the
aerodynamic centre. Gjelstrup and Georgakis (2011) used the leading
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edge of the shape as the aerodynamic centre. However, after comparing
several ways of defining the aerodynamic centre according to previous
literature, it is found in the present analysis that the aerodynamic centre
is chosen to be a fixed point on the principal axis in the x direction with La
equal to the largest offset of the perimeter of the section from the elastic
centre (i.e. the sum of the radius of the cable and the greatest ice thick-
ness). Hence, the aerodynamic centre is basically the leading edge of the
shape at 0� angle of attack and remains unchanged throughout the
analysis. It is clear that with this assumption the results are greatly
improved. In light of the fact that there is no theoretical position where
the aerodynamic centre should be, it is suggested that for this particular
cross-section, the chosen point appears to be the best choice.

3.2. Galloping stability of systems with and without inertial coupling

In order to further explore the significance of the inertial coupling, a
series of numerical analyses are carried out, which can be divided into
two approaches. The first approach is to compare two systems: (i) only
aeroelastically coupled by the aerodynamic damping and (ii) coupled
structurally by the inertial coupling as well as aeroelastically by the
aerodynamic damping. The second approach, covered in the next section
involves varying the offset of the centre of mass. The same cross-section
tested by Chabart and Lilien (1998) is employed as an example. In their
tests, two different plunge-to-torsion frequency ratios (fy/fθ) were ach-
ieved through changing the position of the vertical springs.

Fig. 4 shows the numerical results of the setup with fy/fθ ¼ 0.55, in
terms of the minimum non-dimensional aerodynamic damping coeffi-
cient, with and without the inclusion of inertial coupling.

The case illustrated in Fig. 4 represents a well-detuned system. The
first impression is that the incorporation of the inertial coupling has only
limited influence on the stability of the system. The two curves follow
similar trends and the magnitudes are also close.

Fig. 5 shows the results for the same cross-section but with the ver-
tical and torsional frequencies very close to each other (fy/fθ ¼ 0.98). As
can be seen, the stability curves of the two systems also follow a similar
trend with varying angles of attack. However, the difference in magni-
tude is often quite large in this case, especially around the most critical
angles of attack, 35�. Including the mass eccentricity can lead to the
stability curve shifting towards the stable or unstable side, depending on
the position of the mass centre. For this particular shape, it implies the
system would be more stable when the ice is at the upstream side. But
when the ice accretion is on the leeward side, the inertial coupling seems
to destabilise the system.

For the case with all the structural natural frequencies of the system
perfectly tuned, with all the other parameters identical, the stability is
shown in Fig. 6. Again, the stability curves, representing the two systems,
show large discrepancies caused by the inertial coupling. For example, at
the most unstable angle (around 35�), the system coupled by both inertial
coupling and aerodynamic damping becomes much less unstable. In
addition, from 90� to 160�, if the inertial coupling is not included, the
system should be stable. However, once inertial coupling is incorporated,
the system is only stable in the range of ~125�–135�. It is also clear that
there are similarities between Figs. 5 and 6, especially for α < 90�. The
closely tuned and perfectly tuned cases are of particular interest for
bundled conductors since they often have very close natural frequencies
to each other.

In summary, the inertial coupling clearly has a great effect on the
galloping stability, especially when the natural frequencies of the system
are close.

3.3. The effects of varying inertial coupling

In this section, the effects of inertial coupling are investigated by
varying the mass ratio between the ice and the cable, leading to a varying
offset distance of the total mass centre from the elastic centre. The
fundamental idea is to keep the shape, as well as the total mass of the



Fig. 7. Effects of varying the position of the centre of mass based on the cross-section from (Chabart and Lilien, 1998) at different angles of attack: (a, b). α ¼ 10�; (c, d). α ¼ 30�; (e, f).
α ¼ 160�. U ¼ 9 m/s; fx ¼ 0.995 Hz, fy ¼ 0.845 Hz; fθ ¼ 0.865 Hz ζx ¼ ζy ¼ ζθ ¼ 0.
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cross-section unchanged, by only artificially changing the mass ratio of
the ice to the whole cross-section to vary the location of the centre of
mass (G) of the overall body. As has been defined earlier, the distance
between the centre of mass the whole body (G) and the shear centre (O),
which is also the centre of mass of the circular cylinder, is Lg. Herein, the
distance between the centre of mass of the ice and that of the cable (O) is
denoted herein by LT. Hence, the mass ratio between the ice and the
whole cross-section can be represented by Lg/LT.

