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Abstract 

Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive 

neuroimaging techniques that have been used extensively to study various resting state and cognitive 

processes in the brain. The purpose of this review is to highlight a number of recent studies that have 

investigated the alpha band (8-12 Hz) oscillatory activity present in MEG and EEG, to provide new 

insights into the maladaptive network activity underlying attentional impairments in attention-deficit/ 

hyperactivity disorder (ADHD). Studies reviewed demonstrate that event-related decrease in alpha is 

attenuated during visual selective attention, primarily in ADHD inattentive type, and is often 

significantly associated with accuracy and reaction time during task performance. Furthermore, 

aberrant modulation of alpha activity has been reported across development and may have abnormal 

or atypical lateralization patterns. Modulations in the alpha band thus represent a robust, relatively 

unexplored putative biomarker of attentional impairment in ADHD, a strong prospect for future 

studies aimed at examining underlying neural mechanisms and treatment response among individuals 

with ADHD. Potential limitations of its use as a diagnostic biomarker and directions for future 

research are discussed.  
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Over the last decade, cognitive neuroscience has made much gain in understanding the 

engagement and interactions of multiple brain networks that underlie cognitive processes (1-3). 

Electroencephalography (EEG) and magnetoencephalography (MEG) are extensively used techniques 

that capture, on millisecond time scales, brain oscillatory activity present in electrophysiological 

signals; this allows for the study of cognitive processes via quantification of brain network 

interactions as they occur, ostensibly in real time (4-7). The object of this review is to highlight recent 

studies that have used task-related modulations of alpha band (8-12 Hz) oscillatory activity to offer 

new insights into maladaptive network activity underlying attentional impairments in attention-

deficit/hyperactivity disorder (ADHD). ADHD is one of the most prevalent disorders in childhood, 

affecting an estimated 5-11% of children (8), with longitudinal studies indicating that 30-70% of 

individuals continue to meet diagnostic criteria into adulthood (9). In addition to highly variable rates 

of diagnostic persistence and treatment response, the need to further understand the neural 

mechanisms underlying ADHD is underscored by extremely poor outcomes in adulthood such as 

frequent psychiatric co-morbidity, substance abuse, incarceration, divorce, poor health, and high 

societal cost ($143-$266B annually; 10). In this review, we suggest that studies of oscillatory activity 

may address this need. We begin with a historical overview of oscillatory studies in ADHD, then 

focus on task-related modulation of alpha band activity, which have emerged more recently as 

promising indicators of the neurophysiological underpinnings of the cognitive deficits present in 

ADHD. Finally, we discuss oscillatory power as a potential biomarker in ADHD and consider 

possible directions, and challenges, for future research. 

Resting State EEG and ADHD. There is a long history of EEG studies in ADHD, with the 

first study of resting state brain oscillations in children with behavioral problems consistent with 

ADHD reported in 1938 by Jasper et al (11). The earliest observations were described as frontocentral 

“slowing” in the EEG of affected children (11), which means an increase in the power expressed 

within slower frequency oscillations (theta band, 4-7 Hertz [Hz]) over frontal and central scalp (12, 

13). This led to a sustained (40-years and counting!) focus of research on elevated theta power 

(“slowing” of brain activity) and diminished power in “faster” frequencies (i.e., beta band, 13-25 Hz), 

as well as the corresponding ratio of theta- to beta-band power, also known as the theta to beta ratio 
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(TBR) (14). Efforts to validate the TBR as a biomarker of ADHD diagnosis seemed promising until 

fairly recently (pre-2010). Previous research studies and meta-analysis of the TBR reported high 

accuracy (89%; 15, 16) and large effect size (ES=3.1; 13) for ADHD diagnosis. However, recent 

independent replication studies and meta-analysis (17-21) reported low accuracy (range: 38 to 63%; 

22) and significant heterogeneity among study results, suggesting that even though the overall ES of 

0.62 is significant for ADHD diagnosis, it is misleading and potentially an overestimation of the true 

ES (23). While a sufficient number of individuals with ADHD (20-30%) have elevated TBR, which 

drives a significant group effect, the TBR is not a valid discriminator of ADHD diagnosis.  

