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Abstract The extended second order cones were introduced by S. Z. Németh
and G. Zhang in [S. Z. Németh and G. Zhang. Extended Lorentz cones and
variational inequalities on cylinders. J. Optim. Theory Appl., 168(3):756-768,
2016] for solving mixed complementarity problems and variational inequali-
ties on cylinders. R. Sznajder in [R. Sznajder. The Lyapunov rank of extended
second order cones. Journal of Global Optimization, 66(3):585-593, 2016] de-
termined the automorphism groups and the Lyapunov or bilinearity ranks
of these cones. S. Z. Németh and G. Zhang in [S.Z. Németh and G. Zhang.
Positive operators of Extended Lorentz cones. arXiv:1608.07455v2,2016] found
both necessary conditions and sufficient conditions for a linear operator to be
a positive operator of an extended second order cone. In this note we give
formulas for projecting onto the extended second order cones. In the most
general case the formula depends on a piecewise linear equation for one real
variable which is solved by using numerical methods.

Keywords Semi-smooth equation · extended second order cone · metric
projection · piecewise linear Newton method

1 Introduction

The Lorentz cone is an important object in theoretical physics. In recent times
it has been rebranded as second order cone and used for various application in

O. P. Ferreira
IME/UFG, Avenida Esperana, s/n, Campus Samambaia, Goiânia, GO, 74690-900, Brazil
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optimization. Some robust optimization, plant location and investment portfo-
lio manangement problems were formulated as as a second order cone program
[1]. Another good survey paper with a wide range of applications of second
order cone programming is [14]. More recent connections of second order cone
programming and second order cone complementarity problem with physics,
mechanics, economics, game theory, robotics, optimization and neural net-
works were considered in [7,13,16,29,28,15,22,12,4]. The importance of the
second order cone is nowadays notorious not only in theoretical physics, but
in optimization as well.

Thus far, there is no closed-form expression for metric (orthogonal) pro-
jection onto a general closed convex cone. A nice property of the second order
cone is that it admits an explicit representation of the projection mapping onto
it (see [6, Proposition 3.3]). The original motivation for extending the second
order cone was inspired by using iterative methods for solving complementar-
ity problems and variational inequalities [20,21]. These iterative methods are
based on the property that the projection onto the closed convex set defining
the problem is isotone with respect to the order defined out by a cone. Usually
this is a very restrictive condition. However, cylinders and in particular cylin-
ders with cone base admit isotone projections onto them with respect to the
extended second order cones. Therefore, variational inequalities on cylinders
and mixed complementarity problems can be solved by using such iterative
techniques based on monotone convergence [20,19].

Later it turned out that many of these cones could be even more useful
because the bilinearity rank (or Lyapunov rank) [24,9,10,26,23] of them is
higher than the dimension of the underlying space and therefore they have
good numerical properties. More specifically, for p > 1 this is true whenever
q2−3q+2 > 2p [25], where p, q are from the definition of the extended second
order cone (see Definition 1). Such cones are “numerically good” cones when
solving complementarity problems defined on them. The extended second order
cones are also irreducible [25]. But to be really usable from optimization point
of view we need easy ways of projecting onto them. In this paper we show
that projecting onto an extended second order cone it is “almost possible” by
using closed-form expressions. We present a set of formulas for projecting onto
an extended second order cone which is subject to solving a piecewise linear
equation with one real variable only. The method of finding these expressions
is based on the special form of the complementarity set of the extended second
order cone and Moreau’s decomposition theorem [18] for projecting onto cones.
The latter problem of projecting onto the extended second order cone is a
particular conic optimization problem with respect to this cone. Although,
the problem of projecting the point (x, u) ∈ Rp×Rq into the extended second
order cone L (see Definition 1) can be transformed into the second order conic
optimization problem

min
{
‖y − x‖2 + ‖v − u‖2 : (y, v) ∈ Rp × Rq, `i(y, v) ∈ L, i = 1, . . . , p

}
,

where L = {(t, u) ∈ R×Rq : t ≥ ‖u‖} is the second order cone in Rq+1 ≡ R×Rq

and `i : Rp×Rq → R×Rq are the linear mappings defined by `i(y, v) = (yi, v),
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the complexity of our method is much simpler than solving the reformulated
problem, because apart from closed-form expressions, it contains only one
piecewise linear equation. By considering such a reformulation one would lose
the useful special structure of the cone, which is the cornerstone for the sim-
plicity of our method.

