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Graphical abstract 

 

Abstract: Adhesion between blank and die is the main reason for seizure and short tooling life during 

metal forming processes at elevated temperatures. This study applied novel complex-structured 

composite coatings, NC/NiBN and NC/WC:C, to the hot forming die flange and radius to reduce the 

use of lubricant. The high-temperature adhesion resistance and hot forming properties of the hybrid 

coated dies were tested and correlated with the microstructure and mechanical properties of the 
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contacted blank/tool surfaces. The results show that the coated dies experienced little adhesion at 

elevated temperatures, consequently, ultra-low coefficients of friction of 0.11 against steel and 0.10 

against Al at 350 °C were obtained. The minimum weight of lubricant per unit area required for a 

successful deep drawing of AA6082 was quantified by hot forming tests at various temperatures, and 

it was reduced by 83% at 400 °C. Complete lubricant-free deep drawing was achieved with limited 

blankholding force and forming temperature. Based on this experimental data and theoretical 

analysis of two disparate stress states, a model comparing the frictional state of material surfaces 

using the geometric features on formed parts is proposed. 

Keywords: Tool coating, Dry machining, Adhesion, Aluminium alloy 
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 Introductionb 

Hot stamping of lightweight high-strength materials such as aluminium alloys for the manufacture of 

panel components is an effective technology for reducing gas emissions in the automotive industry 

(Mohamed et al., 2012). In order to overcome the poor ductility of aluminium and magnesium alloys, 

a novel hot stamping process, named “Solution Heat treatment, cold die Forming and Quenching 

(HFQ®)” patented by Lin et al. (2008), allows the mass-production of complex-shaped high strength 

aluminium alloy components. During HFQ® forming, the initial blank is solution heat treated to 

                                                                 

 

b Abbreviations 

ASPN active screen plasma nitriding 

ASPNC active screen plasma nitrocarburising 

BHF blankholding force 

CoF coefficient of friction 

CoFM mean coefficient of friction 

DLC diamond-Like carbon  

EDS energy dispersive spectroscopy 

FIB focused ion beam 

HFQ® solution heat treatment, cold die forming and quenching  

NiBN boron nitride doped nickel 

PN plasma nitriding 

PNC plasma nitrocarburising 

PVD physical vapour deposition 

SEM scanning electron microscope 

SD standard deviations 

WC:C tungsten doped carbon 
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dissolve the original precipitates, and then quickly transferred to the cold dies, formed and in-die 

quenched to low temperatures. Zheng et al. (2017) numerically determined the complex distribution 

of temperature on die flanges and corners of different textured drawing dies, and proposed that in 

comparison with conventional cold stamping process, stamping dies used for the hot stamping 

aluminium alloys face stringent requirements. They are: (1) low friction at elevated temperatures; (2) 

wear-resistant particularly against the soft and chemically reactive aluminium alloys; (3) good in-die 

quenching performance. To this end, high-temperature lubricant is indispensable to meet these 

requirements. However, pre-brushing and post-cleaning of lubricant increased the processing time 

and the total manufacturing cost.  

 

Fig. 1. (a) Illustration of material adhesion between blank and forming die, (b) extracted adhesion area in purple 

and (c) top view of a used die showing aluminium adhesion area near the built-up edge (d) measured 

temperatures of blank and die surfaces during HFQ® cup forming. 

Environmentally friendly lubricant-free or near-lubricant-free forming is attractive to the large 

volume mass-production. However, a review by Karbasian and Tekkaya (2010) pointed out that it is 
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challenging to reduce the usage of lubricant because of the risk of severe adhesive wear during the 

dry stamping process. Diffusion of metal elements from the stressed blank to the die surface affects 

not only the tool service life, but equally importantly the metal flow behaviours of sheet materials. 

Fig. 1 illustrates the die/blank geometry and temperature variations during an HFQ® process. During 

hot stamping, the most severe tool failures, such as wear and galling, are experienced often in the 

flange area due to the high temperature and high-stress working conditions. Excessive friction in the 

flange area may constrain material flow and result in tearing at the die entrance and over-thinning of 

the side wall areas.  