Findings for alpha band spectral power at rest in ADHD have been mixed and may depend on 

developmental level, ADHD subtype, and psychiatric comorbidities. Overall, higher levels (21, 24-

26), no significant differences (27-31), and lower levels (30, 32-39) of alpha spectral power between 

samples with and without ADHD have been reported; however, no clear pattern has emerged 

according to age or ADHD subtype, the latter of which is not often reported. Recent studies suggest 

significant heterogeneity in resting state EEG spectral power characteristics within ADHD (36, 40) 

and at the population level  (41) (see Fig. 1a). Furthermore, while spectral power is the predominant 

metric used to reflect alpha band activity, there are other measures that have been reported such as 

power density, mean frequency, peak frequency, coherence, and laterality (see Table 1 for summary 

and definitions). While the plurality of results may reflect poor control over what participants are 

actually doing during ‘resting’ state, this also suggests that there may not be a resting state 

electrophysiological profile that accurately discriminates between those with and without ADHD. The 

purpose of the present paper is to suggest that other EEG/MEG signals, and in particular task-related 

suppression of alpha-band activity, may provide a more fruitful avenue for future research. These 

effects are more closely tied to specific neural systems and to cognitive functions, such as attention 

and working memory.  

Insert Figure 1 & Table 1 here 

 Task-related Modulation of Alpha Power. The observation of a coupling between the 

power of oscillations in electrophysiological signals and cognitive processing was first reported by 

Hans Berger (42). He noted 8-12 Hz oscillations (alpha) in patients, resting with eyes closed, that 
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disappeared when the eyes were opened, a phenomenon later referred to as alpha “blocking”. In 1934, 

Adrian & Matthews (43) reported that while alpha generation is most strongly modulated by visual 

inputs (and was abolished by blindness), it is also linked with cognitive processing of visual inputs, or 

attention. For instance, they noted that alpha increased in the presence of light when the participant 

was not expecting to see a stimulus, and, conversely, it is attenuated when the eyes were closed but 

the subject was mentally searching for something. Based on these findings, alpha oscillations were 

thought to represent the brain in an “idling” state (44), a view that has now been replaced by the 

consensus that alpha oscillations functionally inhibit specific regions, which serves to route 

information by blocking task-irrelevant pathways (2, 45-47). This has been demonstrated in a variety 

of experiments of attention and working memory, and using a spectrum of methods including MEG, 

spike-field animal data, concurrent EEG-fMRI, and neuromodulation. For instance, anticipation of 

visual targets decreases visual cortex alpha activity, whereas anticipation of visual distractors 

increases it (48-50). Similarly, alpha-band activity increases with attention and working memory load 

to selectively suppress external inputs and task-irrelevant information (51-55). In sum, the picture 

emerging is that alpha oscillations are associated with top-down executive control in attention and 

working memory tasks by selectively inhibiting (when alpha increases) or disinhibiting (when alpha 

decreases) specific brain regions (i.e., serving a gating function in the visual cortex; (46, 53, 56, 57). 

Given that children with ADHD have problems in these domains, it is natural to examine if they also 

have reduced abilities to modulate their alpha oscillations.  

 Across several types of attention and working memory type tasks (Fig. 2ab), differences 

between children with ADHD and controls have been observed in modulation of alpha band 

oscillatory power. For example, within a spatial working memory (SWM) delayed match-to-sample 

task (Fig. 2a), robust ADHD (54) diagnostic group effects were observed during the encoding phase 

of the task when compared to typically developing (TD) controls (Fig. 2c). During this encoding 

phase, control children showed an event-related decrease (ERD) in alpha band power, consistent with 

increased attention to and processing of the visual inputs. In children with ADHD, however, the alpha 

ERD during encoding was attenuated (Cohen’s d>0.79), which occurred primarily at low load rather 

than high load, was more prominent among younger children (7-10 years) versus older children (11-
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14 years) with ADHD, and was predictive of task performance. This finding is broadly consistent with 

reports by Mazaheri et al. (58, 59), who, using cross-modal attention and flanker tasks, also found 

attenuated alpha ERD in ADHD (Fig 2e). The alpha ERD finding was significant after an informative 

(‘response preparation’) cue but not after a null cue (suggesting a tight coupling to attentional 

processes) and was associated with reaction time benefit among TD children but not those with 

ADHD (59). In visuospatial attention paradigms (60) (Fig. 2b), alpha ERD arises as a lateralization 

effect, where alpha power decreases over the hemisphere contralateral to the attended visual hemifield 

relative to alpha power increases over the ipsilateral hemisphere. Using this paradigm, Vollebregt et al 