Certainly, the explicit representation of the projection mapping onto the
second order cone (see [6, Proposition 3.3]) should not be handled as a conic
optimization problem and the need to solve a simple piecewise linear equation
for p > 1 makes our method just slightly more complex. The above observation
about why one shouldn’t reformulate the projection onto the extended second
order cone into a second order conic optimization problem, together with the
irreducibility of the second order cone, clearly shows that this cone “deserves
a closer look”.

The structure of the paper is as follows: In Section 2 we fix the notation
and the terminology used throughout the paper. In Section 3 we present the
formulas for projecting onto the extended second order cone. In Section 4
we solve the piecewise linear equation involved in these formulas by using
the semi-smooth Newton’s method and a method based on Picard’s iteration.
Finally, we make some remarks in the last section.

2 Preliminaries

Let `,m, p, q be positive integers such that m = p + q. We identify the the
vectors of R` with ` × 1 matrices with real entries. The scalar product in R`

is defined by the mapping

R` × R` 3 (x, y) 7→ 〈x, y〉 := x>y ∈ R

and the corresponding norm by

R` 3 x 7→ ‖x‖ :=
√
〈x, x〉 ∈ R.

For x, y ∈ R` denote x ⊥ y if 〈x, y〉 = 0. We identify the elements of Rp × Rq

with the elements of Rm through the correspondence

Rp × Rq 3 (x, y) 7→ (x>, y>)>.

Through this identification the scalar product in Rp × Rq is defined by

〈(x, y), (u, v)〉 := 〈(x>, y>)>, (u>, v>)>〉 = 〈x, u〉+ 〈y, v〉.

A closed set K ⊂ R` with nonempty interior is called a proper cone if K+K ⊂
K, K ∩ (−K) = {0} and λK ⊂ K, for any λ positive real number. The dual
cone of a proper cone K ⊂ R` is a proper cone defined by

K∗ := {x ∈ R` : 〈x, y〉 ≥ 0, ∀y ∈ K}.
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A proper cone K ⊂ R` is called subdual if K ⊂ K∗, superdual if K∗ ⊂ K and
self-dual if K∗ = K. If K,D ⊂ R` are proper cones such that D = K∗, then
D∗ = K and the cones K, D are called mutually dual.

For a proper cone K ∈ R` denote

C(K) := {(x, y) ∈ K ×K∗ : x ⊥ y}

the complementarity set of K.
Let C ∈ R` be a closed convex set. The projection mapping PC : R` → R`

onto C is the mapping defined by

PC(x) := argmin{‖x− y‖ : y ∈ C}.

We recall here Moreau’s decomposition Theorem [18] (stated here for proper
cones only):

Theorem 1 Let K ⊂ R` be a proper cone, K∗ its dual cone and z ∈ R`.
Then, the following two statements are equivalent:

(i) z = x− y and (x, y) ∈ C(K),
(ii) x = PK(z) and y = PK∗(−z).

Theorem 1 implies
z = PK(z)− PK∗(−z),

with PK(z) ⊥ PK∗(−z).
For z ∈ R` we denote z = (z1, . . . , z`)

>. Let ≥ denote the component-
wise order in R`, that is, the order defined by R` 3 x ≥ y ∈ R` if and only
if xi ≥ yi for i = 1, . . . , `. Denote by 0 the vector in R` or a scalar zero
(it will not lead to any confusion), by e the vector of ones in R` and by
R`

+ = {x ∈ R` : x ≥ 0} the nonnegative orthant. The proper cone R`
+ is self-

dual. For a real number α ∈ R denote α+ := max(α, 0) and α− := max(−α, 0).
For a vector z ∈ R` denote z+ := (z+1 , . . . , z

+
` ), z− := (z−1 , . . . , z

−
` ), |z| :=

(|z1|, . . . , |z`|), sgn(z) := (sgn(z1), . . . , sgn(z`)) and diag(z) the ` × ` diagonal
matrix with entries diag(z)ij := δijzi, where i, j ∈ {1, . . . , `}. It is known that
z+ = PR`

+
(z) and z− = PR`

+
(−z).

