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Abstract

Electroencephalography (EEG) and magnetoenceplagdbgr (MEG) are non-invasive
neuroimaging techniques that have been used extdyns$d study various resting state and cognitive
processes in the brain. The purpose of this reise highlight a number of recent studies thatehav
investigated the alpha band (8-12 Hz) oscillataryvay present in MEG and EEG, to provide new
insights into the maladaptive network activity urgag attentional impairments in attention-deficit
hyperactivity disorder (ADHD). Studies reviewed derstrate that event-related decrease in alpha is
attenuated during visual selective attention, prilpain ADHD inattentive type, and is often
significantly associated with accuracy and reactione during task performance. Furthermore,
aberrant modulation of alpha activity has been nteploacross development and may have abnormal
or atypical lateralization patterns. Modulationstlie alpha band thus represent a robust, relatively
unexplored putative biomarker of attentional impent in ADHD, a strong prospect for future
studies aimed at examining underlying neural meishaand treatment response among individuals
with ADHD. Potential limitations of its use as aagnostic biomarker and directions for future

research are discussed.
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Over the last decade, cognitive neuroscience hade nmauch gain in understanding the
engagement and interactions of multiple brain ndteahat underlie cognitive processes (1-3).
Electroencephalography (EEG) and magnetoenceplagogi(MEG) are extensively used techniques
that capture, on millisecond time scales, brainillasary activity present in electrophysiological
signals; this allows for the study of cognitive @esses via quantification of brain network
interactions as they occur, ostensibly in real t{ith&). The object of this review is to highligleicent
studies that have used task-related modulatiordpbfa band (8-12 Hz) oscillatory activity to offer
new insights into maladaptive network activity urigiag attentional impairments in attention-
deficit/hyperactivity disorder (ADHD). ADHD is onef the most prevalent disorders in childhood,
affecting an estimated 5-11% of children (8), witimgitudinal studies indicating that 30-70% of
individuals continue to meet diagnostic criteritoiadulthood (9). In addition to highly variabldaes
of diagnostic persistence and treatment resporise, need to further understand the neural
mechanisms underlying ADHD is underscored by exétgnpoor outcomes in adulthood such as
frequent psychiatric co-morbidity, substance abusearceration, divorce, poor health, and high
societal cost ($143-$266B annually; 10). In thigew, we suggest that studies of oscillatory attivi
may address this need. We begin with a historigalhvdew of oscillatory studies in ADHD, then
focus on task-related modulation of alpha bandviagti which have emerged more recently as
promising indicators of the neurophysiological umilenings of the cognitive deficits present in
ADHD. Finally, we discuss oscillatory power as atgmtial biomarker in ADHD and consider
possible directions, and challenges, for futureaesh.

Resting State EEG and ADHD. There is a long history of EEG studies in ADHDthathe
first study of resting state brain oscillations dhildren with behavioral problems consistent with
ADHD reported in 1938 by Jasper et al (11). Théiestrobservations were described as frontocentral
“slowing” in the EEG of affected children (11), whi means an increase in the power expressed
within slower frequency oscillations (theta banel #ertz [Hz]) over frontal and central scalp (12,
13). This led to a sustained (40-years and coubtifagus of research on elevated theta power
(“slowing” of brain activity) and diminished power “faster” frequencies (i.e., beta band, 13-25,Hz)

as well as the corresponding ratio of theta- t@abetnd power, also known as the theta to beta ratio
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(TBR) (14). Efforts to validate the TBR as a biokwarof ADHD diagnosis seemed promising until
fairly recently (pre-2010). Previous research stadand meta-analysis of the TBR reported high
accuracy (89%; 15, 16) and large effect size (EB=B3) for ADHD diagnosis. However, recent
independent replication studies and meta-analysis2() reported low accuracy (range: 38 to 63%;
22) and significant heterogeneity among study tesaliggesting that even though the overall ES of
0.62 is significant for ADHD diagnosis, it is mialding and potentially an overestimation of the true
ES (23). While a sufficient number of individualsttwADHD (20-30%) have elevated TBR, which
drives a significant group effect, the TBR is natadid discriminator of ADHD diagnosis.