Since the adhesive wear takes place at the blank/tool interface, some adaptive lubricious coatings 

were deposited on the tool surface to address this problem. Diamond-like carbon (DLC) and nano-C 

thin films deposited using PVD or plasma deposition technologies are the most studied anti-adhesive 

coating systems for machining tools. Carlsson and Olsson (2006) have investigated the anti-galling 

properties of DLC coating sliding against Zn-coated steel, and found that it exhibited excellent 

protection against the material pick-up. Murakawa and Takeuchi (2003) applied DLC to the 

aluminium forming and confirmed the reducing of aluminium adhesion during forming and the 

reduction of coefficient of friction (CoF) to 0.2. The applications of DLC coatings have been extended 

to many machining processes, such as drilling (Bhowmick and Alpas, 2008) and cutting (Fukui et al., 

2004), all of which involve testing aluminium adhesion under high-stress sliding contact. Hence, 

these results are good references for the evaluation of tooling performance in this study. 

In spite of excellent properties of DLC coated surfaces at room temperature, DLC coating has a poor 

tribological performance at temperatures above 300 °C, which inhibited their applications for the hot 

stamping conditions. Dong et al. (2017) found that dry forming of Al-Mg-Si sheet using the DLC 

coated top-hat part drawing tools become susceptible to adhesion on the die radius at 350 °C. 

Therefore, in this study, a coating system ingrained with elements that have phase transformations 
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to lubricious oxides at elevated temperatures, such as tungsten (W), was applied rather than 

searching for a thermally stable coating. In addition, Dong et al. (2015) found that the loading 

capacity of a coating can be increased by inserting a strong underlayer, such as nitrocarburising (NC) 

case, between the coating and substrate.  

In this research, a hybrid composite coating system NC/X were designed for hot forming dies by 

combining a lubricious composite top coating (X) with a nitrocarburised deep case via plasma 

nitrocarburising , aiming for the maximised mechanical support and lubricity at high temperatures. 

The hot forming performance of NC/X coated dies was assessed using a deep-drawn top-hat 

apparatus under the HFQ® conditions. The frictional properties of NC/X hybrid coating against steels 

and aluminium at elevated temperatures were comprehensively analysed, and the mechanism of 

solid lubricity at the coating/blank interface was explored.  

 Material and method 

2.1 Tooling materials and coating technologies 

Gray cast iron (automotive metric standard NAAMS G3500 with nominal composition (wt%, 3.2 C, 

1.2 Si, 0.5 Mn, 0.5 Cr, 0.5Mo, balance Fe) was selected as the die material due to its excellent 

mechanical and thermal properties. Deep drawing tools and test pieces were cast and then stress 

relieved at 690 °C for 2 h, followed by machining, polishing and acetone cleaning prior to treatments. 

To synthesis NC/X composite coating, the two-step surface treatment processes were used 

sequentially: a) active screen plasma nitriding (ASPN) or nitrocarburising (ASPNC) cast iron to 

produce underlayer, followed by b) a carbon or nickel based non-stick composite coating as the 

overlayer. Therefore, the samples can be divided into four groups according to the applied surface 

treatments, with the sample codes, treatment temperature T and time t of each step summarised in 

Table 1. 
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ASPNC was conducted in an industrial scale active screen plasma furnace (Klöckner 40 kW, 

Germany). The setup of ASPNC process can be found in (Dong et al., 2011). The following treatment 

conditions were applied: source electrode voltage of 1200 V, substrate voltage of 300 V, 5% bias on 

the work table, gas mixture of 50% H2 + 48% N2 + 2% CH4, 4 mbar working pressure and 4 h 

treatment duration. In comparison, ASPN was carried out at 525 °C, 24 h with 75% H2 and 25% N2. 

Cleaned by the glow discharge plasma during underlayer treatment, cast iron was subsequently 

deposited with the following overlayer. Boron nitride doped nickel (NiBN) coating was prepared 

using electroless nickel plating, in a bath mixture of 5 vol% Ni component, 15 vol% chelate-reducer 

and 100 g/L hBN dispersion. The tungsten doped carbon (WC:C) coating was synthesised by means of 

cathodic arc enhanced PVD at 200-350 °C. Embedded tungsten was controlled to be amorphous 

(non-crystallites), targeting the most substantial decrease of adhesion and friction coefficient.  