(61) observed that boys with ADHD were unable to modulate lateralized alpha in posterior regions 

when compared to typically developing peers (Fig. 2d), however, alpha lateralization was not 

associated to performance in either group. In a study of lateralized activity in the motor cortex, 

Yordanova et al (62) reported exaggerated suppression of alpha activity over sensorimotor cortex (i.e., 

mu wave) in response to non-attended (distractor) stimuli, potentially an indicator of enhanced 

processing of distractors and deficient inhibition of motor cortical networks. Attenuated lateralization 

of alpha may be indicative of inappropriate allocation of attention between attended and ignored 

streams of inputs. Finally, Heinrich (63) reported higher alpha power (which likely represents 

attenuated alpha ERD) during attention network task segments without stimulus processing or overt 

behavior among children with ADHD compared to controls, consistent with poor attentional 

allocation during the task. 

We note that alpha ERD group differences seem to be associated primarily with ADHD 

inattentive symptoms. Lenartowicz et al (54) reported a correlation between alpha ERD and 

inattentive symptoms (p=0.008), but less so for hyperactive symptoms (p=0.08). In the Mazaheri et al 

(59) study, alpha ERD was attenuated among adolescents with Inattentive Type but not with 

Combined Type ADHD (see Fig. 2e). Similarly, alpha ERD deficits were not observed by Gomarus et 

al (64) during a visual selective memory task where the ADHD sample was characterized primarily by 

hyperactive-impulsive behaviors. Overall, alpha ERD is attenuated primarily in ADHD inattentive 

type, consistent with ineffective selective attention to visual inputs, and is often associated with 

poorer task performance (accuracy, reaction time or reaction time variability).  
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Insert Figure 2 here 

Aberrant alpha modulation has also been consistently observed in studies examining adults 

with ADHD during attentional tasks. While performing a flanker task, posterior alpha ERD was 

significantly attenuated among adults with ADHD during visuospatial orienting (65). During stimulus 

processing in a N-back working memory task, adults with ADHD exhibited reduced alpha ERD in 

frontal channels relative to controls. Attenuated alpha ERD was particularly pronounced during the 

low versus high load condition (66), an interaction that was also present in the SWM study with 

children (c.f., Fig. 2c) (54). This suggests that aberrant alpha modulation may interact with sluggish 

recruitment of attention or maintenance of vigilance, which is more difficult in easier task conditions. 

Finally, MEG studies have found that adults with ADHD also have difficulty sustaining posterior 

hemispheric alpha lateralization during visuospatial attention (c.f., Fig 2b) in the period between the 

cue and target, particularly when attending to the left visual hemifield (67). A follow up study 

revealed a similar deficit in alpha power observed over sensorimotor cortex (i.e., mu wave) (68). 

Coupled with behavioral performance results, the authors suggested that adults with ADHD have an 

attention bias to the right visual field, which has been linked not only to ADHD severity but also other 

ADHD risk factors such as gender, handedness, and genetic factors (69). Collectively, adult ADHD 

studies are consistent with effects observed in children and support the notion of continued deficits in 

the ability to modulate alpha power across development, with a potential rightward bias in alpha 

power.  

Neural mechanisms underlying alpha oscillatory activity. A mechanistic understanding of 

alpha oscillations has clear implications for the neural circuitry underlying deficient attention control 

in ADHD. Seminal in vivo (70, 71) and in vitro (72-74) experiments of thalamic alpha, and studies of 

occipital alpha (75-77) in the dog have identified a circuit between excitatory thalamocortical cells 

and inhibitory reticular neurons that generates alpha oscillations in thalamocortical neurons via a 

feedback loop between excitation and inhibition (78, 79). These studies were initially interpreted as 

supporting the hypothesis that alpha oscillations were indicative of the brain in an idling state (80). 

This is because the thalamic generator of alpha is dependent on decreasing arousal (79, 81, 82), 

whereby ascending cholinergic projections “deinactivate” (i.e., inactivation gate reopens and 
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activation gate closes) low-threshold-Ca2+ channels, which reduces the reactivity of cortex to inputs 

(83-85). And while alpha oscillations are typically strongest over occipital cortex, they are also 

detectable in sensorimotor (the “mu” wave) and temporal cortices (the “tau” wave) (86-89), 

supporting a general mechanism by which sensory processing is gated by the thalamus. Hence, core 

thalamo-cortical interactions may play an important role in the aberrant alpha patterns observed in 

ADHD at rest. It is noteworthy that the dependence of thalamic generators of alpha on decreasing 

arousal is reminiscent of and consistent with energetic (low-arousal) models of ADHD etiology (90). 

