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Highlights 

 We propose an algorithm to efficiently identify communities in a large network with a good balance between 

accuracy, stability and computation time.  

 First, we propose an initial labeling algorithm, called ILPA, combining K-nearest neighbor (KNN) and label 

propagation algorithm (LPA).  



 Next, we merge sub-communities using mutual membership of two communities.  

 Finally, a refinement strategy is designed for modifying the label of the wrongly clustered nodes at boundaries.  

 The experimental results on large-scale artificial networks and real networks illustrate the superiority of our 

algorithm.  

 

Abstract: Community structure has become one of the central studies of the topological structure of complex 

networks in the past decades. Although many advanced approaches have been proposed to identify community 

structure, those state-of-the-art methods still lack efficiency in terms of a balance between stability, accuracy and 

computation time. Here, we propose an algorithm with different stages, called TJA-net, to efficiently identify 

communities in a large network with a good balance between accuracy, stability and computation time. First, we 

propose an initial labeling algorithm, called ILPA, combining K-nearest neighbor (KNN) and label propagation 

algorithm (LPA). To produce a number of sub-communities automatically, ILPA iteratively labels a node in a 

network using the labels of its adjacent nodes and their index of closeness. Next, we merge sub-communities using 

the mutual membership of two communities. Finally, a refinement strategy is designed for modifying the label of 

the wrongly clustered nodes at boundaries. In our approach, we propose and use modularity density as the objective 

function rather than the commonly used modularity. This can deal with the issue of the resolution limit for different 

network structures enhancing the result precision. We present a series of experiments with artificial and real data set 

and compare the results obtained by our proposed algorithm with the ones obtained by the state-of-the-art 

algorithms, which shows the effectiveness of our proposed approach. The experimental results on large-scale 

artificial networks and real networks illustrate the superiority of our algorithm. 

 

Keywords: Community detection; K-nearest neighbor; community mutual membership; refinement strategy; 

large-scale complex networks. 

 

1. Introduction 

Complex networks can describe many real systems, such as biological protein systems [1], social networks [2], 

scientific collaboration networks [3] and the World Wide Web [4]. These systems usually contain a number of 

elements that may fully or partially share some common properties. In the abstract representation of these systems, 

a node stands for a specific individual element of a system where an edge between two nodes illustrates a certain 

structural relation. Hence, many real systems can be studied by the complex network model with different 

topological properties, such as the small world effect [5], the scale-free property [6] and the community structure [7, 

8] to identify a structural pattern within the system, e.g. to safeguard the network or provide better service. 

Community detection or network clustering caught researchers’ attention in the past years in the context of complex 



networks [9-12]. This helped us to better understand social, biological and physical systems [12, 13]. In spite of 

many preeminent network-clustering algorithms [14-16], the definition of the community is not unique. Several 

popular definitions of a community from different perspectives are presented in the literature [17-19]. We consider 

communities that hold dense intra-connections and sparse interconnections, called modules or clusters, as per [17, 

19, 20]. This qualitative description generates two concepts which are the strong community whose internal degree 

of each node exceeds its external degree and the weak community whose internal degree is larger than its external 

degree. Identifying such communities is significant for research. For example, scientists having the same research 

fields collaborate more frequently than others in different research fields [3] in a network of scientists and detecting 

these communities in the network provides us with information very useful for making decision or resource 

assignment.  

We consider two categories of community detection algorithms [12]: (i) non-optimization based approaches that 

identify a set of nodes of the same community, e.g., the label propagation algorithm (LPA) [13], the network 

clustering algorithm based on the maps of random walks (Infomap) [15] and the fast hierarchical modularity 

optimization algorithm (BGLL) [16] and (ii) optimization based approaches that identify modules by forming an 

objective function, e.g. the divisive hierarchical clustering algorithm (GN) [9], the genetic algorithm for community 

detection (GA-net) [21], the hybrid genetic algorithm for community detection (Memetic-net) [22], the network 

clustering approach based on multi-objective GAs (MOGA-net) [23] and the multi-objective community detection 

algorithm (MOCD) [24]. In the second category, the selection of objective functions determines the accuracy of 

clustering to a certain extent [25, 26]. Hence, several qualitative definitions of scoring metrics have been proposed 

in community detection, such as modularity (Q) [9], community score (CS) [21] and some others [23, 27, 28]. 

Nevertheless, Q [9] has been widely used because of its simplicity and initial good results on GN benchmark 

networks [7] where it has been empirically shown to be efficient [29, 30].  

Although the optimization based approaches have shown good results, different researchers have identified some 

of their shortcomings. First, Q just measures the difference between a real network and its randomized version. 

Complex networks with different hierarchical structures are difficult to be evaluated by a single objective function 

where its obtained results may be invalid. Next, maximizing the objective function Q is proven to be an NP-hard 

problem [31]. Last and most important, there is a limit of resolution [32, 33] for maximizing Q. For instance, 

clustering techniques based on modularity Q usually cannot find small-scale communities if the community size is 

small with respect to the total size of a network and the intra-communities have relatively sparse connections. 

Accordingly, it is hard to get satisfactory results for such networks with fuzzy community structure just by 

maximizing Q. In sum, the maximum Q doesn't always correspond to the best partitioning of a network. 

In order to resolve this issue [32, 33], Li et al. [34] introduced another scoring function, called modularity 

density and denoted by D. The generic version, denoted by Dλ, contains a tunable parameter λ. Changing this 

parameter adapts the function to detect communities with different hierarchical structures, which can deal with the 

issue of the resolution limit. Network clustering techniques based on the modularity density have been studied 

extensively resulting in considerably satisfying results, e.g. a memetic algorithm combining the simulated 



annealing and the tightness greedy algorithm (MA-SAT) [35], a network clustering approach with the clonal 

selection (CSA-net) [36] and a community detection algorithm based on an improved modularity density increment 

[37]. These algorithms are mostly based on evolutionary models like Memetic-net [22], GA-net [21] and 

MOGA-net [23]. To the best of our knowledge, evolutionary algorithms (EAs) are always considered being a kind 

of global optimization method. EAs neither suffer from optimization issues nor have limiting requirements like 

differentiability or continuity of objective functions. While some widely used clustering methods, such as k-means 

[38] and fuzzy c-means (FCM) [39], must be provided with the number of clusters in advance, network clustering 

based on EAs does not need this information because it can automatically determine the number of clusters through 

the decoding phase of the optimal individual. Consequently, these merits accelerate the widespread applications of 

EAs [27, 40-43]. Nevertheless, EAs get the optimal solution or the approximate solution of a specific issue only 

after evolving adequate generations. For a small-scale network, it will get a desired result in a reasonable period of 

time. However, for a large-scale network, this kind of generation-based optimization techniques cannot generate 

satisfying results within a limited time. 