Table 1. Conditions of tooling surface treatments  

  PNC PN NC/NiBN NC/WC:C 

Overlayer 

Process 

-  - 

Ni-BN plating PVD WC:C 

T, °C 88 350 

t, h 1 1.5 

Underlayer 

Process ASPNC ASPN ASPNC ASPNC 

T, °C 575 525 575 575 

t, h 4 24 4 4 

 

2.2 High-temperature adhesion test 

A pin-on-disk circular track tribometer (CSM HT Tribometer) was used to assess the metallic transfer 

at the coating/tool interface at various temperatures (standard ASTM G99). Billur (2010) proposed 

that either pin-on-disc or forming trails can be used for the evaluation of tribology properties of 

tools. In this study, both methods were used to evaluate the tribological performance of the coated 

tools. Pin-on-disc test recorded the CoF and the initiating of adhesion in real-time; forming trials 
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validated the hypothesized performance of selected tools on various forming parameters. The 

detailed set-up of the adhesion test on pin-on-disc was given by Dong et al. (2017). A coated disc was 

firstly heated to target temperature and the aluminium pin was heated through direct contact with 

the coated tools for 15 mins before the test. Untreated G3500, PN, PNC and NC/X coated specimens 

were tested under simulated forming temperatures from 20°C to 450°C, under a Hertzian contact 

pressure of 481 MPa: 200 gf, for 500 cycles. The mechanism of adhesion was analysed on different 

blank materials: hardened steel (100Cr6) and AA 6082-O pins. A new pin was used for each test and 

three repeated tests were carried out in random areas.  

2.3 Hot stamping trials 

The sheet material selected for the top-hat drawing test was the commercial AA6082-T6 (Smiths 

Metal Centres, UK). The chemical composition of AA6082 is given in Table 2. Aluminium alloy sheet 

with the thickness of 1.5 mm was laser cut to a circular shape with a diameter of 170 mm. The test 

piece was then solution heat treated at 535 °C for 2 mins and hot formed at 350 °C, 400 °C and 450 

°C with various blankholding force (BHF). 

Table 2. Material composition of AA6082 sheet 

Element Si Mg Mn Zn Cu Ti Cr Fe Al 

wt % 0.7-1.3 0.6-1.2 0.4-1.0 <0.2 <0.1 <0.1 <0.25 <0.5 Balance 

 

 
Top frame

Die

Blankholder

Punch

Middle frame

Bottom frame

Gas cushion

(a) (b)
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Fig. 2. Materials and experimental set-up of hot forming: (a) deep drawing test-rig and (b) geometry and 

dimensions of tools. 

A cylindrical deep drawing test was utilised to assess the lubrication performances of treated tool 

surfaces under the HFQ® conditions. The emphasis of this study was to validate the formability and 

the frictional states of tools, and quantify the minimum amount of required lubricant. Fig. 2 shows 

the deep drawing test rig, the geometry and dimensions of die, punch and blankholder (Zheng et al., 

2017). The corresponding drawing ratio (𝐷𝑅 = 𝐷𝑏𝑙𝑎𝑛𝑘 𝐷𝑝𝑢𝑛𝑐ℎ⁄ ) was 1.7, where 𝐷𝑏𝑙𝑎𝑛𝑘  and 𝐷𝑝𝑢𝑛𝑐ℎ  

represent blank and punch diameter respectively. A graphite-based water-soluble lubricant was 

applied between the blank/tool interface and the applied weight was precisely measured to 0.01 g 

by a digital balance. The minimum amount of lubricant was tested using the method of conceptual 

binary search. The reference amount of lubricant at fully lubricated condition is divided into several 

search spaces, and for each trial, it halves the search space until after at most 4 steps the 

approximate match of minimum lubricant range is obtained. Then, the upper value in this range is 

reported due to a limited number of trials the experiments can implement. Finally, the value of 

lubrication condition on the duplex surface treated tool surface was reflected by the surface 

lubricant density defined in Eq. (1). 

𝐷𝑙 = 𝑚𝑙 𝐴⁄                                                                                   (1) 

Where 𝑚𝑙 represents the weight of used lubricant, and 𝐴 represents the lubricant applied area 

(199 cm2) between test-piece material and surface treated tool. 