Findings for alpha band spectral power at restiiH® have been mixed and may depend on
developmental level, ADHD subtype, and psychiatemorbidities. Overall, higher levels (21, 24-
26), no significant differences (27-31), and lowarels (30, 32-39) of alpha spectral power between
samples with and without ADHD have been reportedwdver, no clear pattern has emerged
according to age or ADHD subtype, the latter ofakhis not often reported. Recent studies suggest
significant heterogeneity in resting state EEG spépower characteristics within ADHD (36, 40)
and at the population level (41) (see Fig. lajtifesmore, while spectral power is the predominant
metric used to reflect alpha band activity, there @ther measures that have been reported such as
power density, mean frequency, peak frequency,reolce, and laterality (see Table 1 for summary
and definitions). While the plurality of results yneeflect poor control over what participants are
actually doing during ‘resting’ state, this alsoggests that there may not be a resting state
electrophysiological profile that accurately distinates between those with and without ADHD. The
purpose of the present paper is to suggest that &8BG/MEG signals, and in particular task-related
suppression of alpha-band activity, may provide @arfruitful avenue for future research. These
effects are more closely tied to specific neuratems and to cognitive functions, such as attention
and working memory.

Insert Figure 1 & Table 1 here

Task-related Modulation of Alpha Power. The observation of a coupling between the

power of oscillations in electrophysiological sigpand cognitive processing was first reported by

Hans Berger (42). He noted 8-12 Hz oscillationpha) in patients, resting with eyes closed, that



laetowicz 5

disappeared when the eyes were opened, a phenotaeeioreferred to as alpha “blocking”. In 1934,
Adrian & Matthews (43) reported that while alphangeation is most strongly modulated by visual
inputs (and was abolished by blindness), it is fideed with cognitive processing of visual inpubs,
attention. For instance, they noted that alphae@m®ed in the presence of light when the participant
was not expecting to see a stimulus, and, conwgrgat attenuated when the eyes were closed but
the subject was mentally searching for somethirase on these findings, alpha oscillations were
thought to represent the brain in an “idling” stédd), a view that has now been replaced by the
consensus that alpha oscillations functionally bithispecific regions, which serves to route
information by blocking task-irrelevant pathways 45-47). This has been demonstrated in a variety
of experiments of attention and working memory, asthg a spectrum of methods including MEG,
spike-field animal data, concurrent EEG-fMRI, aneuromodulation. For instance, anticipation of
visual targets decreases visual cortex alpha #&ctiwhereas anticipation of visual distractors
increases it (48-50). Similarly, alpha-band acyivitcreases with attention and working memory load
to selectively suppress external inputs and tasghewant information (51-55). In sum, the picture
emerging is that alpha oscillations are associatéld top-down executive control in attention and
working memory tasks by selectively inhibiting (whalpha increases) or disinhibiting (when alpha
decreases) specific brain regions (i.e., serviggtang function in the visual cortex; (46, 53, 58).
Given that children with ADHD have problems in teafomains, it is natural to examine if they also
have reduced abilities to modulate their alphallesicins.

Across several types of attention and working mgnigpe tasks (Fig. 2ab), differences
between children with ADHD and controls have bedseoved in modulation of alpha band
oscillatory power. For example, within a spatialrikwng memory (SWM) delayed match-to-sample
task (Fig. 2a), robust ADHD (54) diagnostic grodfeets were observed during the encoding phase
of the task when compared to typically developifi@) controls (Fig. 2c). During this encoding
phase, control children showed an event-relatecedse (ERD) in alpha band power, consistent with
increased attention to and processing of the visyaits. In children with ADHD, however, the alpha
ERD during encoding was attenuated (Cohe8.79), which occurred primarily at low load rather

than high load, was more prominent among youngidreim (7-10 years) versus older children (11-
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14 years) with ADHD, and was predictive of taskfpenance. This finding is broadly consistent with
reports by Mazaheri et al. (58, 59), who, usingssrmodal attention and flanker tasks, also found
attenuated alpha ERD in ADHD (Fig 2e). The alphd®HERding was significant after an informative
(‘response preparation’) cue but not after a nulke dsuggesting a tight coupling to attentional
processes) and was associated with reaction timefibeamong TD children but not those with
ADHD (59). In visuospatial attention paradigms (§Blg. 2b), alpha ERD arises as a lateralization
effect, where alpha power decreases over the hbersontralateral to the attended visual hemifield
relative to alpha power increases over the ipsdteemisphere. Using this paradigm, Vollebregilet
(61) observed that boys with ADHD were unable tadoiate lateralized alpha in posterior regions
when compared to typically developing peers (Fid), Zhowever, alpha lateralization was not
associated to performance in either group. In dystof lateralized activity in the motor cortex,
Yordanova et al (62) reported exaggerated suppresdialpha activity over sensorimotor cortex (i.e.
mu wave) in response to non-attended (distractbmusi, potentially an indicator of enhanced
processing of distractors and deficient inhibitafrmotor cortical networks. Attenuated lateraligati