We eecall from [20] the following definition of a pair of mutually dual
extended second order cones L, M :

Definition 1

L := {(x, u) ∈ Rp × Rq : x ≥ ‖u‖e} ,
M := {(x, u) ∈ Rp × Rq : 〈x, e〉 ≥ ‖u‖, x ≥ 0} .

where ≥ denotes the component-wise order.

It is known that both L and M are proper cones, L is subdual M is
superdual and if p = 1, then both cones reduce to the second order cone. The
cones L and M are polyhedral if and only if q = 1. If we allow q = 0 as well,
then the cones L and M reduce to the nonnegative orthant. More properties
of the extended second order cones can be found in [20,25,19].
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3 Projection formulas for extended second order cones

In this section we give formulas for projecting onto the pair of mutually dual
extended second order cones. Before presenting our main theorem, we need
some preliminary results for these cones. Let p, q be positive integers.

Proposition 1 Let x, y ∈ Rp and u, v ∈ Rq \ {0}. We have that (x, u, y, v) :=
((x, u), (y, v)) ∈ C(L) if and only if there exists a λ > 0 such that v = −λu,
〈y, e〉 = ‖v‖ and (x− ‖u‖e, y) ∈ C(Rp

+).

Proof Suppose first that there exists λ > 0 such that v = −λu, 〈y, e〉 = ‖v‖
and (x− ‖u‖e, y) ∈ C(Rp

+). Hence, (x, u) ∈ L and (y, v) ∈M . Moreover,

〈(x, u), (y, v)〉 = 〈x, y〉+ 〈u, v〉 = ‖u‖〈e, y〉 − λ‖u‖2 = ‖u‖‖v‖ − λ‖u‖2 = 0.

Thus, (x, u, y, v) ∈ C(L). Conversely, suppose that (x, u, y, v) ∈ C(L). Then,
(x, u) ∈ L, (y, v) ∈M and

0 = 〈(x, u), (y, v)〉 = 〈x, y〉+ 〈u, v〉 ≥ 〈‖u‖e, y〉+ 〈u, v〉 ≥ ‖u‖‖v‖+ 〈u, v〉 ≥ 0.

Hence, there exists λ > 0 such that v = −λu, 〈e, y〉 = ‖v‖ and 〈x−‖u‖e, y〉 = 0.
It follows that (x− ‖u‖e, y) ∈ C(Rp

+). ut

Before presenting the main result of this section we introduce a piecewise
linear function and establish some important properties of it. This function
will play an important role in the sequel, namely, the formulas for the pro-
jection will depend on its single positive zero. The piecewise linear function
ψ : [0,+∞)→ R is defined by

ψ(λ) := −λ‖w‖+
〈
e, [(λ+ 1)z − ‖w‖e]−

〉
. (1)

For stating the next proposition we need to define the following diagonal ma-
trix, which we will see is related to the subdifferential ∂ψ of ψ:

N(λ) := diag
(
−sgn

(
[(λ+ 1)z − ‖w‖e]−

))
, λ ∈ [0,+∞). (2)

Proposition 2 The function ψ is convex. Moreover, if

z+ 6≥ ‖w‖e, 〈z−, e〉 < ‖w‖,

then we have:

1. −‖w‖+ 〈e,N(λ)z〉 ∈ ∂ψ(λ) and −‖w‖+ 〈e,N(λ)z〉 < 0, for all λ ≥ 0;
2. ψ has a unique zero λ∗ > 0.

Proof We first note that the function ψ can be equivalently given by

ψ(λ) := −λ‖w‖+

p∑
i=1

ψi(λ), ψi(λ) := [(λ+ 1)zi − ‖w‖]−, λ ≥ 0. (3)

Since the sum and the maximum of two convex functions is convex, it follows
that the function ψi(λ) = max{−(λ+1)zi+‖w‖, 0} is convex for all i = 1, . . . p.
Hence, the result of the first part follows.
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1. The definitions of ψ and ψi in (3) imply that ∂ψ(λ) = −‖w‖+
∑p

i=1 ∂ψi(λ).
Moreover, considering that ψi(λ) = max{−(λ + 1)zi + ‖w‖, 0}, we have
−sgn ([(λ+ 1)zi − ‖w‖]−) zi ∈ ∂ψi(λ), for all i = 1, . . . p. Therefore, using
(2), the inclusion follows. To prove the inequality, note that (2) implies
that the entries of N(λ) are equal to 0 or −1, for all λ ≥ 0. Thus, from the
assumption 〈z−, e〉 < ‖w‖ we have −‖w‖+ 〈e,N(λ)z〉 < 0, for all λ ≥ 0.