  In order to resolve these deficiencies, we propose an algorithm, which is called TJA-net. Our proposed algorithm, 

similar to the methods based on EAs, does not need the number of clusters in advance, which needs a priori 

knowledge and it is hard to set. In fact, we often have no idea of the real number of clusters of many real networks; 

hence, automatically determining the number of final clusters is highly demanded [39]. Our proposed algorithm is 

composed of three closely jointed steps where each step tries to deal with a common challenging issue of network 

clustering. Comparing to EAs, our proposed algorithm only requires a small number of iterations to accurately 

identify the optimal partitions and obtain the optimal number of communities. Therefore, our algorithm shortens the 

search time to some extent. Finally, the proposed algorithm adopts the generic modular density Dλ as its objective 

function, which effectively alleviates the resolution limit caused by the optimization of Q. The algorithm is briefly 

reported as follows: 

 First, we combine the K-nearest neighbor (KNN) [44, 45] and the label propagation algorithm (LPA). The 

combined algorithm is utilized for preliminary labeling of a network. This preprocessing process will take into 

consideration the classes of adjacent nodes and the degree of closeness between a node and its adjacent nodes. 

The algorithm updates the label of a node according to the closeness of the node to other nodes as well as 

according to the label of adjacent nodes. This method can accurately cluster some tightly connected nodes into 

a small-scale cluster, also called sub-community, in the initial stage very quickly. 

 Second, the algorithm performs community integration strategy to obtain the correct communities/clusters 

from the sub-communities obtained by the first stage of TJA-net using a mutual membership function, which 

is used to measure the degree of membership between two sub-communities. The sub-communities whose 

closeness value is more than a given threshold will be iteratively merged into a bigger community resulting in 

an optimal number of communities that the algorithm obtains by modifying its solutions iteratively. 

 Last, a refinement strategy is used to reclassify the nodes misclassified by the first two stages. In fact, the first 

step is only designed for achieving rapid clustering and we do not expect it to have a high clustering accuracy. 



Hence, TJA-net misclassifies several nodes during the first stage. We modify the proposed node-to-community 

membership function fMS-NC [46] so that interference from anthropogenic factors is highly reduced. This 

ensures high accuracy of clustering results and greatly reduces the manual workload. 

We designed and performed a series of experiments using both artificial and real network datasets to show the 

effectiveness and usefulness of our proposed algorithm. Moreover, we compare the results obtained by our 

approach and the state-of-the-art algorithms to validate our approach. The comparison shows that our proposed 

algorithm outperforms those state-of-the-art algorithms on large-scale networks in terms of the accuracy and 

computation time. In section 2, we present the formulation of our approach. A large number of experiments of our 

proposed algorithm are arranged in section 3 and we conclude in section 4. 

2. The proposed algorithm 

Let G=(V, E) represent an unsigned network where V and E represent the aggregations of nodes and edges, 

respectively. In addition, |V|=n is the number of nodes and |E|=m is the number of edges in G. We call a subset of G 

a community Ck⊂G (k=1, 2, …, l), where l is the number of communities. Moreover, A represents a priori 

knowledge of an input network in the form of the adjacent matrix. For example, Aij=1 if there exists an edge 

between the ith and the jth node; otherwise, Aij=0. Finally, int ext

i i id d d   denotes the degree of node iCk, where 

k

int

i ijj C
d A


  and 

k

ext

i ijj C
d A


  are the internal degree and external degree of the ith node, respectively. 

2.1 Representation and Initialization 

In this study, the encoding method of TJA-net will be introduced. First, we initialize a number of individuals 

where each individual is a representation of the network. To the best of our knowledge, there are two encoding 

patterns commonly used: (i) string_based encoding [47] and (ii) locus_based encoding [48]. We use the 

string_based encoding because its encoding pattern is easy to implement and it is effortless to decode. 

  A schematic of the encoding and decoding pattern is shown in Fig.1, which illustrates the main process of the 

proposed approach. This figure shows that we first assign an identifying number to every node, which indicates the 

community to which a node belongs, which we call ‘community label’. Ideally, nodes belonging to the same 

community are expected to have the same community label. The obtained solution, namely community labels, is 

decoded to get the network partition. The network in the bottom right of Fig.1 shows the nodes after decoding with 

different shapes and colors. Those red circles show the nodes belonging to community 1 and the green hexagons 

show those nodes identified as community 2.  

2.2 Preprocessing strategy 

Before presenting the preprocessing phase of the TJA-net, we need to present some preliminaries. For example, 

K-nearest neighbor (KNN) [44, 45], which is proposed by Cover and Hart [44] in 1967, is one of the widely used 

and relatively simple machine learning algorithms. In KNN, a label is assigned to a node according to the labels 



assigned to the nodes in its vicinity. However, the number of clusters, denoted by K, needs to be set a priori in this 

method. This highly affects the result of the clustering approach whereas setting the value of K either requires 

domain knowledge or needs trial and error. Next, Raghavan et al. [14] proposed an agglomerative method called 

label propagation algorithm (LPA) that doesn’t require the information of the whole network and has nearly linear 

time complexity. Hence, it is well suited for the large-scale network clustering. LPA iteratively operates on a 

network and labels a node based on the labels assigned to nodes in its neighbor. Eventually, the assigned label to 

the node will stay changeless after a small number of iterations where the label will be in correspondence with the 

labels of the majority of its neighbor nodes. This algorithm converges very fast, e.g. after five iterations. LPA has 

shown good convergence property and therefore it has been used in different fields including community detection 

[30, 49]. 

In spite of the good algorithmic properties of LPA, it has some drawbacks: (i) in LPA only the labels of all 

adjacent nodes are considered while the degree of closeness between nodes is not used; (ii) LPA does not 

effectively assign a label to a node if the labels of the majority of nodes in its neighborhood are not identical. The 

second drawback happens if the network has lots of weak communities in which the true communities are not well 

separated. For such networks, LPA cannot correctly identify communities or even take the entire network as a 

community. We will discuss this issue in detail in section 3.5.  

To resolve these shortcomings, we propose a variation of LPA called ILPA, which combines KNN and LPA. First, 

we define a cohesion index for any two adjacent nodes, which is the number of nodes in the neighborhood of the 

two adjacent nodes. Intuitively, two nodes with more common neighbors are more likely to be in the same 

community. For a set of given nodes V={v1,v2,…,vn} in a network, we define the degree of closeness between node 

vi and vj (vi, vj∈V ) as follows: 

( ) ( ) 1i jij
v vS                                      (1) 

where Γ(vi) denotes the set of adjacent nodes corresponding to node vi, which have direct connections to vi, 

including vi itself. The constant indicates that when the two adjacent nodes don't have any common neighbor, we 

can still maintain Sij=1 in order to indicate that there is an edge between vi and vj. 

The preprocessing of ILPA is reported in Algorithm 1. At this stage, the real community label may be different 

than the one used to initialize the labeling at the beginning. The labeling of each node is effectively and iteratively 

assigned until the labeling converges to a final solution by ILPA. A key advantage of the proposed preprocessing is 

that a relatively stable solution is obtained after only a few 5 iterations in many of our experiments. In contrast to 

KNN that needs the value of K to be set in advance, in our approach the value of K is automatically associated with 

the number of adjacent nodes of the pending node by considering the nodes connected to the node of interest when 

we calculate their similarities. In this way, the labels of nodes adjacent to a node of interest only affect the label of 

that node and the value of K is merely specific to that node. We consider the value of K being half of the number of 

its adjacent nodes.  