of alpha may be indicative of inappropriate allamatof attention between attended and ignored
streams of inputs. Finally, Heinrich (63) reportbjher alpha power (which likely represents
attenuated alpha ERD) during attention network wefments without stimulus processing or overt
behavior among children with ADHD compared to colstr consistent with poor attentional
allocation during the task.

We note that alpha ERD group differences seem t@dseciated primarily with ADHD
inattentive symptoms. Lenartowicz et al (54) repdrta correlation between alpha ERD and
inattentive symptoms (p=0.008), but less so forengptive symptoms (p=0.08). In the Mazaheri et al
(59) study, alpha ERD was attenuated among adoltsogith Inattentive Type but not with
Combined Type ADHD (see Fig. 2e). Similarly, al@fRD deficits were not observed by Gomarus et
al (64) during a visual selective memory task whbeeADHD sample was characterized primarily by
hyperactive-impulsive behaviors. Overall, alpha ERDattenuated primarily in ADHD inattentive
type, consistent with ineffective selective attentito visual inputs, and is often associated with

poorer task performance (accuracy, reaction tinmreaction time variability).
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Insert Figure 2 here

Aberrant alpha modulation has also been consigtemiterved in studies examining adults
with ADHD during attentional tasks. While performgira flanker task, posterior alpha ERD was
significantly attenuated among adults with ADHD idgrvisuospatial orienting (65). During stimulus
processing in a N-back working memory task, adwith ADHD exhibited reduced alpha ERD in
frontal channels relative to controls. Attenuatfigha ERD was particularly pronounced during the
low versus high load condition (66), an interactibat was also present in the SWM study with
children (c.f., Fig. 2¢) (54). This suggests tha¢rmant alpha modulation may interact with sluggish
recruitment of attention or maintenance of vigilenahich is more difficult in easier task conditson
Finally, MEG studies have found that adults with AD also have difficulty sustaining posterior
hemispheric alpha lateralization during visuospatitention (c.f., Fig 2b) in the period betweee th
cue and target, particularly when attending to lgfé visual hemifield (67). A follow up study
revealed a similar deficit in alpha power obseres@r sensorimotor cortex (i.e., mu wave) (68).
Coupled with behavioral performance results, tha@rs suggested that adults with ADHD have an
attention bias to the right visual field, which heeen linked not only to ADHD severity but alsoeath
ADHD risk factors such as gender, handedness, andtig factors (69). Collectively, adult ADHD
studies are consistent with effects observed ildi@m and support the notion of continued defirits
the ability to modulate alpha power across develmmwith a potential rightward bias in alpha
power.

Neural mechanisms underlying alpha oscillatory activity. A mechanistic understanding of
alpha oscillations has clear implications for tleairal circuitry underlying deficient attention croit
in ADHD. Seminalin vivo (70, 71) andn vitro (72-74) experiments of thalamic alpha, and studfes
occipital alpha (75-77) in the dog have identifeedircuit between excitatory thalamocortical cells
and inhibitory reticular neurons that generatedalpscillations in thalamocortical neurons via a
feedback loop between excitation and inhibition, (78). These studies were initially interpreted as
supporting the hypothesis that alpha oscillatiomsenindicative of the brain in an idling state (80)
This is because the thalamic generator of alphdefgendent on decreasing arousal (79, 81, 82),

whereby ascending cholinergic projections “deinetg” (i.e., inactivation gate reopens and
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activation gate closes) low-threshold?Cahannels, which reduces the reactivity of coreinputs
(83-85). And while alpha oscillations are typicalyrongest over occipital cortex, they are also
detectable in sensorimotor (the “mu” wave) and terap cortices (the “tau” wave) (86-89),
supporting a general mechanism by which sensorgegging is gated by the thalamus. Hence, core
thalamo-cortical interactions may play an importesie in the aberrant alpha patterns observed in
ADHD at rest. It is noteworthy that the dependenté¢halamic generators of alpha on decreasing
arousal is reminiscent of and consistent with estgrglow-arousal) models of ADHD etiology (90).
However, given a lack of consistency in group défeces in alpha during rest, further research is
warranted to establish if links exist between alghaerating thalamo-cortical interactions, alpha at
rest and ADHD diagnosis.