2.4 Confocal topography and interface analysis 

In order to analyse the mechanism of adhesion at the blank/tool interface, the morphology and 

chemical composition of coated tool before and after adhesion test were analysed by a field-
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emission scanning electron microscope (SEM, JEOL 7000), equipped with an energy dispersive 

spectroscopy (EDS, Oxford Instrument). Three-dimensional post-test topography was measured in 

the contact area using a confocal optical microscopy (Olympus Lext OLS300).  In addition, the 

mechanical properties of tooling and blank materials before and after adhesion tests were carried 

out on the polished samples using a nanoindentation (Micro Materials Ltd). The nanoindentation 

measurement was performed in the load-control mode with a maximum load of 50 mN at a constant 

loading/unloading speed of 0.5 mN/s. Ten indentations were performed to verify the accuracy and 

scatter of the indentation data. In addition, a site-specific sample extracted for microanalysis inside 

the adhesion area was prepared using a dual beam FEI Quanta 3D FEG focused ion beam (FIB) 

technique, which cut to the accuracy of sub-micrometres by the focused Ga+ irons. A 30 x 3 μm 

surface of the wear track was firstly coated with 3 μm Pt coating to prevent contamination, and then 

ion beam milled perpendicular to the sliding direction of the wear track at 65 nA (trenching), 30 nA 

(micromachining) and 1 nA (polishing). In-situ observation of the cross-sectional area was performed 

by SEM and the elemental concentration at the interface of adhesion was measured by EDS.  

 Results  

3.1 Tool coating microstructure  

The top views of the NC/NiBN and NC/WC:C coated tools are shown in Fig. 3a, 3b. SEM images 

showed that the NC/NiBN overlayer is smooth and has some embedded BN particles exposure on 

the top surface. NC/WC:C coating, on the other hand, shows a top view of the uniform columnar 

microstructure.  The transverse cross-section morphologies and composition of NC/X hybrid coating 

are shown in Fig. 3c-3f. All NC/X coatings are composed of a PNC underlayer, a plasma cleaned 

oxygen-free interface (OFI) and a functional composite overlayer of NiBN or WC:C. Dong (2010) 

reported that iron oxides pre-existed on the cast iron surface were removed by the plasma during 
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the first step, resulting in a clean PNC surface that is not susceptible to the moisture in the 

atmosphere. This is known as the OFI, by which the bonding strength to the subsequent overlayer 

can be enhanced.  

 

Fig. 3. Transverse cross-section of NC/X coating system showing (a, b) SEM top view of NC/NiBN and NC/WC:C, 

respectively; (c, d) corresponding cross-sectional structures; (e, f) GDOES chemical composition profiles from 

the surface to the substrate of NC/NiBN and NC/WC:C, respectively. 

A close observation of the cross-sectional microstructures Fig. 3a and 3b show that NC/NiBN and 

NC/WC:C, having the total thickness of approximately 15 and 12.5 μm, respectively, were deposited 

on the tooling surface. For Ni/BN, BN particles embedded in the Ni-P matrix are visible in Fig. 3c. In 

contrast, WC:C overlayer has a columnar structure with the decreasing columnar size towards the 

surface. GDOES results showed that the composition of the NiBN overlayer is Ni0.65P0.16O0.18(BN)0.01, 

whereas the WC:C is W0.18C0.7Ni5.  The underlayer ranging from 3 µm to 15 µm in depth is rich in N, 

and the long-tail line of gradually decreasing N in this layer is the result of interstitial diffusion of N in 

cast iron.  
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3.2 Aluminium adhesion test  

3.2.1 Effect of tooling surface treatment 

The CoF trend of G3500, PN/PNC and NC/X coated tools sliding against dry aluminium pins are 

displayed in Fig. 4. Pearson-correlation analysis shows there is no significant dependence of CoF on 

the number of cycles (p>0.01), although the CoF fluctuated markedly during the 500 cycles as 

evidenced in their large standard deviations (SD). The maximum CoF of untreated G3500 was 0.72 at 

230th cycle and it increased to 0.92 for PNC and 0.82 for PN. It is believed that the fluctuation of CoF 

was triggered by the adhesion between two sliding surfaces‒a zone of severely deformed soft metal 

that tenaciously adhere on and removed from the contact surface. Likewise, the great variations of 