Algorithm 1. Procedures of the first stage: Preprocessing 



Input: The adjacent matrix of a network: A, the number of nodes: n, the iterations: m_iter. 

Output: Sub-communities of the input network: SC. 

Step 1. Assign a unique number to each node, that is, label(V)={1, 2, …, n}. 

Step 2. Set t=1. 

Step 3. Set i=1. 

Step 4. Calculate the closeness of node vi to its adjacent nodes, then sort the closeness in descending order: Si={Si1, Si2, …, Siq} (i=1, 

2, …, n), q denotes the number of adjacent nodes of vi. 

Step 5. Set 12K q    . If K is an even number, reset K=K-1; then go to Step 6. 

Step 6. Get the first K values in Si, take their corresponding nodes from adjacent nodes of vi, and find most of the same labels 

(denoted as r) to which these K nodes correspond. Use label r to update the label of vi. 

Step 7. Update i=i+1 If i≤n, go to Step 4; otherwise, go to Step 8. 

Step 8. Update t=t+1 If t≤m_iter, go to Step 3; else, go to Step 9. 

Step 9. Output the sub-communities: SC. 

To illustrate the difference between our proposed approach, namely ILPA, and LPA, we depict it in Fig. 2. The 

topological graph is shown in Fig. 2 (a) where the nodes {v1, v2, v3} belonging to community C1 are labeled with '1' 

whereas the nodes {v5, v6, v7, v8, v9} belonging to community C2 are labeled with '2'. In this figure, node v4 is a 

pending node. As we process v4 by LPA, its adjacent nodes, namely {v1, v2, v3, v5, v7, v8}, are taken into 

consideration. Node v4 has three edges connecting it with nodes belonging to C1 and three edges connecting it with 

nodes belonging to C2. Hence, no valid class can be assigned to v4 by LPA and the label updating of v4 entirely 

depends on a random decision. In contrast, our approach first records the closeness values of v4 to its neighbors as 

shown in Table 1. Next, the algorithm sets K=3, which is the half of the number of nodes connected to v4. Using eq. 

(1), we obtain a set of nodes {v1, v2, v3} which are closest ones to v4. Finally, ILPA obtains label '1' for v4 because 

the set of closest nodes belongs to community C1, which is shown in Fig. 2 (b). 

 

This example shows that ILPA, which is a combination of LPA and KNN, is more efficient and it is less sensitive 

to the noise. In addition, we empirically noticed that there is no difference between ILPA and LPA if the value of K 

in ILPA is set to the number of adjacent nodes. It is also obvious that changing the value of K can change the final 

labeling of the pending node, to some extent, since it determines a set of nodes adjacent to the pending node. 

Algorithm 1 reports in detail the procedures of this preprocessing strategy.  

2.3 Community integration strategy 

Through the preprocessing stage, a number of small-scale clusters, called sub-communities, are identified 

because they may be tightly connected. This can be guaranteed with the minimum effort by controlling the value of 

K. The smaller value of K indicates that larger number of sub-communities will be potentially obtained. As a 

community is usually composed of several sub-communities, we need to merge those available sub-communities to 

obtain a reasonable number of network segments. We call this strategy “community integration”. 

Angelini et al. [50] presented a definition of closeness to measure the similarity of two local communities. We 

were inspired by this approach and designed a community membership function fCM. Consider a given network 



G=(V, E) and a pre-division denoted by SC(G)={SC1, SC2, …, SCw}, w ≥ l, SCk (k=1, 2, …, w) is a sub-community 

in the network where w is the number of sub-communities. We take Γ(SCk) afterwards as a set of nodes adjacent to 

sub-community SCk. This is the aggregation of the external nodes that connect to SCk as follows:  

( )
( , )

( )

i j

CM i j

i

SC SC
f SC SC

SC





                                  (2) 

where Γ(SCi)∩SCj represents the connectivity degree between sub-community SCi
 
and SCj, and |Γ(SCi)| represents 

the number of adjacent nodes that connect to SCi. Hence, fCM(SCi, SCj) evaluates the degree of closeness of SCi and 

SCj. Given a pre-division SC(G)={SC1, SC2, …, SCw}, we define a function denoted by fCI for calculating the 

degree of mutual membership between two communities, as follows:  

( , ) ( , ) ( , ),  ( , 1,2, , )CI i j CM i j CM j if SC SC f SC SC f SC SC i j w                       (3) 

We call this function mutual membership function. The value of mutual membership of any two communities is 

calculated by considering a threshold δ for the value of fCI. We merge the sub-communities according to the 

algorithm reported in Algorithm 2. It should be mentioned that, merging any two sub-communities requires two 

conditions: (i) the membership value of sub-communities is greater than the threshold δ, and (ii) the merged 

sub-communities result in an increased modularity density. We name this process as community integration strategy 

(CIS). 

 

Algorithm 2. Procedures of the second stage: Community integration strategy 

Input:  The sub-communities of a network: SC(G)={SC1, SC2, …, SCw}, the merging threshold: δ. 

Output: The detecting result after merging: C(G)={C1, C2, …, Cl}, l ≤ w. 

Step 1. Set i=1. 

Step 2. Set j=1. 

Step 3. Get two sub-communities SCi and SCj. Then, calculate the mutual membership value between SCi and SCj, denoted by 

fCI(SCi, SCj). 

Step 4. If fCI(SCi, SCj) ≥ δ, sub-community SCi and SCj are merged, then calculate the value of Dλ. If Dλ declines, reset the 

individual to the last status. 

Step 5. j = j+1. If j > w, go to Step 6. Otherwise, go to Step 3. 

Step 6. i = i+1. If i > w, go to Step 7. Otherwise, go to Step 2. 

Step 7. Output the merging communities: C(G)={C1, C2,…, Cl}. 

2.4 Refinement strategy 

Using the first two steps of our approach, which are mentioned before, a good partitioning can be obtained. 

However, there may be some misclassifications due to the instability of these steps. Here, we only stress the 

misclassification of the boundary nodes that have edges with more than one community. Since the community 

integration strategy cannot implement local search, we define a refinement strategy (RS) based on the approach 

proposed in [46] to resolve this issue. In this work, an evaluation function referred to as fMS-NC is proposed to 

modify the misclassified nodes, which considers both the possibility that a node belongs to a community and the 

capacity that a community accepts a node. The fMS-NC can be written as follows: 



( , ) ( , ) ( , )CI i j CM i j CM j if SC SC f SC SC f SC SC                        (4) 

where, α, β are two adjustable parameters, controlling the proportion of the capacity of the node selection to the 

capacity of the community selection. For the sake of simplicity, we use i instead of vi. Hence, di is the degree of 

node i, |c| represents the number of nodes in community c and Ji,c is the number of edges between node i and 

community c, i.e., 
, ( )i c ijj c

J A i c


  . The concept of the community integration strategy is as follows: for a 

boundary node i and for the communities in its neighborhood, counting the values of fMS-NC, we select the maximum 

value of fMS-NC, denoted by max_fi,c. Finally, node i will be reclassified as community c corresponding to the 

max_fi,c. This process is formulated in eq. (5) where label(i) represents the label of node i. 