In addition to the thalamo-cortical mechanisms, thedulation of alpha during task is
thought to represent fronto-parietal interactionasimg activity in occipital cortex in line with
attentional goals. This idea is supported by: éprdings in (primarily) primate occipital cortek o
alpha generators in deep layers (which receivatsfstom cortical regions other than thalamus) (91-
93); (b) intracranial and MEG recordings, and Geancausality modeling showing that alpha (and
beta) range oscillations carry feedback informaffom higher-order association areas (in contm@ast t
>30Hz gamma oscillations, most prominent in supgffi layers and carrying feedforward
information) (94-99); and (c) disruption of fronfadrietal activities by transcranial magnetic
stimulation that compromises performance and alpbdulation during visual attention (83, 100-
102). Attenuated alpha ERD in ADHD is thereforakaly indicator of weakened attention control
and, given prior association of fronto-parietalcuitry with alpha power (103-106), it predicts
weakened interactions between the fronto-parietlwvork and occipital cortex during tasks.
Consistent with this prediction, alpha ERD impaintsedo not appear to indicate an impairment with
basic sensory processing as alpha ERD is indepemdgrerceptual processing (53); it can occur
before (101, 107, 108) or after (109) the stimulrgj can be absent during a stimulus when no post-
perceptual processing is required (110).

Insert Figure 3 here

It is an outstanding question whether thalamus )(bi fronto-parietal interactions via either
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the thalamus and/or the superior longitudinal fadcis (112) (Fig. 3a), are critical in generatihg t
aberrant alpha patterns in ADHD. A thalamic impa&nihcan certainly account for ineffective fronto-
parietal activities (e.g., contributing to poor l#pERD) because the thalamus (in particular the
pulvinar nuclei) displays attentional modulatiograils and has been shown to drive alpha synchrony
in primate occipital cortex during attentional sd¢ilen (113, 114). It may thus be a mediating stitect
for fronto-parietal top-down control. In turn, thelationship between thalamic generators of alpha
and ascending cholinergic projections (79, 81,iBRlies that faulty arousal regulation could impact
both thalamic and fronto-parietal activities. Inisteworthy that these alternatives are analogatis w
(i.e., capture the same circuits as) existing npdthway models of ADHD (e.g., 115). Further
research into the mechanisms of alpha generatiosusemodulation will be imperative in
distinguishing the critical pathways behind botpha (and related behavioral) deficits in ADHD, and
thereby informing existing models. Increasingly mprsing are multimodal approaches such as
concurrent EEG-fMRI, which has been fruitful in nimvasively confirming the associations between
alpha power and thalamic, occipital and fronto-g@iti activities (103-106, 116-122). Extensions of
such approaches to map the functional connectioftyalpha in ADHD (123, 124) may prove
particularly revealing. Indeed, a recent study usedcurrent EEG-fMRI recordings during SWM
(Fig. 2a) in a small sample of adolescent boys witd without ADHD (N=30, 15 ADHD; 121).
Overall, alpha ERD during SWM encoding was assediatith occipital activation and fronto-
parieto-occipital functional connectivity (Fig. 3byith the latter predicting ADHD symptoms and
response variability. The degree to which these dulostrates were recruited differed by diagnosis,
with greater occipital activation in controls andegter fronto-parieto-occipital connectivity in
ADHD. The finding is consistent with the pattern refsults in the larger EEG-only sample (54),
namely that ADHD participants had to work hardardgugh recruitment of executive function fronto-
parietal mechanisms) to compensate for a poor hédtention response.