However, given a lack of consistency in group differences in alpha during rest, further research is 

warranted to establish if links exist between alpha-generating thalamo-cortical interactions, alpha at 

rest and ADHD diagnosis. 

In addition to the thalamo-cortical mechanisms, the modulation of alpha during task is 

thought to represent fronto-parietal interactions biasing activity in occipital cortex in line with 

attentional goals. This idea is supported by: (a) recordings in (primarily) primate occipital cortex of 

alpha generators in  deep layers (which receive inputs from cortical regions other than thalamus) (91-

93); (b) intracranial and MEG recordings, and Granger causality modeling showing that alpha (and 

beta) range oscillations carry feedback information from higher-order association areas (in contrast to 

>30Hz gamma oscillations, most prominent in superficial layers and carrying feedforward 

information) (94-99); and (c) disruption of frontal/parietal activities by transcranial magnetic 

stimulation that compromises performance and alpha modulation during visual attention (83, 100-

102). Attenuated alpha ERD in ADHD is therefore a likely indicator of weakened attention control 

and, given prior association of fronto-parietal circuitry with alpha power (103-106), it predicts 

weakened interactions between the fronto-parietal network and occipital cortex during tasks. 

Consistent with this prediction, alpha ERD impairments do not appear to indicate an impairment with 

basic sensory processing as alpha ERD is independent of perceptual processing (53); it can occur 

before (101, 107, 108) or after (109) the stimulus, and can be absent during a stimulus when no post-

perceptual processing is required (110).  

Insert Figure 3 here 

It is an outstanding question whether thalamus (111) or fronto-parietal interactions via either 
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the thalamus and/or the superior longitudinal fasciculus (112) (Fig. 3a), are critical in generating the 

aberrant alpha patterns in ADHD. A thalamic impairment can certainly account for ineffective fronto-

parietal activities (e.g., contributing to poor alpha ERD) because the thalamus (in particular the 

pulvinar nuclei) displays attentional modulation signals and has been shown to drive alpha synchrony 

in primate occipital cortex during attentional selection (113, 114). It may thus be a mediating structure 

for fronto-parietal top-down control. In turn, the relationship between thalamic generators of alpha 

and ascending cholinergic projections (79, 81, 82) implies that faulty arousal regulation could impact 

both thalamic and fronto-parietal activities. It is noteworthy that these alternatives are analogous with 

(i.e., capture the same circuits as) existing multi-pathway models of ADHD (e.g., 115). Further 

research into the mechanisms of alpha generation versus modulation will be imperative in 

distinguishing the critical pathways behind both alpha (and related behavioral) deficits in ADHD, and 

thereby informing existing models. Increasingly promising are multimodal approaches such as 

concurrent EEG-fMRI, which has been fruitful in non-invasively confirming the associations between 

alpha power and thalamic, occipital and fronto-parietal activities (103-106, 116-122). Extensions of 

such approaches to map the functional connectivity of alpha in ADHD (123, 124) may prove 

particularly revealing. Indeed, a recent study used concurrent EEG-fMRI recordings during SWM 

(Fig. 2a) in a small sample of adolescent boys with and without ADHD (N=30, 15 ADHD; 121). 

Overall, alpha ERD during SWM encoding was associated with occipital activation and fronto-

parieto-occipital functional connectivity (Fig. 3b), with the latter predicting ADHD symptoms and 

response variability. The degree to which these two substrates were recruited differed by diagnosis, 

with greater occipital activation in controls and greater fronto-parieto-occipital connectivity in 

ADHD. The finding is consistent with the pattern of results in the larger EEG-only sample (54), 

namely that ADHD participants had to work harder (through recruitment of executive function fronto-

parietal mechanisms) to compensate for a poor visual attention response. 

  Oscillations as biomarkers of ADHD. Can measures of alpha oscillations serve as a 

biomarker of ADHD? Given the large effect sizes of group differences in alpha modulation, and 

clearly defined mechanistic targets, it seems the answer ought to be yes. However, large effect sizes 

are not sufficient to define a biomarker, which additionally needs to show reliability as well as both 
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sensitivity (ability to detect the disorder) and specificity (ability to discriminate between disorders). 