Fig. 7 illustrates the effects of increasing the inertial coupling at three
different angles of attack. The figures on the left side show the effect on
the stability of the each mode of the system, in terms of the non-
dimensional aerodynamic damping coefficient, against the shift of the
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mass centre. The plots on the right side indicate the changes of the cor-
responding modal frequencies.

In general, Fig. 7 implies that the inertia effects due to the varying
offset distance of the overall centre of mass can be linked to the effects of
frequency tuning. For example, in Fig. 7(a), the stability curves, repre-
senting modes 1 and 2 accordingly, are far apart when the mass centre is
not offset but quickly start to come together as Lg/LT increases until about
0.1. This indicates a detuning effect which can be verified by the corre-
sponding modal frequency plot of Fig. 7(b). It is clear that the modal
frequencies of modes 1 and 2 are initially very close to each other.
Including the inertial coupling causes the modal frequencies of the modes
1 and 2 to diverge, while the stability of the modes rapidly converges.



Fig. 8. Aerodynamic coefficients for Lightly iced cable with small eccentricity (Gjelstrup et al., 2012) (ice shape figure reproduced with kind permission of Techno-Press).
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This is consistent with the classic pattern of tuning a 2DOF system, as has
been shown by Nikitas and Macdonald (2014), i.e., at the perfect tuning
point the stability curves of the two modes will be in either an attracting
or repelling pattern and any detuning leads to the solutions changing
asymptotically to the single-degree-of-freedom (SDOF) solutions. As the
offset distance continues to increase, the frequency of mode 2 ceases
growing around Lg/LT � 0.15 and begins to approach 1 Hz asymptoti-
cally, while the frequency of mode 3, close to 1 Hz from Lg/LT ¼ 0, starts
to increase. It seems that these two curves exhibit a typical “frequency
veering” phenomenon. He andMacdonald (2015) investigated the effects
of frequency tuning of the 3DOF system, coupled by aerodynamic
damping, and suggested that frequency veering occurs whenever the
so-called “complex motion” occurs. The term “complex motion” has been
used by many researchers (Jones, 1992; Carassale et al., 2005; Mac-
donald and Larose, 2008a; Nikitas and Macdonald, 2014; He and Mac-
donald, 2016) to signify a special solution of a coupled system with
resonant structural natural frequencies, where two modes with different
modal frequencies have identical stability. Using a perturbation
approach, Luongo and Piccardo (2005) identified the similarity between
this so-called “complex response” and double Hopf bifurcation. As can be
seen from the stability curves (Fig. 7(a)), the stability curves corre-
sponding to the two veering modes, indeed intersect at the frequency
veering point. It is noted that modes 2 and 3 cross at Lg/LT � 0.05 but
without veering, which is believed to be due to the frequencies of modes
1 and 2 are almost identical while the modal frequency of mode 3 can be
regarded as detuned. Hence, the interaction between modes 1 and 2 is
more essential.

Similar features of both stability and frequency curves can also be
found in Fig. 7(c) and (d). Fig. 7(c) indicates modes 1 and 2 have a similar
tuning pattern to those in Fig. 7(a), i.e. a repelling pattern when the
system is perfectly tuned. Once the eccentricity is introduced, the modal
frequencies of these two modes are detuned, causing the stability curves
to move quickly towards each other. As the mass centre continues to shift
away, frequency veering occurs between modes 2 and 3 leading to the
crossing of the corresponding stability curves. It is very interesting to
notice the rapid changes of the stability of certain modes even when the
eccentricity introduced is very small. For instance, mode 2, which is near
the stability boundary but stable, quickly becomes very unstable when
the eccentricity is only about 5%.

Fig. 7(e) and (f) again illustrate both the tuning effects and the fre-
quency veering phenomenon, as explained above. This time, the close
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tuning of modes 1 and 2 leads to an attracting pattern of the stability
curves. When the inertial coupling is increased, modal frequencies of
modes 1 and 2 are detuned, leading to the divergence of the corre-
sponding stability curves. As a result, the stability curve of mode 2 goes
down to lower values away from the stability boundary as the eccen-
tricity increases. When the inertial coupling is strong enough, frequency
veering occurs, resulting in the stability curves of mode 2 reversing back
towards the stability boundary. It intersects with the curve representing
the stability of mode 3, which is also an expected feature for fre-
quency veering.