CoF resulting from the persistent issue of adhesion on PNC and PN surfaces are still evident. In 

contrast, the coated tools (NC/NiBN and NC/WC:C) showed stable CoF throughout the 500 cycles. As 

shown in Fig. 4c, the CoF of Ni-BN quickly dropped to 0.60 at the very start and it maintained at 

around 0.65 for the rest of 500 sliding cycles, whereas NC/WC:C persisted mainly at the level of 0.02, 

but periodically increased to an upper range of 0.15. When the mean value of CoF (CoFM) was 

considered for each test condition, the lowest CoFM against aluminium can be found on the NC/WC:C 

tools, of which a significant depletion of CoFM from 0.60 to 0.06 was obtained.  
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Fig. 4. CoF of (a) G3500, (b) PN and PNC, (c) NC/NiBN and NC/WC:C against Al at 350 °C, and their corresponding 

box plots with the 1st quartiles (box) and 1st standard deviations (whiskers) on the right cells. 

 

Fig. 5. Comparison of CoFM ±SD of untreated and treated materials at various temperatures. 
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Fig. 6. Comparison of CoF of (a) NC/NiBN v.s. Al, (b) pre-oxidised NC/NiBN v.s. Al, (c) v.s. steel 100Cr6, and (d) 

pre-oxidised NC/NiBN v.s. steel 100Cr6. All tests were carried out at 525 °C. 

3.2.2 Effect of temperature and forming material 

Fig. 5 shows the evolution of CoFM with the increasing temperature on various tooling materials. 

When the aluminium alloy was used as the pin, the CoFM of untreated G3500, PNC and PN steadily 

increased with the increasing temperature from 300°C to 525°C, however, decreased at 450°C for 

NC/NiBN, and suddenly decreased to 0.10 at 350°C and then increased to 0.27 at 450°C for 

NC/WC:C. The effect of temperature on the CoF of coated tools was further analysed using 

counterpart of steel 100Cr6, as shown in Fig. 5. Compared to the aluminium results, it is interesting 

to see that the mean coefficient CoFM decreased with the increasing temperature. This result is 

consistent with the results obtained from line/point contact sliding tests by Pearson et al. (2013) and 

Hutchings (1992), considering the increased ductility of steel at high temperatures. Therefore, sliding 
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with steel pin is dominated by the abrasion mechanism and it is different with the adhesion-

prevalent mechanism for aluminium. The most interesting result can be seen on NC/NiBN, which 

exhibited diminution of CoFM from 0.65 to 0.37.  As exploited in Fig. 6, the 'NC/NiBN vs 100Cr6' 

shows that the CoF of NC/NiBN was comparatively smaller and less dispersed compared to sliding 

against aluminium (NC/NiBN vs Al). The standard deviation is halved from 0.1 to 0.05. This ultra-low 

CoF against steel was obviously relevant to the variation of chemical states at the coating/aluminium 

interface. Indeed, after pre-oxidising of the coating at 525°C, the CoFM of NC/NiBN was further 

reduced to remarkably 0.11. By the end of 500 cycles, the CoF of NC/NiBN against steel was stable 

and smaller than the lowest CoFM of NC/WC:C against steel. 

3.3 Cylindrical deep drawing trial 

Fig. 7a shows the featured ‘zones’ on a typical successfully HFQ® formed top-hat part relevant to the 

stress and deformation of materials during forming. The distance between the punch nose line and 

the remaining flange line marks the drawing depth of 45 mm. One important feature observed on 

the cup surface is that there exists a distinguish radius on the formed part, as shown in the line 

named sliding end (SE), where the section of surface above the SE line was smooth, whereas plenty 

of obvious mark and scratches existed on the surface of section below this line. In terms of flange 

material deformation in the deep drawing process, normally a two-dimensional contradict stress 

state was experienced, that is compressive stress, 𝜎𝑟, in the hoop direction and tensile stress, 𝜎𝜃, in 

the radial direction. These two stresses can be calculated using Eq. (2) normally. 

{
𝜎𝑟 = 𝜎𝑓 ln

𝑟

𝑅0
+

2𝜇𝑃(𝑅0−𝑟)

𝑡

𝜎𝜃 = 𝜎𝑓 (ln
𝑟

𝑅0
− 1) +

2𝜇𝑃(𝑅0−𝑟)

𝑡

                                                              (2) 

Where 𝜎𝑓 is the material flow stress, 𝑅0 is the outer radius of flange, 𝜇 is the friction coefficient, 𝑃 is 

the blankholding pressure, 𝑡 is the test-piece thickness and 𝑟 is the radius of infinitesimal small unit 



16 

in the flange. The outer edge flange material becomes thicker resulting from the compressive stress. 