Oscillations as biomarkers of ADHD. Can measures of alpha oscillations serve as a
biomarker of ADHD? Given the large effect sizesgobup differences in alpha modulation, and
clearly defined mechanistic targets, it seems tisvar ought to be yes. However, large effect sizes

are not sufficient to define a biomarker, which iiddally needs to show reliability as well as both



laetowicz 10

sensitivity (ability to detect the disorder) andesificity (ability to discriminate between disordgr
Less commonly reported alpha measures such aaliasion, coherence, and mean/peak frequency
have not been well studied with respect to relighihowever, several previous studies indicatéhig
within-subject reliability of alpha ERD. Neuperadt(125) (n=29, 18-45 years) reporte@nbach’s
alpha>0.85 andr(27)>0.7 test-retest reliability of alpha ERD (up to 107 slapart) during numerical
processing (125). Similar results were reportedrdésting state alpha power by Tenke et al (126), in
39 adults (18-65 years), test-retest reliability0oB4 recorded 5-16 days apart, and by McEvoy et al
(127) (n=20, 18-29 years), test-retest correlati®rB in psychomotor vigilance task and >0.9 in a
Sternberg working memory task, recorded 7 daystajapressively, Napflin, Wildi and Sarnthein
evaluated both resting state alpha (128) and d@itfa in a modified Sternberg working-memory task
(129) in test-retest sessions 12-40 months apaB5n19-79 years). They were able to predict if the
oscillatory metrics came from within the same sobjer from different subjects with a sensitivity
over 87% and specificity over 99%. Thus, we cawdiplconclude that alpha ERD is a reliable
signature within individual, an important propefty a biomarker, though it is notable that all of
these studies were performed in adults and magearalize to children.

However, the sensitivity and specificity of alphRIE are questionable, and we suggest that
alpha ERD, like its theta-beta ratio predecessanpt likely to provide a reliable biomarker of ADH
diagnosis. The reason for this conclusion liesha tlinical (130), mechanistic (131, 132), and
etiologic (133) heterogeneity of the disorder, whilikely degrades the reliability of putative
biomarkers of ADHD. For example, the ADHD 200 comipen, which challenged scientists to
develop diagnostic group classifiers for ADHD basadover 700 MRI datasets, had accuracy rates
ranging from 43% to 62% (mean 56%), with the higipesdiction accuracy of 62.5% coming from a
prediction model that did not include any imagirgedat all (134).

Several EEG/ERP studies have had more success mmiltiyariate EEG profiles, (~90%,
e.g., 135, 136, 137) but the high accuracy resétpiire further validation because of potential
statistical model overfitting. This is because itfier small sample size precluding ability to sptie
data into independent training and testing sets @2 per group; 135, 136, 138, 139), or the common

practice of selecting classification features frima same dataset that is subsequently used for the
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classification (i.e., artificially inflating diagmstic classification accuracy) (140). For instarinegwo
large-sample EEG studies, Mueller et al (141) resubdiagnostic classification accuracy of 92%
(n=150), and Tenev et al (142) reported an accusdd2% (n=112), but in both cases the features
used for the classification were those that werestnaiscriminant in the sample, thus creating
circularity in the analysis (critique also applteshe findings of Hammer et al (143) who cited592.
classification based on fMRI data). Notably, in imdependent validation sample of 17 adults,
Mueller et al (137) reported an impressive accur@ic94%, yet because the validation sample was
comprised of only individuals with ADHD, it is impsible to assess whether the classifier was
inaccurately labeling all new data as ADHD (i.@edficity). Moreover, across the studies, thera is
lack of consistency in the features that are méisceve in diagnostic classification (i.e., in EEG
studies: TBR, absolute or relative power withinisas frequency bands, fractal measures, and event-
related potential components (22)). We may theeefoonclude that past classification efforts,
including those using theta-beta ratio, have netdgd reliable diagnostic classification results, a
finding that is not surprising if we consider thistdbution overlap in EEG features across groups
(e.g., Fig. 1b for alpha ERD).

It may be a more useful exercise to consider thgnmstic utility of alpha oscillatory effects
as a biomarker of a cognitive process (and assatciatural circuits), developmental outcomes, or
treatment response rather than diagnosis. As momdously, attenuated alpha ERD was associated
with inattentive symptoms (54) and subtype of ADKEB, 144) and much less so with the ADHD
combined subtype (64, 144). Moreover, strongeralgRD is predictive of better task performance
both in studies of ADHD (54, 144) and otherwisethmélpha power predicting success of visual
discrimination (108), errors on no-go trials (14#)d successful inhibition of distractor items dgrin
working memory (146). Alpha oscillations may theref be considered a putative predictor of visual
attention processes and related behavioral outcdméise context of ADHD, this may translate into
prediction of inattentive symptoms and how they nshgnge with development or in response to
treatment. The practical significance lies in th@rgy relationship between attention processes and
real-life outcomes. We know that working memoryidié&f can have significant effects on academic