Another important feature of all of the stability curves is that even
very small eccentricity can cause a significant change of the system sta-
bility. In all of the plots, the stability of at least one of the modes changes
rapidly as the position of the centre of mass starts to move away from the
shear centre. It is important to note that the stability of the system can
experience considerable changes due to the inertial coupling only, for no
change in the aerodynamics, even for a small offset of the centre of mass.
For instance, if a small protuberance is attached to a circular cylinder, it is
well known that the modification of the aerodynamics could lead to
instability. However, the associated small offset of the centre of mass
could also be important in changing the stability. This possibility is now
explored further with a lightly iced cable, the centre of mass of which is
manually offset by a very small distance.

Gjelstrup et al. (2012) conducted a series of wind tunnel tests on
circular cylinders covered by four different ice coatings. The test setup
allowed for plunge and torsion but the horizontal motion was fully
restrained. The test results were used to compare with their analytical
model (Gjelstrup and Georgakis, 2011), using the Routh-Hurwitz crite-
rion. The lightly iced cable employed in the present analysis is the shape
II, plotted in Fig. 8, which has a mean ice thickness of only 1.4% of the
diameter of the cable. Consequently, the effects of mass eccentricity were
considered to be negligible in their numerical examinations reported in
Gjelstrup et al. (2012). The aerodynamic coefficients are also provided
in Fig. 8.

Firstly, an eigenvalue analysis is conducted using the proposed model
but only including the across-wind (y) and torsional (θ) degrees of
freedom, based on this shape with all the parameters consistent with the
analysis by Gjelstrup et al. (2012). Then, the same analysis is repeated
but a small offset of the centre of mass will be numerically created to
introduce inertial coupling. The offset distance is 5% of the cable diam-
eter from the elastic centre (shear centre). As a result, the mass matrix



Fig. 9. Comparison of galloping stability of a lightly iced cable with and without mass
eccentricity. U ¼ 41 m/s; fy ¼ 1.63 Hz; fθ ¼ 4.99 Hz; ζy ¼ 0.8%; ζθ ¼ 4.3%.

Fig. 10. Comparison of galloping stability of a lightly iced cable with and without mass
eccentricity: (a) the stability expressed in terms of the non-dimensional aerodynamic
damping; (b) modal frequencies. U ¼ 41 m/s; fy ¼ fθ ¼ 1.63 Hz; ζy ¼ 0.8%; ζθ ¼ 4.3%.
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becomes non-diagonal. Also, the mass polar moment of inertia is slightly
different. The results of both cases are compared and illustrated in Fig. 9.
It should be mentioned that S2D, equivalent to S3D in the preceding sec-
tion, is used herein since the model is a 2DOF one.
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As can be seen from Fig. 9 for a system with well separated natural
frequencies, the incorporation of such small eccentricity seems to have
negligible influence on the across-wind dominated mode while there is a
significant effect on the torsion dominated mode. Despite the difference
for the torsion dominated mode, it remains stable for all angles of attack,
while in any case, the across-wind dominated mode is unstable for
certain angles of attack. Considering the modal frequencies, the changes
were minor. There was a negligible shift in the frequency of the across-
wind dominated mode and the frequency of the torsion dominated
mode changed only up to 1.05% due to the inertial coupling.

Following the preceding analysis, another case is also investigated
where the same system has resonant structural natural frequencies,
illustrated in Fig. 10. The figure shows that for the perfectly tuned sys-
tem, the stability curves of both modes show a noticeable difference
between the two cases, i.e., with and without small eccentricity. With
regard to the overall stability of the system, the behaviour at the most
unstable angles of attack, namely about ±35�, is almost the same for both
cases. However, including eccentricity may lead to different unstable
regions when the system is not far from the stability boundary, i.e., when
S2D is close to 0. For example, when only aerodynamic damping is
included, the system is slightly unstable at about 65�. After introducing
small eccentricity, at 65�, the system is just on the stability boundary,
which means it should be neutrally stable. On the other hand, at
approximately �65�, the aerodynamically coupled case indicates the
system is clearly stable but once the mass offset is introduced, the system
becomes unstable at that angle in the torsion dominated mode.