However, the hoop stress changes from compressive to tensile with the position approaching to the 

inner edge of flange, according to Eq. (2) in (Marciniak et al., 2002). The limit position can be 

obtained when 𝜀𝑡 = 0, according to the Hooke’s law in Eq. (3), 

𝑡 =
𝜎𝑡

𝐸
−

𝜈

𝐸
(𝜎𝑟 + 𝜎𝜃)                                                                          (3) 

Plane stress assumption is normally used for sheet stamping process. Then, stress in thickness 

direction assumes to be zero. The limit position can be obtained from Eq. (4) by substituting 𝜎𝑡 = 0 

into Eqs. (2) and (3). 

2𝑙𝑛𝑟 − 𝐵𝑟 = 1 − 𝐵 + 2𝑙𝑛𝑅0                                                                  (4) 

Where 𝐵 is expressed using Eq. (5) 

𝐵 =
2𝜇𝑃𝑅0

𝜎𝑓𝑡
                                                                               (5) 

 

Fig. 7. (A) Geometry of an AA6082 top-hat part hot formed by a set of surface treated dies ‒ note the SE line (b) 

measured �̂�S values on all the formed parts with the value indicated as the size of bubbles  
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As the position approaching the inner flange region, the material sustains a two-dimensional stress 

state, and the thickness of materials reduced. Meanwhile, the blank becomes thicker at the outer 

flange edge. With the CoF decreased in the coated flange area, the compressive stress becomes 

greater and radial tensile stress becomes smaller, the thickness transition point moves inwards and 

more material in the flange becomes thicker. Then, as the clearance between the punch and die is 

fixed, more material can be ironed and a distinctive line can be observed with the further drawing of 

flange material. It is discovered that the position of this line is correlated to the tooling friction 

status, i.e. the distance between the SE line and DR line (i.e. marked as �̂�𝑠) increased with the 

decreasing friction, thus �̂�𝑠 was used as an index of the latter.  

Fig. 7b summarises the �̂�𝑠 values as the size of bubbles using the treated dies, at various forming 

temperatures and BHF. Due to the complexity of experimental design and manufacturing of tools, 

tools with the highest mechanical strength (PNC) and lowest CoF (NC/WC:C) were selected for trials. 

At 350 ℃, tribological behaviours of PNC and WC: C treated tools were similar — a 40 kN BHF 

contributed to a 30 mm �̂�𝑠. While at 400 ℃ and a 35 kN BHF, �̂�𝑠 of PNC decreased to 26 mm 

indicates a reduced performance of PNC tool under this forming condition. However, WC: C treated 

tools obtained a 38 mm �̂�𝑠  indicating that an improved frictional property of NC/WC:C treated dies 

which resulted in more flange material being deformed and drawn into the dies. 

In addition, temperature is also an important process variable affecting the flange material 

deformation, thus it induces different �̂�s. As can be seen in Fig. 7b, for WC: C treated tools, with the 

temperature increasing from 350 °C to 400 °C under a 40 kN BHF, the magnitude of �̂�𝑠 decreased 

from 30 mm to 27 mm. Moreover, the test-piece material cannot be drawn-in successfully with 

cracks formed around the die radius at 450 °C. The reason is that the blank becomes softer at the 

higher temperatures, till at a critical temperature, the flange friction surpass the material strength 

and the tear and crack happens. For hot stamping of aluminium alloys, the temperature distribution 
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of test-piece is non-uniform during the pressing due to the heat transfer between hot test-piece and 

cold dies; the temperature of die radius is higher than that of flange zone due to the less contact 

pressure with tools; on this region, the material strength is lower correspondingly. Hence, if the 

flange friction is too high, deformation may concentrate on this region resulting in tearing. On the 

contrary, the tools that exhibited a better tribological performance (i.e. NC/WC: C coating) would 

draw successfully at a higher temperature. For NC/WC:C coating, a successful drawn-in can be 

achieved at 450 °C by reducing the BHF to 20 kN (�̂�𝑠 =23 mm), while unachievable for PNC at such a 

condition.  