  1 2
( ) (argmax )( , ), , ,MS NC l

c
label i label f i c c C C C

                       (5) 

There are two adjustable parameters α, β in eq. (5) that need to be adjusted to obtain a good labeling. However, the 

values of these parameters have little effect on the clustering, and their tuning process requires a lot of effort. To 

address these defects, we redesign a node-to-community membership function, denoted by fINC, which is formulated 

in eq. (6). This better captures the relation between nodes and communities without having parameters to be tuned.  

, ,1
,( 1,2, , )

2

i c i c

INC ext

i c

J J
f i n

d d

 
  

 
                              (6) 

where 
,

ext

c iji c j c
d A

 
  indicates the connection degree of community c with other communities and 

,0 1i c iJ d  , ,0 1ext

i c cJ d  ; thus, fINC[0, 1]. Considering that the number of nodes does not affect the ability 

of a community to accept other nodes, we use the external degree of a community instead of the size of the 

community. There are fewer misclassified nodes after using the first two procedures if a network has a strong 

structure. By strong structure, we mean that the internal connections between the nodes of a community are denser 

than the external connections with of the nodes with other communities. In a network, RS can play an important 

role only if there exist overlapping nodes, like the node v4 in Fig.2. Intuitively, the probability that an external node 

belongs to a community is very high if the majority of boundary nodes in the community have connections with the 

same external node. All boundary nodes are arranged by the refinement strategy and only those nodes that satisfy 

some conditions will be reclassified and assigned to a more appropriate community reported in Algorithm 3. 

Algorithm 3. Procedures of the third stage: Refinement strategy 

Input: The adjacent matrix of an unsigned network: A, Communities after merging: C(G)={C1, C2, …, Cl}, l denotes the number of 

communities. 

Output: The optimal solution of network clustering: Cnet. 

Step 1. Find all boundary nodes, namely a node has connections with multi-communities, denoted by 

1 2
_ { , , , }

pb b bedge node v v v , where p is the number of boundary nodes. 

Step 2. Set i=1. 

Step 3. Get a boundary node 
ibv , and record its current label ( )

iblabel v . Find all neighbor communities of 
ibv , denoted by 

Cneighbor={Ci1, Ci2,…, Cit}, where t is the number of the neighbor communities. 

Step 4. Calculate the values of fINC between node 
ibv  and each of the neighbor communities Cneighbor, denoted by 



 
1 2
, , ,_

i i itC C CINC
f f fvalue f  . 

Step 5. Find the maximum value in value_fINC, denoted by  , 1,2, ,
ijCf j t . 

Step 6. Assign node 
ibv  to community Cij. Then calculate the value of Dλ. If Dλ increases, go to step 7. Otherwise, 

ibv  should be 

reassigned to its original community. 

Step 7. i=i+1. If i > p, go to Step 8; Otherwise, go to Step 3. 

Step 8. Output the optimal solution: Cnet. 

2.5 Modularity density Dλ 

Li et al. [34] presented the modularity density, denoted by Dλ, for dealing with the resolution limit with an 

adjustable parameter λ. The value of λ determines the network structure at different resolutions, which may result in 

satisfactory output. For an unsigned network G=(V, E), a clustering result of network G can be denoted by 

C(G)={C1, C2, …, Cl}(l=1, 2, …, n), where Ci represents the set of nodes belonging to the ith community. Let 
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external degree of community Ck. Hence, the modularity density Dλ is formulated in eq. (7), as follows: 
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where |Ci| is the number of the nodes in community Ci and λ[0,1]. Under some conditions, Dλ can be regarded as 

a combination of the ratio association [51] and the ratio cut [52]. If λ=0, eq. (7) turns into ratio cut; otherwise eq. (7) 

is the ratio association. Furthermore, eq. (7) is the expression of the modularity density D if λ=0.5. In general, 

optimizing the ratio association allows us to obtain smaller communities while optimizing the ratio cut tends to 

partition networks into large communities. Hence, by changing the parameter λ, our proposed approach efficiently 

deals with the networks with different resolutions giving satisfactory clustering results. 

2.6 TJA-net framework 

Here, we can form our approach, called TJA-net, consisting of Algorithm 1, 2 and 3 that were discussed in the 

previous sections. A pseudo code of our proposed algorithm is presented in Algorithm 4. In the next sections, we 

will present a series of experiments to validate the superiority of TJA-net. 

Algorithm 4. The whole framework of TJA-net 

Input: Population size: popsize, the number of iterations: iterm, the adjacent matrix of an unsigned network: A. 

Output: The detected communities by TJA-net. 

Step 1. Initialize each node with a unique integer value, which presents its community label. 

Step 2. Pre-process each individual in the population by Algorithm 1. Then, select the best individual in the population based on 

the obtained value of Dλ. 

Step 3. Set i=1. 

Step 4. Use Algorithm 2 to dispose the selected individuals; then, get the merged communities: C. 

Step 5. Use Algorithm 3 to amend the misclassified nodes, and get the corrected communities: Cnet. 

Step 6. i=i+1. If i>iterm, terminate the algorithm and go to Step 7; otherwise, go to Step 4. 

Step 7. Output the detected communities. 



3. Experiments 

In this section, we present a series of experiments to demonstrate the good performance of our proposed 

approach. In addition, we will compare the results obtained by our approach and some state-of-the-art approaches 

demonstrating the superiority and efficiency of our approach. We use robustness, precision and running time of the 

algorithms for comparing the results of these approaches. We implemented all algorithms in C++ programming 

language running on a machine with the processor Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz, the memory is 

6.00 GB and the operating system is Windows 7. 

3.1 Evaluation index 

  First, we present an evaluation index called normalized mutual information (NMI) introduced in [53] that is often 

applied to evaluate the similarity between the detected communities and the true communities. Given two partitions 

A and B representing the true and the detected communities, respectively, NMI is defined in eq. (8) as follows: 
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where NA and NB represent the number of communities belonging to A and B. Hij is an element of the matrix H, and 

represents the number of nodes that the community i in partition A and the community j in partition B have in 

common where H is a confusion matrix. Hi∙ (H∙j) represents the sum of elements in the i-th row (the j-th column) of 

the matrix H. Besides, I(A,B) belongs to [0, 1] where I(A,B) with a higher value indicates a better clustering result. 

If I(A,B)=0, the partition A and B are completely different whereas I(A,B)=1 shows that the partition A and B are 

completely identical. However, the NMI index can only be applied to evaluate a network whose true partition is 

known. Hence, we take the modularity density D as another evaluation index for a network whose true partition is 

unknown where λ=0.5 in Dλ. 

3.2 Compared algorithms 

  To compare the results obtained by the proposed algorithm, we use Memetic-net [22] and CSA-net [36], which 

work based on the modularity density Dλ. In addition, we use other four optimization-based approaches, namely 

BGLL [16], Infomap [15], MODPSO [28] and NM_CI-net [46], respectively. 