Less commonly reported alpha measures such as lateralization, coherence, and mean/peak frequency 

have not been well studied with respect to reliability, however, several previous studies indicate high 

within-subject reliability of alpha ERD. Neuper et al (125) (n=29, 18-45 years) reported a Cronbach’s 

alpha>0.85 and r(27)>0.7 test-retest reliability of alpha ERD (up to 107 days apart) during numerical 

processing (125). Similar results were reported for resting state alpha power by Tenke et al (126), in 

39 adults (18-65 years), test-retest reliability of 0.84 recorded 5-16 days apart, and by McEvoy et al 

(127) (n=20, 18-29 years), test-retest correlation >0.8 in psychomotor vigilance task and >0.9 in a 

Sternberg working memory task, recorded 7 days apart. Impressively, Näpflin, Wildi and Sarnthein 

evaluated both resting state alpha (128) and alpha ERD in a modified Sternberg working-memory task 

(129) in test-retest sessions 12-40 months apart (n=55, 19-79 years). They were able to predict if the 

oscillatory metrics came from within the same subject or from different subjects with a sensitivity 

over 87% and specificity over 99%. Thus, we cautiously conclude that alpha ERD is a reliable 

signature within individual, an important property for a biomarker, though it is notable that all of 

these studies were performed in adults and may not generalize to children.  

However, the sensitivity and specificity of alpha ERD are questionable, and we suggest that 

alpha ERD, like its theta-beta ratio predecessor, is not likely to provide a reliable biomarker of ADHD 

diagnosis. The reason for this conclusion lies in the clinical (130), mechanistic (131, 132), and 

etiologic (133) heterogeneity of the disorder, which likely degrades the reliability of putative 

biomarkers of ADHD. For example, the ADHD 200 competition, which challenged scientists to 

develop diagnostic group classifiers for ADHD based on over 700 MRI datasets, had accuracy rates 

ranging from 43% to 62% (mean 56%), with the highest prediction accuracy of 62.5% coming from a 

prediction model that did not include any imaging data at all (134).  

Several EEG/ERP studies have had more success using multivariate EEG profiles, (~90%, 

e.g., 135, 136, 137) but the high accuracy results require further validation because of potential 

statistical model overfitting. This is because of either small sample size precluding ability to split the 

data into independent training and testing sets (N < 22 per group; 135, 136, 138, 139), or the common 

practice of selecting classification features from the same dataset that is subsequently used for the 
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classification (i.e., artificially inflating diagnostic classification accuracy) (140). For instance, in two 

large-sample EEG studies, Mueller et al (141) reported diagnostic classification accuracy of 92% 

(n=150), and Tenev et al (142) reported an accuracy of 82% (n=112), but in both cases the features 

used for the classification were those that were most discriminant in the sample, thus creating 

circularity in the analysis (critique also applies to the findings of Hammer et al (143) who cited 92.5% 

classification based on fMRI data). Notably, in an independent validation sample of 17 adults, 

Mueller et al (137) reported an impressive accuracy of 94%, yet because the validation sample was 

comprised of only individuals with ADHD, it is impossible to assess whether the classifier was 

inaccurately labeling all new data as ADHD (i.e., specificity). Moreover, across the studies, there is a 

lack of consistency in the features that are most effective in diagnostic classification (i.e., in EEG 

studies: TBR, absolute or relative power within various frequency bands, fractal measures, and event-

related potential components (22)). We may therefore conclude that past classification efforts, 

including those using theta-beta ratio, have not yielded reliable diagnostic classification results, a 

finding that is not surprising if we consider the distribution overlap in EEG features across groups 

(e.g., Fig. 1b for alpha ERD). 

It may be a more useful exercise to consider the prognostic utility of alpha oscillatory effects 

as a biomarker of a cognitive process (and associated neural circuits), developmental outcomes, or 

treatment response rather than diagnosis. As noted previously, attenuated alpha ERD was associated 

with inattentive symptoms (54) and subtype of ADHD (58, 144) and much less so with the ADHD 

combined subtype (64, 144). Moreover, stronger alpha ERD is predictive of better task performance 

both in studies of ADHD (54, 144) and otherwise, with alpha power predicting success of visual 

discrimination (108), errors on no-go trials (145) and successful inhibition of distractor items during 

working memory (146). Alpha oscillations may therefore be considered a putative predictor of visual 

attention processes and related behavioral outcomes. In the context of ADHD, this may translate into 

prediction of inattentive symptoms and how they may change with development or in response to 

treatment. The practical significance lies in the strong relationship between attention processes and 

real-life outcomes. We know that working memory deficits can have significant effects on academic 

achievement, educational attainment (repeating a grade, special education classes, learning 
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disabilities) and IQ (147), which contribute significantly to occupational, academic, and social 

functioning in adulthood. Furthermore, the demonstrated population-level heterogeneity in alpha band 

activity (40, 41) may be framed as a potential advantage of EEG based-measures, if it reveals 

neurophysiologically distinct clusters. If so, alpha suppression may potentially be used not only as a 

measure of treatment response but also a predictor of which treatment may be effective for a given 

individual. 