2. First, we show that (1) has a positive zero. Note that z 6≥ ‖w‖e, otherwise
it would follow that z+ = z ≥ ‖w‖e, which contradicts our assumptions.
Then, there exists i0 ∈ {1, . . . , p} such that zi0 < ‖w‖. Hence, from (3) we
have ψ(0) > ‖w‖ − zi0 > 0. If λ > 0 is sufficiently large, then sgn[(λ +
1)zi−‖w‖] = sgnzi and consequently [(λ+1)zi−‖w‖]− ≤ (λ+1)z−i +‖w‖.
By using the last inequality, (3) and the assumption 〈z−, e〉 < ‖w‖, we
conclude that for λ > 0 sufficiently large, it is true that

ψ(λ) ≤ −λ‖w‖+
〈
e, (λ+ 1)z− + ‖w‖e

〉
=[

−‖w‖+
〈
z−, e

〉]
λ+ ‖w‖+

〈
e, z−

〉
< 0. (4)

Since ψ is continuous, there is a λ∗ > 0 such that ψ(λ∗) = 0. By contra-

diction we assume that ψ has two positive zeroes λ̄ and λ̂. Let 0 < λ̂ < λ̄.
Since ψ is convex and −‖w‖ + 〈e,N(λ)z〉 ∈ ∂ψ(λ), we have ψ(λ̂) ≥
ψ(λ̄) + [−‖w‖+

〈
e,N(λ̄)z

〉
][λ̂− λ̄]. Due to ψ(λ̂) = ψ(λ̄) = 0 and consider-

ing that 0 < λ̂ < λ̄, the last inequity implies that −‖w‖+ 〈e,N(λ)z〉 ≥ 0,
which contradicts the second part of item 1. Therefore, ψ has a unique
positive zero. ut

Now we ready to state and prove the main result of the paper.

Theorem 2 Let (z, w) ∈ Rp × Rq. Then, we have

1. If z+ ≥ ‖w‖e, then PL(z, w) = (z+, w) and PM (−z,−w) = (z−, 0).
2. If 〈z−, e〉 ≥ ‖w‖, then PL(z, w) = (z+, 0) and PM (−z,−w) = (z−,−w).
3. If z+ 6≥ ‖w‖e and 〈z−, e〉 < ‖w‖, then the piecewise linear equation

λ‖w‖ =
〈
e, [(λ+ 1)z − ‖w‖e]−

〉
. (5)

has a unique positive solution λ > 0,

PL(z, w) =

([
z − 1

λ+ 1
‖w‖e

]+
+

1

λ+ 1
‖w‖e, 1

λ+ 1
w

)
(6)

and

PM (−z,−w) =

([
z − 1

λ+ 1
‖w‖e

]−
, − λ

λ+ 1
w

)
(7)

Proof We will use Moreau’s decomposition theorem for L for proving all
three items. In this case this theorem states that, PL(z, w) = (x, u) and
PM (−z,−w) = (y, v) if and only if (z, w) = (x, u) − (y, v) and (x, u, y, v) ∈
C(L).
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1. This is exactly the case when v = 0.
Indeed, v = 0 implies PL(z, w) = (x, u) and PM (−z,−w) = (y, 0). Hence,
z = x − y, w = u, x ≥ ‖u‖e, y ≥ 0 and 〈x, y〉 = 0. By using Moreau’s
decomposition theorem for Rp

+, we have that z = x− y, x ≥ 0, y ≥ 0 and
〈x, y〉 = 0 implies x = z+ and y = z−. Since, w = u and x ≥ ‖u‖e, we get
z+ ≥ ‖w‖e.
Conversely, suppose that z+ ≥ ‖w‖e. Then (z+, w, z−, 0) ∈ C(L). Hence,
by Moreau’s decomposition Theorem for L, we get PL(z, w) = (z+, w) and
PM (−z,−w) = (z−, 0). Thus, v = 0.