  Memetic-net [22] is a hybrid evolutionary algorithm (hybrid EA) which combines the hill-climbing method and 

the genetic algorithm (GA). With regard to CSA-net, it [36] is established on the ideology of artificial immune 

system and it is an immune clone algorithm using an antibody population initialization mechanism and a 

hypermutation strategy. Both Memetic-net and CSA-net utilize Dλ as their objective function. These approaches can 

identify communities at different resolutions through adjusting the parameter λ. Blondel et al. [16] proposed BGLL 

that takes a local community integration strategy to optimize Q by combining a greedy strategy for iterative 

optimization. It merges two communities only if the resulting local modularity increases. Rosvall and Bergstrom 

[15] proposed Infomap using the probability flow of random walks on a network as a proxy for information flows 



in the real system. This approach decomposes the network into clusters through compressing a description of the 

probability flow. Gong et al. [28] proposed a multi-objective discrete particle swarm algorithm (MODPSO). The 

label propagation (LP) was introduced to initialize its population. The authors also designed a perturbation operator 

to better guide the direction of particles. Furthermore, they took the kernel K-means and the ratio cut as their 

objective functions for managing unsigned networks. In order to verify the validity of the preprocessing strategy, 

we also take a variant of TJA-net as a comparison algorithm by adopting LPA as the preprocessing mechanism. We 

call this variant TJA_v-net. 

3.3 Testing networks 

  We use two classical testing networks for experiments: (i) computer-generated networks and (ii) real networks. 

Computer-generated networks: Lancichinetti et al. [54] proposed GN extended benchmark networks based on the 

classical GN benchmark networks [7]. This kind of network possesses 128 nodes and can be divided into four 

communities with the same size. It contains a mixing parameter γ that controls the connection degree between 

communities where a smaller value of γ indicates the network has a stronger community structure, which is easier 

to be detected. In contrast, a higher value of γ will result in more blurred boundaries, which makes detecting a 

harder task. The value of γ is considered being {0.0, 0.05, 0.1, 0.15, …, 0.5} giving us 11 computer-generated 

networks. However, both the average degree of each node and the size of each community in the GN extended 

networks are the same, which may not be realistic in real-world networks. In order to make an authentic simulation 

of real-world systems, Lancichinetti et al. [55] proposed LFR benchmark networks, which require several tuning 

parameters for controlling the structure of networks, e.g. the network scale, the degree distribution of nodes, the 

community size and the mixing parameter γ. In this work, we employ three types of the LFR networks with the 

scale of 1000 (LFR1), 5000 (LFR2), and 10000 (LFR3) nodes with other corresponding parameters as follows:  

(1) LFR1: the average degree of each node: kaverage=20, the maximum degree of nodes: kmax=50, the degree 

distribution exponents: τ1=2, τ2=1, the community size: [Cmin, Cmax]=[10,50];  

(2) LFR2: kaverage=20, kmax=50, τ1=2, τ2=1 and [Cmin, Cmax]=[20,100];  

(3) LFR3: kaverage=20, kmax=50, τ1=2, τ2=1 and [Cmin, Cmax]=[20,100].  

  In our experiments, we consider the parameter γ in LFR1 being {0.0, 0.05, 0.01, ..., 0.70} giving us 15 networks. 

Similarly, we consider γ in LFR2 and LFR3 being {0.0, 0.05, 0.01, ..., 0.90} giving us 19 networks. 

Real networks: we also use six types of real-world networks for comparing our approach with the state-of-the-art 

approaches. The ground truths of three networks are known and the other three are unknown, i.e. the Zachary's 

karate network [56], the dolphin social network [57], the American college football network [7], the net-science 

network [58], the power grid network [5] and the PGP network [59]. The corresponding data of these networks are 

reported in Table 2. 



3.4 Experimental results and analysis
 

To show the capabilities and superiority of our approach, we need to build and use different networks with 

different scales and properties. First, we present the computer-generated networks. 

3.4.1 Experimental results on computer-generated networks         

(1) The results obtained on GN extended benchmark networks: we use CSA-net and Memetic-net with the 

parameters reported in their original papers as the comparison algorithms in this experiment for validation. We also 

use the same parameters for two proposed algorithms, namely TJA_v-net and TJA-net, as follows: the population 

size, popsize=20; the threshold of community integration, δ=1; the number of iterations, iterm=5. The parameter λ in 

the objective function Dλ is considered being {0.2, 0.3, 0.4, ..., 1.0}. The maximum NMI values over 30 runs on 

these 11 networks are shown in Fig.3. 

While the performance of TJA-net and Memetic-net are identical in the case 0.2≤ λ ≤0.4 and for all γ, CSA-net 

only outperforms others for 0.2≤ λ ≤0.4 and γ = 0.4. In addition, TJA-v-net performs worse than others only for λ ≤ 

0.6. On the other hand, both TJA-net and TJA_v-net significantly outperform CSA-net and Memetic-net in 

accuracy for 0.8≤ λ ≤1.0. These results also show that even though the communities in some cases are easily 

identifiable, namely for 0.2≤ γ ≤0.3 in the first two subfigures in Fig.3, TJA_v-net is not effective i.e. NMI=0.0. 

Nonetheless, this pattern changes for λ>0.7 i.e. TJA_v-net outperforms Memetic-net and CSA-net for these 

networks. In general, TJA-net can be selected as the best among these four algorithms in terms of stability and it 

has a good detecting accuracy. 

  Due to the excessive amount of data, we cannot present all the experimental data here and we only report part of 

the data in Table 3.  

  The testing networks are GN extend benchmark networks at λ=0.3, 0.6 and 0.9 where 0.1≤ γ ≤0.5. In the table, 

boldface numbers represent the best result in terms of the NMI index obtained by TJA-net. It can be observed in the 

table that TJA-net performs slightly worse than its variant TJA_v-net for λ=0.9 and γ ≤ 0.3. Nonetheless, it 

performs much better than the other two algorithms. 

(2) The results obtained on LFR benchmark networks: in this section, we find the communities in the networks of 

LFR1, LFR2 and LFR3 by using BGLL, Infomap, NM_CI-net, MODPSO, TJA-net and its variant, namely 

TJA-v-net. Because Memetic-net and CSA-net have not been designed for large-scale networks and they perform 

poorly on these networks, we do not report their corresponding results in this section. All the algorithms ran 10 

times on the networks to obtain the maximum NMI values, which are shown in Fig.4 (a), (b), (c). Because there are 

no overlapping nodes in all three kinds of computer-generated networks, the refinement strategy has little impact on 

the clustering results. Therefore, we do not use the refinement strategy and we only use the first two steps of our 

proposed approach. In addition, since the objective function of TJA-net and TJA-v-net contains an adjustable 

parameter λ, we need to fix it here, which is set to be 0.5. 