achievement, educational attainment (repeating adegr special education classes, learning
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disabilities) and 1Q (147), which contribute sigoéntly to occupational, academic, and social
functioning in adulthood. Furthermore, the demaatstt population-level heterogeneity in alpha band
activity (40, 41) may be framed as a potential athge of EEG based-measures, if it reveals
neurophysiologically distinct clusters. If so, apbuppression may potentially be used not only as a
measure of treatment response but also a predittwhich treatment may be effective for a given
individual.

Conclusions, challenges and future directions. EEG and MEG oscillatory activity have
long been used to quantify neural mechanisms andonle interactions underlying cognitive
processes such as attention. Alpha ERD appears #orbbust, yet relatively unexplored (in ADHD)
putative biomarker of attentional impairment thabsequently impacts performance on WM and
other executive function tasks. Despite its postntiility, there remain a number of challengeshia
interpretation of alpha that need to be addredSest, the group differences in alpha ERD that we
have described require replication in larger sag)plmder identical task conditions. For instance,
while attenuation of alpha suppression during SWidoeling and attenuation of alpha lateralization
in ADHD are hypothesized to stem from similar methms, a study comparing the paradigms (and
alpha measures) within the same population wouldinsguctive. Similarly, while most group
differences have been reported over occipital eldes/cortex (Table 1), some group effects have
also been reported over frontal electrodes andier ensorimotor cortex. It is not currently knoivn
these alpha measures in various regions repregésitedt or overlapping mechanisms. Moreover,
effects of pre-stimulus alpha on group differencealpha modulation have not been systematically
considered and likely introduce another sourceanfability (e.g., pre-stimulus alpha differencesave
present in (63) but not (54). Finally, it is noeat if alpha suppression deficit reflects a fundatale
dysfunction in associated circuitry or if this is@wnstream effect (e.g., a problem with arousal).

In addition, more work is needed to address cliréoarelates associated with alpha ERD. In
terms of inattention symptoms, it would be importém understand whether alpha ERD indexes
specific types of inattention, such as distradtipila lack of vigilance, or daydreaming. More
specificity with respect to which inattention sympis are represented by alpha ERD may support its

use as a biomarker of treatment response or davelmjal outcomes. Such specificity would also be
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instructive in interpreting deficits in alpha modtibn in other disorders (e.g., alpha suppression
impairment during working memory in patients witthezophrenia (148) and, in a visual attention
task among those with autism (149). Finally, furthesearch is critical to ascertain whether alpha
ERD is indeed predictive of clinical features tygig associated with working memory deficits. If, so
the association could potentially reveal sharedralemechanisms underlying inattention and
academic achievement, or, identify risk for higlely-morbid diagnoses such as learning disability
among children with ADHD. Remaining challenges nttstanding, the promising research findings
described herein suggest that alpha ERD is a stpoogpect for future studies aimed at examining