In summary, the inertial coupling can exert significant influence on
the stability of a system for both perfectly tuned and detuned cases. Even
if the offset of the centre of mass is small, the effects on the stability can
still be substantial.

4. Analytical investigation of a perfectly tuned system with
inertial coupling

The preceding sections have demonstrated the importance of the in-
ertial coupling for both detuned and perfectly tuned systems based on
numerical eigenvalue analysis. It could be more useful for practical
purposes and more insightful to have analytical solutions. However, due
to the complex nature of the problem, it is difficult to obtain simple
analytical solutions for a system with arbitrary tuning. In the first part of
this section, analytical expressions of the eigenfrequencies along with the
associated eigenvectors are derived for a perfectly tuned 3DOF system
structurally coupled by mass inertia without the presence of wind. As
mentioned earlier, the perfectly tuned case is of use for bundled con-
ductors which have very close natural frequencies for all 3 degrees of
freedom. Thenceforth, an approximate solution is proposed in the second
part for the onset of galloping for a perfectly tuned 3DOF system coupled
by aerodynamic damping and inertial coupling. The structural damping
ratio in the whole section is neglected for simplicity since the structural
damping only makes the system more stable.
4.1. Without the presence of wind

With the structural matrices defined as for Eq. (9), the eigenvalues of
a system with only inertial coupling, with no wind or structural damping
can be obtained by
��� ω2Mþ K

�� ¼ 0 (14)

where ω is the eigenfrequency of the inertially coupled system. It should
be noted the structural natural frequencies without coupling, namely
ωx; ωy and ωθ, are all set to be ωn for a perfectly tuned system. Hence,
Eq. (14) can be expanded into:

�
ω2 � ω2

n

���
Lg � r

�
ω2 þ rω2

n

���
Lg þ r

�
ω2 � rω2

n

� ¼ 0 (15)



Fig. 11. The effects of the inertial coupling on the system eigenfrequencies of a perfectly
tuned 3DOF system with no wind.
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The three solutions for the eigenvalues (ω), ω1; ω2, ω3 along with
their associated eigenvectors, ϕ1, ϕ2, ϕ3, are:

ω2
1 ¼ r

r�Lg
ω2
n , ϕ1 ¼

8<
:

�rsin
�
αg þ θ0

�
�rcos

�
αg þ θ0

�
1

9=
;;
Fig. 12. Trajectories of motion in the 3 modes: (a) Mode 1; (b) Mode 2; (c) Mode 3. The ‘rota
vibration cycle.
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ω2
2 ¼ ω2

n , ϕ2 ¼
8<
:

�cot
�
αg þ θ0

�
1
0

9=
;;

ω2
3 ¼ r

rþLg
ω2
n , ϕ3 ¼

8<
:

rsin
�
αg þ θ0

�
rcos

�
αg þ θ0

�
1

9=
;.

An illustration of the normalised eigenfrequencies with varying Lg/r
is shown in Fig. 11, which demonstrates the significance of the iner-
tial coupling.

As can be seen, ω3 decreases as the inertial coupling increases while
ω1 has an opposite trend. Based on the eigenvectors, the trajectories of
the motion in each mode are plotted in Fig. 12, for an offset angle of the
centre of mass of 30� as an example. Mode 1 (Fig. 12(a)) represents a
rotation about a point that is between the centre of mass (G) and the
elastic centre (O), which moves closer to G with increasing mass offset.
Therefore, polar moment of inertia about the point decreases, so the
modal frequency should increase with increasing offset. On the other
hand, the eigenvector of Mode 3 (Fig. 12(c)) indicates motion about a
point the same distance from O but in the opposite direction. Hence, the
polar moment of inertia about the point increases and the natural fre-
quency decreases as the inertial coupling increases. Mode 2 (Fig. 12(b))
involves purely translational motion along the line (OG) connecting the
two centres, which is not affected by the inertial coupling, giving a modal
frequency equal to the uncoupled natural frequencies of the system. It is
also evident that the amplitude ratio of the translational motions of
Modes 1 and 3 always follow the same relation, i.e. the horizontal
amplitude over the vertical one always equals tanðαg þ θ0Þ.
tion’ lines show snapshots of the orientation of the body at equal time intervals over the