If 0.0 ≤ γ ≤ 0.6, only TJA-net, Infomap, and MODPSO are able to identify the correct structure, i.e. NMI=1.0, on 



LFR1, as shown in Fig.4 (a). However, Infomap cannot identify the correct structure of LFR1 for γ > 0.6 resulting 

in NMI=0.0. On the other hand, while TJA-net can detect the correct communities for γ ≤ 0.6 and its performance is 

amongst the best ones for γ ≤ 0.65, it only performs slightly worse than NM-CI-net for γ = 0.7. This indicates that 

TJA-net performs very well and robustly for the networks with fuzzy community structure. In addition, we observe 

that MODPSO can also identify the correct structure of LFR1 for 0.0 ≤ γ ≤ 0.6 similar to TJA-net. The values of 

NMI obtained by MODPSO and TJA-net are bigger than the ones obtained by other approaches; however, the 

performance of MODPSO is inferior to our proposed TJA-net for γ ≥ 0.65. On the other hand, NM_CI-net cannot 

correctly detect communities even though the communities in these networks are easily identified for 0.10 ≤ γ ≤ 

0.50. 

The maximum NMI values by all the algorithms on LFR2 are shown in Fig.4 (b). The experimental results on 

LFR2 in Fig.4 (b) show that TJA-net, TJA_v-net, Infomap and MODPSO can fully detect the network partitions for 

0.0 ≤ γ ≤ 0.5. Although the detecting accuracy of TJA-net falls monotonically from 1.0 to less than 0.6 and it 

performs worse than MODPSO, Infomap and TJA_v-net for 0.55 ≤ γ ≤ 0.75, TJA-net outperforms other approaches 

except for MODPSO and γ ≤ 0.8. Furthermore, we observe that TJA_v-net loses its effectiveness on the networks 

for γ ≥ 0.7 resulting in NMI = 0.0. The detecting accuracy obtained by Infomap decreases rapidly for γ > 0.75 

where at γ = 0.80 it becomes zero. In sum, only MODPSO and TJA-net can maintain stability and a high detecting 

accuracy for 0.75 < γ < 0.90 where they result in NMI ≥ 0.5. This figure also shows that only MODPSO slightly 

outperforms our proposed approach on the LFR2 networks. 

Fig. 4 (c) shows the best NMI values obtained by different approaches on LFR3. The detecting accuracy obtained 

by TJA-net improves significantly for γ > 0.80 such that it outperforms MODPSO. This is in contrast to the results 

on LFR2 shown in Fig.4 (c). Although MODPSO obtains complete correct partitioning at γ = 0.00, i.e. NMI = 1.0, 

it cannot achieve correct partitioning on the rest networks where their corresponding NMI values are very close to 

1.0. Again, we only report part of the results obtained on LFR3 in Table 4. These results show that TJA-net 

outperforms others in the most cases and its performance is near optimal for the rest. Moreover, TJA-net performs 

well in terms of stability even though the network is hard to cluster, e.g. for a network with 0.50 ≤ γ ≤ 0.90. 

Table 4 shows that the trends of changes of the maximum NMI by BGLL and NM_CI-net are very similar. 

Although TJA_v-net does perform less effectively than Infomap, these two have similar results. For example, they 

both obtain correct detecting results at high resolutions where their performance qualities decline sharply at low 

resolutions where they eventually drop to zero. Although TJA-net and MODPSO adopt two completely different 

algorithm frameworks for network clustering, they perform most efficiently in terms of stability and accuracy. Both 

algorithms have achieved a good tradeoff between accuracy and robustness requirements. It is difficult to 

distinguish which one is better because both two obtain remarkable network clustering results. 

3.4.2 Experimental results on real networks 

We now examine TJA-net on real-world networks. First, we compare the detecting results at different resolutions, 

on three real networks, denoted by N1, N2, and N3, with known ground truths to verify the efficiency of our 



approach. Here, we adopt four algorithms, namely Memetic-net, CSA-net, TJA-net and TJA_v-net for comparison 

where their corresponding average NMI values are shown in Fig. 5 over 30 times running. This figure shows that 

there exists a huge difference between the detecting results at different resolutions. For example, all algorithms are 

unable to detect the true partitions of the Karate network for λ=0.2, shown in Fig. 5 (a). On the other hand, they 

obtain the average NMI equivalent to 1.0 for λ=0.3 except TJA_v-net. In addition, TJA-net displays a slight 

superiority over other three algorithms for increased value of λ whereas it performs much better than others for 

λ>0.8. As it is shown in Fig. 5 (a), TJA-net and TJA_v-net are stable at most values of λ, especially for 0.4 ≤ λ ≤ 0.9, 

and their NMI values just have slight fluctuations. Next, CSA-net slightly outperforms our algorithm on the dolphin 

network for 0.3<λ<0.6, as shown in Fig. 5 (b). Nonetheless, our algorithm shows a relative stability and superiority 

over other methods, by increasing value of λ especially for λ > 0.7. This is similar to the situation in Fig. 5 (a). 

Finally, as for the football network, the NMI values in Fig. 5 (c) illustrate that TJA-net can always maintain a high 

accuracy at different resolutions, where the results obtained by TJA_v-net also show a good performance. In 

specific, the average NMI values obtained by TJA-net are always approximately equal to 0.9 whereas Memetic-net 

and CSA-net resulting in varying values of NMI at different resolutions. On the other hand, the performance of 

CSA-net on the football network is very poor for 0.2 ≤ λ ≤ 0.6. The comparison of the detecting results on these 

three real networks shows that the NMI values obtained by TJA-net and TJA_v-net have a relatively similar pattern. 

NMIs of Memetic-net and CSA-net also possess a similar pattern mainly because Memetic-net and CSA-net are 

based on the EA models whereas TJA-net and TJA_v-net are hybrid clustering methods, which intend to find an 

aggregation of nodes in the same community. In sum, TJA-net and TJA_v-net maintain a high detecting accuracy 

with strong stability at different resolutions. 

  Table 5 reports the average and the maximum NMI values on the structure known networks, i.e. N1, N2 and N3. 

Furthermore, Table 6 reports the maximum D values on all the real-world networks. All algorithms run 

independently 30 times. '-' in Table 6 indicates that such an algorithm could not obtain an effective result within the 

desired period of time. In Table 5, NMImax represents the maximum value of NMI whereas NMIavg represents the 

average value of NMI over 30 runs. In addition, the bold face denotes that TJA-net is not inferior to the ones 

obtained by other algorithms. MODPSO, CSA-net and our proposed algorithm, namely TJA-net, can correctly 

identify the real partitions of the karate and the dolphin network. In addition, our algorithm is slightly weaker than 

just MODPSO and Infomap in terms of NMIavg on the football network whereas it is better than all other algorithms. 

Hence, by testing results of the three structure-known networks, we see that our algorithm is better than others. 

Table 6 shows the maximum D values over 30 runs obtained by all algorithms. The results reported in Table 6 

show that our algorithm outperforms most other algorithms in terms of the D index for the small-scale networks. 

Nonetheless, just Memetic-net slightly outperforms our algorithm on the dolphin network and the football network. 

However, Memetic-net is unable to obtain results within a limited period of time for the large-scale networks 

whereas our proposed algorithm is able to get an approximate optimal solution within a reasonable time. Our 

algorithm outperforms other state-of-the-art algorithms in terms of the metric D. 