2. This is exactly the case when u = 0.
Indeed, u = 0 implies PL(z, w) = (x, 0) and PM (−z,−w) = (y, v). Hence,
z = x − y, w = −v, x ≥ 0, 〈y, e〉 ≥ ‖v‖, y ≥ 0 and 〈x, y〉 = 0. By using
Moreau’s decomposition theorem for Rp

+, we have that z = x − y, x ≥ 0,
y ≥ 0 and 〈x, y〉 = 0 implies x = z+ and y = z−. Since w = −v and
〈y, e〉 ≥ ‖v‖, we get 〈z−, e〉 ≥ ‖w‖.
Conversely, suppose that 〈z−, e〉 ≥ ‖w‖. Then, it is easy to check that
(z+, 0, z−,−w) ∈ C(L). Then, by Moreau’s decomposition Theorem for L,
we get PL(z, w) = (z+, 0) and PM (−z,−w) = (z−,−w). Thus, u = 0.

3. This is exactly the case when u 6= 0 and v 6= 0.
From Proposition 1 it follows that (z, w) = (x, u)− (y, v) and (x, u, y, v) ∈
C(L) is equivalent to z = x − y, w = u − v and the existence of a λ > 0
such that v = −λu, 〈y, e〉 = ‖v‖ and (x− ‖u‖e, y) ∈ C(Rp

+). On the other
hand, by Moreau’s decomposition theorem for Rp

+, (x− ‖u‖e, y) ∈ C(Rp
+)

is equivalent to x−‖u‖e = [x−‖u‖e−y]+ and y = [x−‖u‖e−y]−. Hence,

PL(z, w) =

(
x,

1

λ+ 1
w

)
(8)

and

PM (−z,−w) =

(
y,− λ

λ+ 1
w

)
(9)

if and only if z = x− y and λ > 0 is such that

〈y, e〉 =
λ

λ+ 1
‖w‖, (10)

x =

[
z − 1

λ+ 1
‖w‖e

]+
+

1

1 + λ
‖w‖e (11)

and

y =

[
z − 1

λ+ 1
‖w‖e

]−
. (12)

From equations (8) and (11) follows equation (6) and from equations (9)
and (12) follows equation (7), where λ > 0 is given by equation (5), which
is a combination of equations (10) and (12). The uniqueness of λ > 0 which
satisfies (5) follows from the uniqueness of PL(z, w) and PM (z, w). ut
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The next remark will recover the well known formulas for projecting onto the
second order cone (see for example [6, Proposition 3.3]).

Remark 1 Let (z, w) ∈ R× Rq and L be the second order cone. Then, letting
u := [z−‖w‖]+ and v := [z+ ‖w‖]+ we conclude that Theorem 2 implies that

PL(z, w) =


1
2

(
u+ v, [v − u]

w

‖w‖

)
, w 6= 0,

(z+, 0) , w = 0.

(13)

Indeed, for p = 1, the conditions in item 3 in Theorem (2) hold if and only
if 0 ≤ |z| < ‖w‖ and equation (5) becomes λ‖w‖ = [(λ + 1)z − ‖w‖]−, which
obviously can have only nonnegative solutions, because the right hand side of
the equation is nonnegative. Moreover, λ = 0 cannot be a solution because
that would imply |z| − ‖w‖ ≥ z − ‖w‖ > 0. Hence, the conditions in item 3
hold if and only if (5) becomes λ‖w‖ = (‖w‖− (λ+ 1)z). This latter equation
has the unique positive solution

λ =
‖w‖ − z
‖w‖+ z

. (14)

By using equation (6) and (14), it is just a matter of algebraic manipulations
to check that (13) holds for this case. The cases described by items 1 and 2
can be similarly checked.

4 Numerical methods for projecting

In this section we present three well known numerical methods to find the
unique zero of the piecewise linear equation (5), in order to project onto the
extended second order cones. We note that (z, w) ∈ Rp × Rq satisfies the two
conditions in item 3 of Theorem 2 if and only if

∃ i0 ∈ {1, . . . , p}; 0 ≤ z+i0 < ‖w‖, 0 ≤
p∑

i=1

z−i < ‖w‖. (15)

Throughout this section we will assume that (z, w) ∈ Rp × Rq satisfies (15).