Fig. 13. Comparison between the proposed closed-form solutions and the numerical re-
sults for a heavily iced cable (Chabart and Lilien, 1998). fx ¼ fy ¼ fθ ¼ fn ¼ 1 Hz,
ζx ¼ ζy ¼ ζθ ¼ 0, U ¼ 9 m/s. Offset distance of the centre of mass is 7.7% of the cable
diameter.
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4.2. Approximate solutions for galloping of a 3DOF body coupled by both
inertial coupling and aerodynamic damping

With the above insights of the effects of inertial coupling with no
wind, the more general case, incorporating both inertial coupling and
aerodynamic damping, is examined. Using the same 3DOFmodel, as well
as the mass and stiffness matrices, the space state matrix A, after adding
the aerodynamic damping matrix, is:

A ¼
	

0 I
�M�1⋅K �M�1⋅Ca



(16)

The structural damping is neglected in the present analysis to make
the problem tractable, noting that the structural damping is normally
small in practice (Chen and Kareem, 2006) and that adding structural
damping will always increase the stability.

Following He and Macdonald (2016), the aerodynamic damping
matrix can be expressed as:

Ca ¼ ρDU
2

2
4 1 0 0
0 1 0
0 0 r

3
5Sa

2
4 1 0 0
0 1 0
0 0 r

3
5 (17)

where Sa is a non-dimensional matrix, given by (He and Macdon-
ald, 2016):

Sa ¼
2
4 Sxx Sxy Sxθ
Syx Syy Syθ
Sθx Sθy Sθθ

3
5

¼
2
4 2CD 2CL

�
C0

L þ CD

� �
CL � C0

D

�
0 0

2CL �2CD

�
CL � C0

D

� ��
C0

L þ CD

�
0 0

0 0 0 0 2κCM κC0
M

3
5

�

2
6666664

c2 cs εsαθγ c
�cs �s2 �εsαθγ s
s2 �cs �εcαθγ s
cs �c2 �εcαθγ c
c s εsαθγ
�s c εcαθγ

3
7777775

(18)

where κ ¼ D=r and ε ¼ La=r.
The characteristic polynomial of the system is given by:

jA� λIj ¼ 0 (19)

where λ are the complex eigenvalues of the problem.
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Eq. (19) is a lengthy 6th order equation, which theoretically could be
decomposed into the form of the product of three quadratic equations,
each representing one of the three modes with complex conjugate roots.
Therefore, an approximate equation in such a form is proposed:

�
λ2 þ b1⋅λþ r

r � Lg
ω2

n

��
λ2 þ b2⋅λþ ω2

n

��
λ2 þ b3⋅λþ r

r þ Lg
ω2

n

�
� 0

(20)

The eigenfrequencies, i.e. the third term in each pair of brackets in Eq.
(20), assuming low damping, are estimated to be equal to those for the no
wind condition, calculated from Eq. (15). This assumption is in agree-
ment with Chen and Kareem (2006). They found that for low levels of
damping, which is generally the case in flutter or galloping analysis, the
aerodynamically uncoupled natural frequencies can be used to estimate
the coupled modal frequencies in presence of wind.

After expanding Eq. (20), the coefficients of each order of λ are rep-
resented by mathematical combinations of three unknowns, b1, b2 and b3.
By comparing these coefficients with those in the characteristic poly-
nomial derived from Eq. (19), a set of equations can be established to
solve for those unknowns. From observation of the expanded Eq. (20),
the coefficients of λ5 and λ are linear relations of the three unknowns.
Furthermore, the coefficient of λ3 also contains linear relations of the
three unknowns, with only one higher order term, i.e. b1b2b3. This term is
equivalent to the product of the real part of all the eigenvalues. Since the
real part of the eigenvalues gives the overall damping of each degree of
freedom of the system, which is generally fairly small, the product of
them is hence quite close to zero. The corresponding coefficient in Eq.
(19) contains an equivalent “higher order” term, namely the determinant
of the damping matrix (jCaj) which is always 0. Thus, b1b2b3 and jCaj can
be cancelled out from both sides of the equation. Consequently, a third
linear relation between the three unknowns can be obtained. By solving
the three linear equations in b1, b2 and b3, the real part of the eigenvalues
(λR) of each mode can be derived, since only the instability threshold is of
interest, as

λR1 ¼ �b1
2
� ρDU

8m
r�

r � Lg

� ðd1 þ d2Þ (21)