 In summary, the experimental results presented in this section show that our proposed algorithm has a distinct 

superiority over other algorithms in terms of the metrics NMI and D. Although the testing results by TJA-net on 

some small-scale networks, namely N2 and N3, are not the best, they are just slightly inferior to the best results 

obtained by Memetic-net. Furthermore, the value of the objective function D and of NMI are not consistent, i.e. 

their optimal value does not confirm one another. For example, the maximum value of NMI obtained by our 

algorithm on the dolphin network corresponds with non-optimal D value and it is slightly less than the maximum 

value of D obtained by Memetic-net.  

In conclusion, we observe that using the objective function Dλ accompanies some limitations. Besides, the 

objective function determines, to a large extent, the merits and demerits of one algorithm and it is a difficult and 

urgent task to design a preeminent function for the networks with diverse structures. 

3.5 The validity analysis of the proposed algorithm 

In this section, we will confirm the validity of each strategy of the proposed algorithm, including (i) the 

preprocessing using a combination of LPA and KNN (ILPA), (ii) the community integration strategy and (iii) the 

refinement strategy will be verified. 

3.5.1 Validity of the preprocessing strategy 

In order to verify the advantages of the ILPA-based preprocessing (i.e. TJA-net) over using the LPA-based 

preprocessing (i.e. TJA_v-net), we conduct again a series of experiments on the LFR1 networks. We use 

experimental parameter settings identical to the ones used in section 3.4.1 and we consider λ being {0.2, 0.3, 0.4, ..., 

1.0}. The maximum NMI values over 10 runs are plotted in Fig.6. 

In Fig.6, we see that TJA-net always outperforms TJA_v-net. Even though the community structure is more 

ambiguous, i.e. the value of γ is greater than 0.50, TJA-net still maintain a high accuracy such that the 

corresponding NMI is not less than 0.7. However, the LPA-based technique, i.e. TJA_v-net, loses its efficiency, i.e. 

NMI=0.0, for the weak community structure. Therefore, we roughly conclude that the ILPA-based preprocessing 

strategy outperforms the LPA-based preprocessing strategy in network clustering. 

3.5.2 Validity of community integration and refinement strategy 

Here, we demonstrate the validity of the community integration strategy (CIS) and the refinement strategy (RS) 

and we obtain three comparison methods by combining our proposed components to verify them, namely ILPA, 

ILPA combined with the community integration strategy, i.e. ILPA+CIS and ILPA combined with the community 

integration strategy and the refinement strategy, i.e. TJA-net or ILPA+CIS+RS. All testing results are obtained at 

λ=0.3, and we only focus on the karate and the dolphin network for the sake of visualization, whose results are 

shown in Figs.7 and 8. 

Fig.7 and Fig.8 show that each step of TJA-net plays a very vital role in the overall framework and makes the 

detecting results more accurate. In addition, these figures show the ILPA-based preprocessing can effectively find 

out closely connected nodes and using CIS after that makes sub-communities merge into a large community. Finally, 



we adopt RS so as to refine the performance achieved by the first two steps as it can be seen in the correction of 

node 10 in Fig.7 and node 31 in Fig.8. Due to the good performance of the first two steps, there is only one node 

being misclassified in terms of the two small-scale cases where it is reclassified in the third stage. In summary, our 

algorithm is a powerful and efficient method of identifying partitions in a network, which consists of three effective 

components: (i) preprocessing, (ii) merging sub-communities and (iii) refinement of misclassified nodes. 

3.6 The average running time of the algorithms 

This experiment aims at comparing the running time of all algorithms. The average running time of each 

algorithm over 30 runs are reported in Table 7. All algorithms are applied on the same dataset. The boldface in this 

table represents that the corresponding algorithm has computation time larger than our proposed algorithm. 

  We used the code made available by the authors in order to ensure the impartiality of our experiments. This 

means we have to ignore the effect of different programming languages that the authors used on the running time. 

Hence, we adopt the same testing platform for all algorithms to minimize the interference of external factors. In 

Table 7, we observe that TJA-net and BGLL possess similar running time for networks with different scales. In 

addition, Memetic-net and CSA-net are not capable of dealing with large-scale networks. The running time of 

Infomap is very larger than the ones of MODPSO, BGLL, NM_CI-net and TJA-net for the large-scale networks, i.e. 

N4, N5 and N6. Nonetheless, because of the computation burden of the third stage of our proposed approach, 

which requires processing numerous boundary nodes, particularly, if the pending network holds many communities, 

the running times of MODPSO and NM_CI-net are less than ours for the large-scale networks, i.e. N5 and N6. 

Hence, the running time of TJA-net is larger than the ones of MODPSO and NM_CI-net for the network whose size 

is large. In spite of this, our proposed algorithm makes a very good trade-off between accuracy, stability and 

computation time. 

4. Conclusion 

In this paper, we proposed an algorithm to identify communities in a network. To deal with the networks at 

different resolutions, our proposed approach includes three effective stages (i) preprocessing and preliminary 

labelling, (ii) merging sub-communities and (iii) modifying the misclassified nodes. The preprocessing, called 

ILPA, assigns the same labels to the densely connected nodes forming some small clusters/sub-communities while 

we do not expect to have an exact clustering result at this stage. If the majority of the adjacent nodes to the node to 

be assigned a label, called pending node, do not have the same label, LPA cannot assign a correct label to that node 

because LPA uses only the labels of nodes adjacent to the pending node. Our proposed preprocessing stage resolves 

this shortcoming by considering both the label of adjacent nodes and their closeness degree to the pending node. 

This preprocessing strategy successfully deals with those pending networks possessing, overlapping nodes and 

vague structures. Furthermore, the first stage produces many sub-communities where they can be used to constitute 

a real bigger community. On the top of preprocessing, we propose a mutual community membership function 



where the membership value of any two communities determines whether the two communities should be merged. 

This stage is a step to confirm the number of clusters, and TJA-net obtains a reasonable number of communities 

after using community integration strategy. There might be a few nodes that are wrongly clustered, particularly the 

boundary nodes, because of the simple preprocessing. To resolve this issue, a refinement strategy is performed at 

the last stage. To show the effectiveness of our proposed algorithm, we performed a series of experiments with the 

computer-generated networks as well as with some real-world networks. This provides us with networks with 

different resolutions and properties. The results on different networks illustrate the effectiveness of the three stages 

of the proposed algorithm. To validate our approach, we also apply several state-of-the-art algorithms to cluster the 

testing networks. Although those algorithms perform well, to some extent, our approach shows relative superiority 

in terms of accuracy and robustness. 

In spite of the robustness and accuracy of our approach, we found via the experiments that the running time of 

TJA-net has yet to be optimized. On the other hand, although TJA-net outperforms most of the state-of-the-art 

algorithms mentioned in this paper in terms of the running time, it is inferior to MODPSO and NM_CI-net in this 

regard. For a large-scale network that the network contains a relatively large number of communities, our approach 

is demanded to deal with more boundary nodes. Furthermore, although the first two steps may result in a few 

misclassified nodes, TJA-net is required to perform the refinement computation on all the boundary nodes, which 

makes the computation time of the algorithm larger than MODPSO. In future works, we will work on reducing the 

needless searching for the boundary nodes that will greatly decrease the running time of TJA-net. Moreover, we 

will extend our work to deal with signed networks and we will focus on the issues of community detection on 

different types of networks. 
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Fig.1. The representation and decoding of the proposed algorithm 



 

         

(a)                                          (b) 

Fig.2. (a) A case that cannot be handled by LPA. (b) The same situation that can be correctly handled by ILPA. 