The minimum weight of lubricant required by the untreated tools and NC/WC:C tools is summarised 

in Fig. 8. The forming speed was fixed at 300 mm/s. At 350 °C, the weight of lubricant for PNC was 

approximately 7 g/m2. It can be reduced to zero (dry forming) using WC: C tools. When the 

temperature increased to 400 °C, a minimum amount of lubricant of 15 g/m2 was needed for 

NC/WC:C tools, and the weight can be further reduced to 5 g/m2 using a 35 kN BHF. This means that 

83% less lubricant was needed to obtain a performance comparable to that of the fully lubricated 

tools. In addition, the minimum weight of lubricant required for a successful stamping of Al alloy 

increased with increasing temperature, which exhibits a similar behaviour to the increasing CoF with 

temperature in Fig. 5.  
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Fig. 8. The minimum amount of lubricant (g/m2) required for a successful forming in the specified forming 

condition.  
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summary, it is clear that the material transferred from Al pin to the tooling surface for G3500, PN 

and PNC. This explained the highly fluctuated CoF originated from continuous bonding, breaking and 

plastic deformation of the pin and substrate. Contrary to the fact that graphite is lubricious, the flake 

form of graphite acting like a cutting edge, in fact, is a preferred site for the adhesion. As for 

NC/NiBN and NC/WC:C, the low affinity between the two sliding surfaces contributes to the 

evidenced alteration of wear mechanisms, consequently, no Al was found on the EDS scan of the 

wear tracks (Fig. 10e-10f).  

 

Fig. 9. SEM surface morphologies of the tool surfaces showing adhesion of aluminium on (a) G3500 and (b) PNC, 

(c) NC/NiBN and (d) NC/WC:C 
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Fig. 10. Confocal microscope height mappings of (a) G3500, (b) PNC, (c) NC/Ni-BN, (d) NC/WC:C, v.s. Al (e, f) the 

EDS composition within the marked areas, condition: against Al, 350 °C.  

However, despite the importance to reduce the adhesion for hot forming dies, the mechanism of 

adhesion inhibition is unknown for the produced NC/X functional coating. Considering it can be 

related to the mechanical properties of counterparts, the harnesses of Al alloy and tool surface 

before and after adhesion test were measured, as shown in Table 3. The post-test hardness HPW is 

higher than the as-treated hardness HAT hardness on the tooling surfaces, indicating the 

microstructure transformation of surface materials during the high-temperature adhesion test. The 

high content of oxygen found in the contact area is an evidence of oxidation (Fig. 10e-10f). According 

to the results of the cross-sectional FIB-SEM analysis in Fig. 11, nickel oxide was observed at the 

interface suggesting that the low friction property of the surface might be attributed to the 

formation of lubricious oxides. This is consistent with the fact that when sliding against steel, the CoF 

of NC/NiBN can be reduced by pre-oxidation (previously shown in Fig. 6). The crystallisation of NiBN 

after pin-on-disc test produces sharp Ni peaks and Ni3P precipitate peaks, which can contribute to 

the very high HPW of NC/NiBN at high temperatures. This reversal thermal-mechanical property of 

NC/NiBN (i.e. hardness increase with temperature) alters its frictional property (previously shown in 

Fig. 5) at a higher temperature. The FIB-SEM results indicated that the specified coating 

microstructure is required to enhance the tribological properties of tool coatings under the hot 

stamping conditions.  

Table 3. Mechanical properties of the sliding counterparts 

  As-treated 

HAT, GPa 

Post-test 

HPW, GPa 

𝐸𝑟, GPa 

AA6082 1.61 ± 0.22 1.63 ±  0.19 87± 4.21 

G3500 3.66 ± 0.32 4.25 ± 0.33 172± 8.56 
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NC/WC: C 6.25 ± 0.50 7.00 ± 0.10 102± 5.20 

NC/NiBN 6.35 ± 0.65 8.55 ± 0.30 154± 7.25 

PNC 11.07 ± 0.42 11.93 ± 0.60 198± 10.01 

PN 12.47 ± 0.48 12.50 ± 0.30 211± 11.10 

 

 

Fig. 11. Ion-induced secondary electron micrographs of FIB milled cross-sectional tool/blank interface on (a) 

G3500, (b) NC/NiBN with its XRD patterns, (c) NC/WC:C with its Raman spectrum inside the wear track, 

condition: against Al, 350 °C. 