Conclusions, challenges and future directions. EEG and MEG oscillatory activity have 

long been used to quantify neural mechanisms and network interactions underlying cognitive 

processes such as attention. Alpha ERD appears to be a robust, yet relatively unexplored (in ADHD) 

putative biomarker of attentional impairment that subsequently impacts performance on WM and 

other executive function tasks. Despite its potential utility, there remain a number of challenges in the 

interpretation of alpha that need to be addressed. First, the group differences in alpha ERD that we 

have described require replication in larger samples, under identical task conditions. For instance, 

while attenuation of alpha suppression during SWM encoding and attenuation of alpha lateralization 

in ADHD are hypothesized to stem from similar mechanisms, a study comparing the paradigms (and 

alpha measures) within the same population would be instructive. Similarly, while most group 

differences have been reported over occipital electrodes/cortex (Table 1), some group effects have 

also been reported over frontal electrodes and/or over sensorimotor cortex. It is not currently known if 

these alpha measures in various regions represent different or overlapping mechanisms. Moreover, 

effects of pre-stimulus alpha on group differences in alpha modulation have not been systematically 

considered and likely introduce another source of variability (e.g., pre-stimulus alpha differences were 

present in (63) but not (54). Finally, it is not clear if alpha suppression deficit reflects a fundamental 

dysfunction in associated circuitry or if this is a downstream effect (e.g., a problem with arousal).  

In addition, more work is needed to address clinical correlates associated with alpha ERD. In 

terms of inattention symptoms, it would be important to understand whether alpha ERD indexes 

specific types of inattention, such as distractibility, a lack of vigilance, or daydreaming. More 

specificity with respect to which inattention symptoms are represented by alpha ERD may support its 

use as a biomarker of treatment response or developmental outcomes. Such specificity would also be 
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instructive in interpreting deficits in alpha modulation in other disorders (e.g., alpha suppression 

impairment during working memory in patients with schizophrenia (148) and, in a visual attention 

task among those with autism (149). Finally, further research is critical to ascertain whether alpha 

ERD is indeed predictive of clinical features typically associated with working memory deficits. If so, 

the association could potentially reveal shared neural mechanisms underlying inattention and 

academic achievement, or, identify risk for highly co-morbid diagnoses such as learning disability 

among children with ADHD. Remaining challenges notwithstanding, the promising research findings 

described herein suggest that alpha ERD is a strong prospect for future studies aimed at examining 

underlying neural mechanisms and putative biomarkers of ADHD. 
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Table 1. Alpha band power findings in ADHD 
 

First Author Year 
N 

(ADHD, 
Con) 

Age 
Grp 

Task 
Frequency 
band (Hz) 

Measure Region Alpha in ADHD 

Resting State 

Poil (20) 2014 48, 68 
CH, 
AD 

EC 8-13 S, MF F, F/P 
CH: higher pow; AD: 

lower MF 
Koehler (25) 2009 34, 34 AD EC 7.5-12.5 PD C, P Higher PD 

Bresnahan (23) 2002 50, 100 AD EO 8-12 S P Higher pow 

Chabot (24) 1996 407, 310 CH EC 8-12 
S, Coh, 

MF 
F, C 

Higher pow w/ 1. normal 
MF (46%), 2. lower MF 

(30%) 

van Dongen-
Boomsma (30) 

2010 24, 24 AD EO, EC 8-12 S, PF P 
ND in pow or PF. 

Greater decrease from 
EC to EO. 