 

 

Fig.3. Maximum NMI values on GN extended benchmark networks 



 

 

(a)                                  (b)                                   (c) 

Fig.4. Maximum NMI values on LFR1, LFR2 and LFR3. (a) Maximum NMI values on LFR1. (b) Maximum NMI values on LFR2. (c) 

Maximum NMI values on LFR3. 



 

 

(a)                                 (b)                                  (c) 

Fig. 5. Average NMI values at different values of λ. (a) Experimental results on N1. (b) Experimental results on N2. (c) 

Experimental results on N3. 



 

 

Fig.6. Maximum NMI values on LFR1 by TJA-net and TJA_v-net 



 

                         

(a)                               (b)                              (c) 

Fig.7. The detected communities on the karate network. (a) The result by using ILPA, NMI=0.699. (b) The result by using 

ILPA+CIS, NMI=0.837. (c) The result by using ILPA+CIS+RS, NMI=1.000. 



 

 

                   

(a)                            (b)                              (c)  

Fig.8. The detected communities on the dolphin network. (a) The result by using ILPA, NMI=0.558. (b) The result by using 

ILPA+CIS, NMI=0.889. (c) The result by using ILPA+CIS+RS, NMI=1.000. 



 
Table 1. The closeness values between v4 and its adjacent nodes 

Adjacent nodes v1 v2 v3 v5 v7 v8 

Community label '1' '1' '1' '2' '2' '2' 

Closeness 3 3 3 2 3 2 

 



 

Table 2. The information of the real-world networks 

Network Node number Edge number Average degree Real clusters Reference 

Karate(N1) 34 78 4.59 2 [56] 

Dolphin(N2) 62 159 5.13 2 [57] 

Football(N3) 115 613 10.66 12 [7] 

Net-science(N4) 1589 2742 3.45 Unknown [58] 

Power grid(N5) 4941 6594 2.67 Unknown [5] 

PGP(N6) 10680 24340 4.55 Unknown [59] 

 



 

Table 3. Experimental results on GN extended benchmark networks at the mixing parameter λ={0.3, 0.6, 0.9} 

The mixing parameter γ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

Memetic-net 

λ=0.3 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 

λ=0.6 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 

λ=0.9 0.782 0.751 0.744 0.735 0.733 0.713 0.709 0.528 0.172 

CSA-net 

λ=0.3 1.000 1.000 1.000 1.000 1.000 1.000 0.369 0.000 0.000 

λ=0.6 1.000 1.000 1.000 1.000 1.000 1.000 0.169 0.000 0.000 

λ=0.9 0.832 0.779 0.744 0.734 0.708 0.659 0.609 0.428 0.172 

TJA_v-net 

λ=0.3 1.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

λ=0.6 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.000 

λ=0.9 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.644 0.440 

TJA-net 

λ=0.3 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000 

λ=0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 

λ=0.9 0.942 0.949 0.942 0.952 0.944 1.000 1.000 0.856 0.667 

 



 

Table 4. Experimental results on the LFR3 networks at λ = 0.5 

Algorithms BGLL Infomap NM_CI-net MODPSO TJA_v-net TJA-net 

LFR3 

γ=0.00 0.998 1.000 1.000 1.000 1.000 1.000 

γ=0.05 0.989 1.000 1.000 0.999 1.000 1.000 

γ=0.10 0.983 1.000 1.000 0.999 1.000 1.000 

γ=0.15 0.975 1.000 0.999 0.999 1.000 1.000 

γ=0.20 0.969 1.000 0.970 0.999 1.000 1.000 

γ=0.25 0.959 1.000 0.956 0.999 1.000 1.000 

γ=0.30 0.953 1.000 0.946 0.999 1.000 1.000 

γ=0.35 0.942 1.000 0.937 0.999 1.000 1.000 

γ=0.40 0.932 1.000 0.921 0.999 1.000 1.000 

γ=0.45 0.924 1.000 0.917 0.999 1.000 0.999 

γ=0.50 0.909 1.000 0.902 0.999 0.999 0.996 

γ=0.55 0.898 1.000 0.894 0.999 0.999 0.987 

γ=0.60 0.894 1.000 0.880 0.997 0.996 0.951 

γ=0.65 0.868 0.999 0.856 0.995 0.980 0.873 

γ=0.70 0.800 0.984 0.833 0.913 0.678 0.782 

γ=0.75 0.448 0.575 0.683 0.722 0.000 0.698 

γ=0.80 0.112 0 0.197 0.722 0.000 0.645 

γ=0.85 0.036 0 0.027 0.722 0.000 0.819 

γ=0.90 0.042 0 0.000 0.722 0.000 0.821 

 



 

Table 5. NMI values on three networks with known ground truths 

Network Index Memetic-net MODPSO Infomap CSA-net BGLL NM_CI-net TJA-net 

N1 
NMImax 1 1 0.700 1 0.587 0.700 1 

NMIavg 0.860 1 0.700 1 0.587 0.649 1 

N2 
NMImax 1 1 0.562 1 0.516 0.638 1 

NMIavg 0.785 1 0.562 1 0.516 0.586 1 

N3 
NMImax 0.862 0.927 0.924 0.886 0.890 0.911 0.927 

NMIavg 0.774 0.926 0.924 0.861 0.890 0.879 0.915 

 



 

 

Table 6. Maximum D values on six real-world networks 

Network Index Memetic-Net MODPSO Infomap CSA-net BGLL NM_CI-net TJA-net 

N1 Dmax 7.845 7.842 7.845 7.845 7.464 7.845 7.845 

N2 Dmax 11.707 10.810 10.076 10.837 10.208 11.017 11.421 

N3 Dmax 44.340 40.165 42.846 29.321 44.142 42.2213 44.190 

N4 Dmax ― 727.820 728.716 689.925 605.676 629.9433 749.284 

N5 Dmax ― 664.231 691.937 ― 57.306 99.7342 789.363 

N6 Dmax ― 1032.930 1721.021 ― 262.673 257.3625 1929.560 

 



 

Table 7. The average running time of the algorithms (Unit：Sec/each) 

Network Memetic-net MODPSO Infomap CSA-net BGLL NM_CI-net TJA-net 

N1 1.5121 0.1981 0.0810 0.3032 0.0179 0.5802 0.0031 

N2 5.9804 0.3307 0.0940 0.5413 0.0332 0.7917 0.0078 

N3 25.3414 0.6927 0.7660 1.0702 0.0477 1.1679 0.0317 

N4 ― 12.3230 50.591 32.8663 11.8214 8.7645 4.3866 

N5 ― 88.195 6748.140 | 310.894 50.306 301.984 

N6 ― 489.44 17033.90 | 1215.60 138.53 1368.34 

 
 