4.1 Semi-smooth Newton method

In order to study (5), we consider the piecewise linear function ψ defined by
(1). It follows from Proposition 2 that ψ is convex and its unique zero, namely
λ∗ > 0, is the solution of (5). The semi-smooth Newton method for finding the
zero of ψ, with a starting point λ0 ∈ (0,+∞), it is formally defined by

ψ(λk) + sk (λk+1 − λk) = 0, sk ∈ ∂ψ(λk), k = 0, 1, . . . , (16)
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where sk is any subgradient in ∂ψ(λk). Let N(λ) be defined by equation
(2). Item 1 of Proposition 2 implies that −‖w‖ + 〈e,N(λ)z〉 ∈ ∂ψ(λ). Since
N(λ)[(λ+ 1)z−‖w‖e] = [(λ+ 1)z−‖w‖e]−, by setting sk = −‖w‖+ 〈e,Nkz〉
with

Nk := N(λk), (17)

equation (16) implies

−λk‖w‖+ 〈e,Nk [(λk + 1)z − ‖w‖e]〉+ [−‖w‖+ 〈e,Nkz〉] [λk+1 − λk] = 0.

After simplification, we get

[−‖w‖+ 〈e,Nkz〉]λk+1 = −〈e,Nk [z − ‖w‖e]〉 , k = 0, 1, . . . , (18)

which formally defines the semi-smooth Newton sequence {λk} for solving (5).

Remark 2 For p = 1, the conditions in (15) hold if and only if 0 ≤ |z| < ‖w‖.
Thus, if z ≤ 0, thenNk ≡ −1 and λk+1 = [‖w‖−z]/[‖w‖+z] for all k = 0, 1, . . ..
Now, if z > 0 then letting 0 < λ0 < [‖w‖ − z]/z, we have N0 ≡ −1 and
λ1 = [‖w‖ − z]/[‖w‖ + z]. Therefore, from Remark 1, we conclude that the
semi-smooth Newton sequence (18) solves equation (5) for p = 1 with only
one iteration.

The proof of the next proposition is based on ideas similar to some arguments
in [2].

Proposition 3 For any λ0 > 0 the sequence {λk} defined in (18) is well
defined and converges after at most 2p steps to the unique solution λ∗ > 0 of
(5).

Proof Proposition 2 implies that ψ is convex and −‖w‖+ 〈e,N(λ)z〉 ∈ ∂ψ(λ).
Thus, we have

ψ(µ)− ψ(λ)− [−‖w‖+ 〈e,N(λ)z〉](µ− λ) ≥ 0, µ, λ ∈ [0,+∞). (19)

On the other hand, it follows from (16) and (17) that the sequence {λk} is
equivalently defined as follows

ψ(λk) + [−‖w‖+ 〈e,Nkz〉] (λk+1 − λk) = 0, k = 0, 1, . . . . (20)

By combining the above equality with the definition in (17) and the equality
in (19), we can conclude that

ψ(λk+1) ≥ ψ(λk) + [−‖w‖+ 〈e,Nkz〉](λk+1−λk) = 0, k = 0, 1, . . . . (21)

By letting µ = λ∗ and λ = λk in inequality (19) and by using again the
definition in (17), we obtain that

0 = ψ(λ∗) ≥ ψ(λk) + [−‖w‖+ 〈e,Nkz〉](λ∗ − λk), k = 0, 1, . . . . (22)
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Proposition 2 implies that −‖w‖+ 〈e,Nkz〉 < 0, for all k = 0, 1, . . .. Then, by
dividing both sides of (22) by −‖w‖+ 〈e,Nkz〉 and by using (20), after some
algebras we obtain

λk+1 = λk − [−‖w‖+ 〈e,Nkz〉]−1ψ(λk) ≤ λ∗, k = 0, 1, . . . . (23)

On the other hand, ψ(λk) ≥ 0, for all k = 0, 1, . . .. Thus, after dividing both
sides of the equality in (21) by ‖w‖ − 〈e,Nkz〉 and some algebraic manipula-
tions, we conclude

0 < λk ≤ λk − [−‖w‖+ 〈e,Nkz〉]−1ψ(λk) = λk+1, k = 0, 1, . . . . (24)

Hence, by combining (23) with (24), we conclude that 0 < λk ≤ λk+1 ≤ λ∗ ,
for all k = 0, 1, . . .. Hence, {λk} converges to some λ̄ > 0. By using again (20)
and that the entries of Nk are equal to 0 or −1, we have

|ψ(λ̄)| = lim
k→∞

|ψ(λk)| = lim
k→∞

| [−‖w‖+ 〈e,Nkz〉] (λk+1 − λk) |

≤ [‖w‖+ 〈e, |z|〉] lim
k→∞

|λk+1 − λk| = 0.