underlying neural mechanisms and putative biomarkEADHD.
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N
First Author Year | (ADHD, ége Task I;re%uency Measure | Region Alphain ADHD
Con) rp and (Hz)
Resting State
. CH, CH: higher pow; AD:
Poil (20) 2014 | 48,68 AD EC 8-13 S, MF F, FIP lower ME
Koehler (25) | 2009 | 34,34 AD EC 7.5-12.5 PD C,P Higher PD
Bresnahan (23)| 2002 | 50, 100 | AD EO 8-12 S P Higher pow
S Coh Higher pow w/ 1. norma
Chabot (24) | 1996 | 407,310 | CH EC 8-12 ' ' F,C | MF (46%), 2. lower MF
MF
(30%)
van Donaen- ND in pow or PF.
9 2010 24, 24 AD | EO, EC 8-12 S, PF P Greater decrease from
Boomsma (30)
EC to EO.
Bresnahan (27)| 2006 | 50,50 | AD EO 8-12 S - ND
Hermens (28) | 2004| 36,36 | AD EC 8-12 S - ND
Bresnahan (26)| 1999 | 75,75 ig EO 8-12 S - ND
Pomoerov (38)| 2014 | 96,376 | AD | EO, EC 8-12 S F, C Lower pow
Woltering (37) | 2012 18, 17 AD | EO, EC 8-12 S F,C P Lower pow
Barry (31) 2009 | 30,30 CH EC 8-12 S G Lower pow
Magee (35) | 2005| 253,67 | CH EC 8-12 S F, P Lower pow
Low pow in boys and
Clarke (32) 2001 | 160,80 | CH EC 8-12 S P older CH, ND is girls
and younger CH
. EO, i Lower pow resting,
Nazari (36) 2011| 16,16 CH CPT 8-12 S G higher pow CPT
CH EO, Lower pow in adults
Loo (29) 2010 | 384,147 AD’ EC, 8-12 S P ADHD-C vs ADHD-I &
CPT Cons. CH: ND
EO,EC, Lower pow all
Loo (34) 2009 | 38,42 | AD CPT 8-12 S F.P conditions
EO, Lower pow all
El Sayed (33) | 2002| 36, 63 CH CPT 8-12.5 S G conditions
EC, 8-10, 10- Greater R lat all
Hale (68) 2009| 29,62 | AD CPT 12 Lat P conditions
Baving (150) | 1999| 47,70 | CH | EO 8-10 Lat F | Creater Rg'if‘lts'boys' Llat
Task
Le”?gg;w'cz 2016| 8,13 | CH | SWM | 8-12 | ERD/ERI Less ERD
Hasler (64) 2016| 21,20 AD | Flanker 8-13 ERD/ERI Less ERD to cue/target
Le”&gg‘)’v'cz 2014| 52,47 | CH | SWM | 812 | ERD/ERI Less ERD for LL, not
. Cued ERD/ERI, Less ERD in ADHD-I;
Mazaheri (58) | 2014 | 34,23 CH flanker 8-12 CP P weak CP with frontal TH
. . Less ERD then higher
Missonnier (65)| 2013 15,15 AD | N-back 9-15 ERD/ERI F ERI, esp LL vs HL
EC, ERD/ERI Greater ERD in left MC
Yordanova (61)| 2013 14,14 CH | aud sel 8-12 S | MC to non-target; Resting:
attn ND
. Cued ERD/ERI, Less ERD in ADHD; no
Mazaheri (57) | 2010| 14,11 CH vis attn 8-12 CP P FP CP
Gomarus (63) | 2009 | 1215 15| ¢y | ViSsel [ g5 | ERpERI ND in ERD; ADHD Is
PDD mem Hyp/Imp type
Heinrich (62) | 2014 | 24,19 CH | Flanker| 7.5-12.5 S Higher pow on no cue
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trials
ter Huurne (67)| 2017| 17,18 | AD | VSatin|  8-12 Lat MC MEG. No typical
lateralization
Vollebregt (60) | 2016| 30,30 | CH | VSattn|  8-12 Lat p MEG. No typical
lateralization
ter Huurne (66)| 2013| 17,18 | AD | VS 9-12 Lat p MEG. Initial lat not
atten sustained

Note All studies are EEG results unless noted. ADHDOeAtion-deficit hyperactivity disorder; ADHD-I=Ingntive;
ADHD-C=Combined; Hyp/Imp=Hyperactive/ Impulsive; &Gecontrol; Grp=group; Hz=hertz; CH=child; AD=adult;
EC=eyes closed; EO=eyes open; CPT=continuous pesftce test; SWM=spatial working memory; Aud=augitor
Vis=visual; VS=visual-spatial; sel=selective; atttention; S=spectrum (power); MF=mean frequeney frequency
above and below which half the alpha band powes);liED=power density; Coh=coherence (i.e., cornedpnce of
alpha phase or magnitude between two channelgymn®); PF=peak frequency (i.e., frequency betw&d42 Hz with
the highest power); Lat=laterality (i.e., power felitnce between hemispheres); ERD=event relatedeass;
ERI=event related increase; CP=coupling; F=FrontakCentral; P=Posterior; MC=motor cortex; G=Glgbal
Pow=power; ND=No difference; R=right; L=left; LLal® load; HL=high load, TH=theta;
MEG=Magnetoencephalography
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Figurelegends