Bresnahan (27) 2006 50, 50 AD EO 8-12 S -- ND 
Hermens (28) 2004 36, 36 AD EC 8-12 S -- ND 

Bresnahan (26) 1999 75, 75 
CH, 
AD 

EO 8-12 S -- ND 

Pomoerov (38) 2014 96, 376 AD EO, EC 8-12 S F, C Lower pow 
Woltering (37) 2012 18, 17 AD EO, EC 8-12 S F, C, P Lower pow 

Barry (31) 2009 30, 30 CH EC 8-12 S G Lower pow 
Magee (35) 2005 253, 67 CH EC 8-12 S F, P Lower pow 

Clarke (32) 2001 160, 80 CH EC 8-12 S P 
Low pow in boys and 
older CH, ND is girls 

and younger CH 

Nazari (36) 2011 16, 16 CH 
EO, 
CPT 

8-12 S G 
Lower pow resting, 

higher pow CPT 

Loo (29) 2010 384, 147 
CH, 
AD 

EO, 
EC, 
CPT 

8-12 S P 
Lower pow in adults 

ADHD-C vs ADHD-I & 
Cons. CH: ND 

Loo (34) 2009 38, 42 AD 
EO,EC, 

CPT 
8-12 S F,P 

Lower pow all 
conditions 

El Sayed (33) 2002 36, 63 CH EO, 
CPT 

8-12.5 S G Lower pow all 
conditions 

Hale (68) 2009 29, 62 AD 
EC, 
CPT 

8-10, 10-
12 

Lat P 
Greater R lat all 

conditions 

Baving (150) 1999 47, 70 CH EO 8-10 Lat F 
Greater R lat-boys, L lat-

girls 
Task 

Lenartowicz 
(53) 

2016 8, 13 CH SWM 8-12 ERD/ERI P Less ERD 

Hasler (64) 2016 21, 20 AD Flanker 8-13 ERD/ERI P Less ERD to cue/target 
Lenartowicz 

(120) 
2014 52, 47 CH SWM 8-12 ERD/ERI P 

Less ERD for LL, not 
HL 

Mazaheri (58) 2014 34, 23 CH 
Cued 

flanker 8-12 
ERD/ERI, 

CP P 
Less ERD in ADHD-I; 

weak CP with frontal TH 

Missonnier (65) 2013 15, 15 AD N-back 9-15 ERD/ERI F 
Less ERD then higher 

ERI, esp LL vs HL 

Yordanova (61) 2013 14, 14 CH 
EC, 

aud sel 
attn 

8-12 
ERD/ERI, 

S 
MC 

Greater ERD in left MC 
to non-target; Resting: 

ND 

Mazaheri (57) 2010 14, 11 CH 
Cued 

vis attn 
8-12 

ERD/ERI, 
CP 

P 
Less ERD in ADHD; no 

FP CP 

Gomarus (63) 2009 
15, 15, 15 

PDD 
CH 

Vis sel 
mem 

8-12 ERD/ERI P 
ND in ERD; ADHD is 

Hyp/Imp type 
Heinrich (62) 2014 24, 19 CH Flanker 7.5-12.5 S P Higher pow on no cue 
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trials 

ter Huurne (67) 2017 17, 18 AD VS attn 8-12 Lat MC 
MEG. No typical 

lateralization 

Vollebregt (60) 2016 30, 30 CH VS attn 8-12 Lat P 
MEG. No typical 

lateralization 

ter Huurne (66) 2013 17, 18 AD 
VS 

atten 
9-12 Lat P 

MEG. Initial lat not 
sustained 

 
Note. All studies are EEG results unless noted. ADHD=Attention-deficit hyperactivity disorder; ADHD-I=Inattentive; 
ADHD-C=Combined; Hyp/Imp=Hyperactive/ Impulsive; Con=control; Grp=group; Hz=hertz; CH=child; AD=adult; 
EC=eyes closed; EO=eyes open; CPT=continuous performance test; SWM=spatial working memory; Aud=auditory; 
Vis=visual; VS=visual-spatial; sel=selective; attn=attention; S=spectrum (power); MF=mean frequency i.e., frequency 
above and below which half the alpha band power lies); PD=power density; Coh=coherence (i.e., correspondence of 
alpha phase or magnitude between two channels or regions); PF=peak frequency (i.e., frequency between 8-12 Hz with 
the highest power); Lat=laterality (i.e., power difference between hemispheres); ERD=event related decrease; 
ERI=event related increase; CP=coupling;  F=Frontal; C=Central; P=Posterior; MC=motor cortex; G=Global; 
Pow=power; ND=No difference; R=right; L=left; LL=low load; HL=high load, TH=theta; 
MEG=Magnetoencephalography 
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Figure legends 