Hence, {λk} converges to λ̄ = λ∗ the unique zero of ψ, which is the solution
of (5).

Finally, we establish the finite termination of the sequence {λk} at λ∗, the
unique solution of (5). Since the entries of N(λ) are equal to 0 or −1, N(λ)
has at most 2p different possible configurations. Then, there exist j, ` ∈ N with
1 ≤ j < 2p and 1 ≤ ` < 2p such that N(λj) = N(λj+`). Hence, from (18) we
have

λj+1 = − [−‖w‖+ 〈e,Njz〉]−1 〈e,Nj [z − ‖w‖e]〉
= − [−‖w‖+ 〈e,Nj+`z〉]−1 〈e,Nj+` [z − ‖w‖e]〉 = λj+`+1.

By applying this argument inductively, λj+1 = λj+`+1, λj+2 = λj+`+2, . . .,
λj+` = λj+2`, λj+`+1 = λj+2`+1 = λj+1. Thus, by using (24) and the last
equality, we conclude that

λj+1 ≤ λj+2 ≤ · · · ≤ λj+`+1 ≤ λj+1.

Hence, λj+1 = λj+2 and in view of (20) we conclude that ψ(λj+1) = 0 and
λj+1 is the solution of (5), i.e., λj+1 = λ∗. ut

The next proposition shows that under a further restriction on the point
which is projected the convergence of the semi-smooth Newton sequence is
linear.

Proposition 4 Assume that 0 < α < 1 and 〈e, |z|〉 < α(1 + α)−1‖w‖. Then,
for any λ0 > 0 , the sequence {λk} in (18) is well defined and converges
linearly to the unique solution λ∗ of (5):

|λ∗ − λk+1| ≤ α|λ∗ − λk|, k = 0, 1, . . . . (25)
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Proof Proposition 2 and (17) imply −‖w‖ + 〈e,Nkz〉 < 0 for all k = 0, 1, . . .,
which implies that the sequence {λk} is well defined. Proposition 2 also implies
that (5) has a zero λ∗ ∈ (0,+∞). Hence, by using (17), (18) and the definition
of ψ, after some algebra we obtain that

λ∗ − λk+1 = [−‖w‖+ 〈e,Nkz〉]−1
[
λ∗‖w‖ − 〈e, [(λ∗ + 1)z − ‖w‖e]−〉

− λk‖w‖+ 〈e, [(λk + 1)z − ‖w‖e]−〉+ [−‖w‖+ 〈e,Nkz〉] [λ∗ − λk]
]
,

for all k = 0, 1, . . . . On the other hand, since N(λ)[(λ + 1)z − ‖w‖e] = [(λ +
1)z − ‖w‖e]−, after some calculations we have

λ∗‖w‖ − 〈e, [(λ∗ + 1)z − ‖w‖e]−〉−
λk‖w‖+ 〈e, [(λk + 1)z − ‖w‖e]−〉+ [−‖w‖+ 〈e,Nkz〉] [λ∗ − λk] =

−〈e,N∗[(λ∗+ 1)z−‖w‖e]〉+ 〈e,Nk[(λk + 1)z−‖w‖e]〉+ 〈e,Nkz〉 [λ∗ − λk] ,

for all k = 0, 1, . . ., where N∗ := N(λ∗). By combining the above two equalities,
we obtain that

λ∗ − λk+1 = [−‖w‖+ 〈e,Nkz〉]−1
[
− 〈e,N∗[(λ∗ + 1)z − ‖w‖e]〉+

〈e,Nk[(λk + 1)z − ‖w‖e]〉+ 〈e,Nkz〉 [λ∗ − λk]
]
.