Figure 1. Heterogeneity within and between groups limits potential of existing EEG metrics as
biomarkers of ADHD. (A) Population-level EEG heterogeneity is evidanthe presence of five
clusters within both ADHD and typically developiGfD) control groups. Each cluster is defined by
elevations in oscillatory power within a frequermand (delta 1-3 Hertz [Hz] theta, 4-7 Hz, alpha 8-
12 Hz, beta 13-20 Hz) and no spectral elevationH)lSThere is no cluster or spectral power profile
characteristic of either ADHD or TD group, suggegtresting EEG spectral power measures are
insufficient to serve as a biomarker of ADHD. Figueproduced with permission from (41). (B) The
distribution of alpha ERD during the encoding imtdrin Fig. 2c. The image illustrates that ADHD
and TD controls, despite a significant differencgioup mean, have largely overlapping distribigion
of alpha ERD. These data, argue for the unsuitgbdf a single EEG metric as a diagnostic

biomarker of ADHD.

Figure 2. Alpha ERD is attenuated in ADHD during visual attention. In the spatial working
memory task (A) participants encode the spatightion of 1 or 3 (low load) or 5 or 7 (high load)
dots. Following a maintenance interval, they inthdé the probe dot occurs in the same or different
location than any of the stimuli in the encodingnsius. Attenuation of alpha event-related decrease
(ERD) in ADHD was apparent during the 2-sec encgdperiod (C) (relative to pre-stimulus
baseline). This effect was most pronounced at twad lamong children with ADHD (top left). Alpha
ERD plots are calculated from the time-courses sihgle occipitally-distributed (inset) independent
component. Figure reproduced with permission fr&@#).( (E) A similar result was reported by
Mazaheri et al (59), in a cued spatial attentisk.tahttenuation of alpha ERD at electrode Oz in
response to cues (cue duration is 1 s) was morpnzed in ADHD Inattentive Type than ADHD
Combined Type (left panel), relative to TD contrdtigure reproduced with permission from (59). In
the prototypical cued spatial attention task (B)cwe indicates the most likely location of the

upcoming target stimulus (e.qg., left). Followingpeeparation interval, the target appears either on
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right or left, requiring participants to indicat@ avhich side the target appeared. In this paradigm,
alpha ERD is lateralized, greater in the hemispherdralateral to the hemifield indicated by the cu
(attended, e.g., right) than in the hemispherdatesial to the hemifield indicated by the cue (iggdh
e.g., left). The normalized difference can be gifiadtas a modulation index (M), the difference in
alpha power for left minus right attention cues.eTéxpected topography of the MI during the
preparation interval is evident in panel (D) fopigally developing (TD) boys, a relative decrease i
alpha power for contralateral cues (attended) anckase for ipsilateral cues (ignored). This effect
was significantly attenuated in boys with ADHD. &ig reproduced with permission from (6l).

both (A) and (B), ITl is intertrial interval.

Figure 3. Candidate neural mechanisms of alpha modulation include thalamo-occipital and
fronto-parietal interactions. (A) Modulation of alpha in occipital cortex is &k the result of one of
three pathways: bidirectional interactions betweenipital cortex and thalamus (Direct Thalamic
Pathways), or fronto-parietal interactions exertiog-down influence over occipital activities eithe
via thalamus (Thalamus-Mediated Pathway) or diye@@irect Prefrontal Pathway) via the superior
longitudinal fasiculus. (B) Results from a smalE21i) concurrent EEG-fMRI study (121) indicates
that alpha ERD in the encoding phase of a spatekiwg memory trial (c.f., Fig. 2ac) is correlated
with both increases in occipital cortex activatamd strengthening of functional connectivity betwee
occipital cortex and fronto-parietal regions thatlude frontal pole, inferior frontal gyrus, post-
central sulcus, and, in posterior cortex, intragtafisulcus and lateral/superior occipital regioiise
connectivity also included thalamus (not shown)e Hata thus support the thalamus-mediated and
direct frontal models. Overlays in this image aegression parameters, with threshold at z>2.0,
p<0.05 (whole-brain corrected for multiple companis using Gaussian random field theory) and
mapped to the PALS atlas of human cortex, PFC=pmédf cortex, PPC=posterior parietal cortex,
Th=thalamus, Occ=occipital cortex, iPS=intrapatistsicus, iFG=inferior frontal gyrus, FP=frontal

pole, FEF=frontal eye fields, SLF=superior longihad fasiculus.
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