Figure 1. Heterogeneity within and between groups limits potential of existing EEG metrics as 

biomarkers of ADHD. (A) Population-level EEG heterogeneity is evident in the presence of five 

clusters within both ADHD and typically developing (TD) control groups. Each cluster is defined by 

elevations in oscillatory power within a frequency band (delta 1-3 Hertz [Hz] theta, 4-7 Hz, alpha 8-

12 Hz, beta 13-20 Hz) and no spectral elevation [NSE]). There is no cluster or spectral power profile 

characteristic of either ADHD or TD group, suggesting resting EEG spectral power measures are 

insufficient to serve as a biomarker of ADHD. Figure reproduced with permission from (41). (B) The 

distribution of alpha ERD during the encoding interval in Fig. 2c. The image illustrates that ADHD 

and TD controls, despite a significant difference in group mean, have largely overlapping distributions 

of alpha ERD. These data, argue for the unsuitability of a single EEG metric as a diagnostic 

biomarker of ADHD. 

 

Figure 2. Alpha ERD is attenuated in ADHD during visual attention. In the spatial working 

memory task (A) participants encode the spatial location of 1 or 3 (low load) or 5 or 7 (high load) 

dots. Following a maintenance interval, they indicate if the probe dot occurs in the same or different 

location than any of the stimuli in the encoding stimulus. Attenuation of alpha event-related decrease 

(ERD) in ADHD was apparent during the 2-sec encoding period (C) (relative to pre-stimulus 

baseline). This effect was most pronounced at low load among children with ADHD (top left). Alpha 

ERD plots are calculated from the time-courses of a single occipitally-distributed (inset) independent 

component. Figure reproduced with permission from (54). (E) A similar result was reported by 

Mazaheri et al (59), in a cued spatial attention task. Attenuation of alpha ERD at electrode Oz in 

response to cues (cue duration is 1 s) was more pronounced in ADHD Inattentive Type than ADHD 

Combined Type (left panel), relative to TD controls. Figure reproduced with permission from (59). In 

the prototypical cued spatial attention task (B), a cue indicates the most likely location of the 

upcoming target stimulus (e.g., left). Following a preparation interval, the target appears either on 
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right or left, requiring participants to indicate on which side the target appeared. In this paradigm, 

alpha ERD is lateralized, greater in the hemisphere contralateral to the hemifield indicated by the cue 

(attended, e.g., right) than in the hemisphere ipsilateral to the hemifield indicated by the cue (ignored, 

e.g., left). The normalized difference can be quantified as a modulation index (MI), the difference in 

alpha power for left minus right attention cues. The expected topography of the MI during the 

preparation interval is evident in panel (D) for typically developing (TD) boys, a relative decrease in 

alpha power for contralateral cues (attended) and increase for ipsilateral cues (ignored). This effect 

was significantly attenuated in boys with ADHD. Figure reproduced with permission from (61). In 

both (A) and (B), ITI is intertrial interval. 

 

Figure 3. Candidate neural mechanisms of alpha modulation include thalamo-occipital and 

fronto-parietal interactions. (A) Modulation of alpha in occipital cortex is likely the result of one of 

three pathways: bidirectional interactions between occipital cortex and thalamus (Direct Thalamic 

Pathways), or fronto-parietal interactions exerting top-down influence over occipital activities either 

via thalamus (Thalamus-Mediated Pathway) or directly (Direct Prefrontal Pathway) via the superior 

longitudinal fasiculus. (B) Results from a small (n=21) concurrent EEG-fMRI study (121) indicates 

that alpha ERD in the encoding phase of a spatial working memory trial (c.f., Fig. 2ac) is correlated 

with both increases in occipital cortex activation and strengthening of functional connectivity between 

occipital cortex and fronto-parietal regions that include frontal pole, inferior frontal gyrus, post-

central sulcus, and, in posterior cortex, intraparietal sulcus and lateral/superior occipital regions. The 

connectivity also included thalamus (not shown). The data thus support the thalamus-mediated and 

direct frontal models. Overlays in this image are regression parameters, with threshold at z>2.0, 

p<0.05 (whole-brain corrected for multiple comparisons using Gaussian random field theory) and 

mapped to the PALS atlas of human cortex, PFC=prefrontal cortex, PPC=posterior parietal cortex, 

Th=thalamus, Occ=occipital cortex, iPS=intraparietal sulcus, iFG=inferior frontal gyrus, FP=frontal 

pole, FEF=frontal eye fields, SLF=superior longitudinal fasiculus. 
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