Define the auxiliary piecewise linear convex function ζ(λ) := 〈e,N(λ)[(λ +
1)z − ‖w‖e]〉. Thus, except possibly at p points, ζ is differentiable and there
holds

ζ(λ∗) = ζ(λk) +

∫ 1

0

〈e,N(λk + t(λ∗ − λk))z〉 [λ∗ − λk]dt,

due to 〈e,N(λ)z〉 ∈ ∂ζ(λ); see [11, Remark 4.2.5, pag. 26]. Hence, by simple
combination of the two latter equalities, we have

λ∗ − λk+1 =

− [−‖w‖+ 〈e,Nkz〉]−1
∫ 1

0

〈e, [N(λk + t(λ∗ − λk))−Nk] z〉 dt[λ∗ − λk],

for all k = 0, 1, . . . . Since (2) implies that the entries of the matrix N are equal
to 0 or −1, we obtain

| 〈e, [N(λk + t(λ∗ − λk))−Nk] z〉 | ≤
p∑

j=1

|zj | = 〈e, |z|〉 .

Thus, combining above equality with last inequality, we obtain that

|λ∗ − λk+1| ≤ |‖w‖ − 〈e,Nkz〉 |−1 〈e, |z|〉 |λ∗ − λk|, k = 0, 1, . . . .

Therefore, as we are under the assumption 〈e, |z|〉 < α(1 + α)−1‖w‖, we have
〈e, |z|〉 /[‖w‖ − 〈e,Nkz〉] < α < 1, (25) holds and the sequence {λk} converges
to λ∗, which concludes the proof. ut
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4.2 Picard’s method

In this section we present a method based on Picard’s iteration for solving
equation (5) under a further restriction on the point which is projected. The
statement of the result is as follows:

Proposition 5 If 〈e, |z|〉 < ‖w‖, then for all λ0 > 0 the sequence given by the
iteration

λk+1 =
1

‖w‖
〈
e, [(λk + 1)z − ‖w‖e]−

〉
, k = 1, . . . , (26)

converges to the unique solution of the semi-smooth equation (5).

Proof It is sufficient to prove that ϕ : [0,+∞)→ R defined by

ϕ(λ) =
1

‖w‖
〈
e, [(λ+ 1)z − ‖w‖e]−

〉
is a contraction. Indeed, the definition of ϕ implies

|ϕ(λ)− ϕ(µ)| ≤ 1

‖w‖
∑
i=1

∣∣[(λ+ 1)zi − ‖w‖]− − [(µ+ 1)zi − ‖w‖]−
∣∣

≤ 1

‖w‖
∑
i=1

|zi(λ− µ)| = 〈e, |z|〉
‖w‖

|λ− µ| , λ, µ ∈ [0,+∞).

Since we are under the assumption 〈e, |z|〉 < ‖w‖, the last inequality implies
that ϕ is a contraction and the result follows. ut

Final remarks

The extended second order cones (ESOCs) are likely the most natural exten-
sions of the second order cones. Also, the complementarity problems defined
on them often have nice computational properties as remarked in the introduc-
tion. Finally, we found almost closed-form formulas for projecting onto them.
The formulas depend only on a piecewise linear equation for a real parameter.
Not so much of the ESOCs is known, nevertheless, we stipulate that they will
become an important class of cones in optimization.

For a given point in the ambient space the projection can be obtained easily
in at most 2p steps, by assigning signs to the components of the second vector
in the scalar product on the right hand side of the piecewise linear equation
(5), solving for λ, and if there is a solution, then checking that the solution
corresponds to the a priori assumed signs. However, this method is compu-
tationally unviable for larger p. Therefore, we developed numerical methods
for solving (5) based on the semismooth Newton method and Picards itera-
tions. Although the semismooth Newton method always converges in at most
2p steps, it needs some restriction on the point which is projected to prove



How to project onto extended second order cones 13

that is globally linearly convergent. A similar type of restriction is needed for
Picard’s method to prove that it is globally convergent.

The complexity of our projection method is considerably lower than the
complexity of solving the reformulation of the projection problem into a second
order conic optimization problem. It is expected that there are other conic
optimization problems with respect to the extended second order cone which
are easier to solve than transforming them into second order conic optimization
problems. We plan to solve conic optimization and complementarity problems
on the extended second order cone (similarly to the second order cone in [3])
and to find practical examples which can be modeled by such problems. Early
studies of Lianghai Xiao (PhD student of the second author) suggest that the
extended second order cones could be useful for portfolio selection, see [17,27]
and signal processing problems, see [5,8].
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