λR2 ¼ �b2
2
� �ρDU

4m

�
Sxx þ Syy þ Sθθ þ d1

�
(22)

λR3 ¼ �b3
2
� ρDU

8m
r�

r þ Lg

� ðd1 � d2Þ (23)

where
d1 ¼ ��
Sxxsin2

�
αg þ θ

�þ Syycos2
�
αg þ θ

�þ �
Sxy þ Syx

�
sin

�
αg þ θ

�
cos

�
αg þ θ

�þ Sθθ
�

d2 ¼ �
Sθy þ Syθ

�
cos

�
αg þ θ

�þ ðSxθ þ SθxÞsin
�
αg þ θ

�

For stability, a positive real part indicates an unstable mode while a
negative value means the mode is stable. Hence, the galloping stability
can be assessed using the maximum of the three simple expressions (Eqs.
(21)–(23)), or the minimum one, if the equivalent non-dimensional
aerodynamic damping coefficients are used (S3D ¼ �4mλR=ρDU).

4.3. Validation and application of the proposed analytical solutions

In this section, the proposed approximate solution is validated against
the exact numerical results. The two examples, employed in the previous
sections, namely the iced cables tested by Chabart and Lilien (1998) and
Gjelstrup et al. (2012), are investigated.

Firstly, the cable with large ice coating examined by Chabart and
Lilien (1998) is utilised. Since the proposed approximate solutions only
apply for perfectly tuned structural natural frequencies (before the in-
ertial coupling is introduced), they are all set to be fn ¼ 1 Hz. This is quite



Fig. 14. Comparison between the proposed closed-form solutions and the numerical re-
sults on a lightly iced cable (Gjelstrup et al., 2012). fx ¼ fy ¼ fθ ¼ fn ¼ 1.63 Hz,
ζx ¼ ζy ¼ ζθ ¼ 0, U ¼ 41 m/s, Lg/LT ¼ 0.1.
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close to the original frequencies of the dynamic test cable. All the other
parameters are the same as those used in the previous analyses.

The comparison of the stability predictions given by the proposed
approximate solutions and the exact numerical results is presented in
Fig. 13, in terms of the non-dimensional aerodynamic damping coeffi-
cient, S3D.

As can be seen in Fig. 13, the proposed approximate solutions are
generally in excellent agreement with the results of the numerical
eigenvalue analysis. Only for angles of attack from 0� to about 10� do
noticeable discrepancies occur. The predictions throughout the whole
unstable region are excellent.

To further confirm the validity of the approximate solution, the
lightly iced cable (Gjelstrup et al., 2012) is also checked. In this case, all
three degrees of freedom are included and the natural frequencies (before
introducing inertial coupling) are all tuned to be fn ¼ 1.63 Hz. Moreover,
the offset of the centre of mass is manually set to be 10% of the diameter
with an offset angle of 0�. All the other parameters are as for the actual
test data. The results comparison is shown in Fig. 14.

Fig. 14 clearly demonstrates the excellent agreement between the
approximate solutions and the exact results. Further numerical explora-
tion has shown that the agreement still remains very good for a wide
range of offset lengths and offset angles of the centre of mass. Hence, for
all the cases considered, the simple approximate solutions in Eqs. (21)-
(23) provide very good predictions of the galloping stability of 3DOF
perfectly tuned systems, including inertial effects considered.

5. Conclusions

The effects of incorporating inertial coupling on the galloping sta-
bility of a 3DOF system coupled also by aerodynamic damping are
investigated in the present work. The inertial coupling terms are first
derived along with the quasi-steady aerodynamic damping matrix based
on a two-dimensional 3DOF model. The proposed 3DOF model is then
used to assess the stability of a heavily iced transmission line conductor,
the results of which are compared with the observations in dynamic tests,
as well as the predictions from a previous analytical model. The proposed
model provides better agreement with the test results than the previous
model. The significance of the inertial coupling is investigated through
two approaches, showing a strong influence on the galloping stability for
both detuned and perfectly tuned systems, especially for the latter.
Analytical expressions of the eigenvalues and eigenvectors of a perfectly
tuned 3DOF system with inertial coupling, neglecting structural
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damping, are derived, based on which analytical approximations for the
onset of galloping is proposed for the special case of perfect tuning. The
predictions of the approximate solutions are validated through two
example cross-sections with different ice shapes, demonstrating excellent
agreement with the exact numerical calculations.
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