WC: C coating, on the other hand, might undergo a number of carbon phase transformations with 

the kinetic energy generated during sliding, from sp2 to sp3 carbon and to graphite. The EDS analysis 

showed half as much carbon in the wear debris after high-temperature wear tests suggesting the 

wear process is accompanied by consuming of C phase. Moreover, the transformation of amorphous 

WC to WXC1-x and WXO1-x crystalline as shown in Raman spectrum might also have an effect on the 

friction property. Gharam et al. (2011) previously found the W structure remains amorphous at low 

temperatures after wearing against aluminium, indicating the structural evolution is temperature-

driven. Banerji et al. (2014) also observed the tungsten trioxide (WO3) at high temperature sliding 

against Ti–6Al–4V. The role of above factors in altering the tribological property of aluminium 

stamping remains unclear. With the complex effect of carbon state and presenting of the self-

lubricating possible Magnéli phases of tungsten oxides WXO1-x at elevated temperatures, further 
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studies needed to reveal the effect of microstructure evolution during environmental sliding of 

NC/NiBN and NC/WC:C coating. The detected low CoF of NC/WC:C against Al and NC/NiBN against 

steel evidence the fundamental difference between the intrinsic frictional characteristics of these 

two coatings. Above all, the analysis of wear scar morphology showed that the coating was not 

delaminated and it was bonded strongly with the substrate. This suggests a possible long service life 

of the soft-on-hard super-robust composite hybrid coating system. 

 Conclusions 

A new type of composite coating NC/X was designed and applied to the hot forming dies using PVD 

and plasma nitrocarburising. The hybrid composite coating is composed of a newly developed hBN-

embedded Ni coating or amorphous WC doped a-C coating as the overlayer and AS plasma NCed cast 

iron as the underlayer. The results of adhesion test and coefficient of friction analysis confirmed the 

initiating of adhesion from the graphite edges, which is the main reason for the metal transfer of Al 

onto the unlubricated grey cast iron dies. The oxides formed at elevated temperatures on the 

overlayers affected both the mechanical properties and contact mode at the tool/blank interface. 

The discovery of a sliding-end line on the surface of every hot formed cylinder has been theoretically 

explained and modelled linking to its in-situ frictional status. HFQ® forming trials have shown that 

NC/X composite coating is an efficient technique to prevent adhesion from the blank material and 

the NC/X coated tool requires less amount of hydro-lubrication to achieve competitive performance.  
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Table 1. Conditions of tooling surface treatments  

Table 2. Material composition of AA6082 sheet 

Table 3. Mechanical properties of the sliding counterparts 

Fig. 1. (a) Illustration of material adhesion between blank and forming die, (b) extracted adhesion area in purple 

and (c) top view of a used die showing aluminium adhesion area near the built-up edge (d) measured 

temperatures of blank and die surfaces during HFQ® cup forming. 

Fig. 2. Materials and experimental set-up of hot forming: (a) deep drawing test-rig and (b) geometry and 

dimensions of tools. 

Fig. 3. Transverse cross-section of NC/X coating system showing (a, b) SEM top view of NC/NiBN and NC/WC:C, 

respectively; (c, d) corresponding cross-sectional structures; (e, f) GDOES chemical composition profiles from 

the surface to the substrate of NC/NiBN and NC/WC:C, respectively. 

Fig. 4. CoF of (a) G3500, (b) PN and PNC, (c) NC/NiBN and NC/WC:C against Al at 350 °C, and their corresponding 

box plots with the 1st quartiles (box) and 1st standard deviations (whiskers) on the right cells. 

Fig. 5. Comparison of CoFM ±SD of untreated and treated materials at various temperatures. 

Fig. 6. Comparison of CoF of (a) NC/NiBN v.s. Al, (b) pre-oxidised NC/NiBN v.s. Al, (c) v.s. steel 100Cr6, and (d) 

pre-oxidised NC/NiBN v.s. steel 100Cr6. All tests were carried out at 525 °C. 

Fig. 7. (A) Geometry of an AA6082 top-hat part hot formed by a set of surface treated dies ‒ note the SE line (b) 

measured �̂�S values on all the formed parts with the value indicated as the size of bubbles  

Fig. 8. The minimum amount of lubricant (g/m2) required for a successful forming in the specified forming 

condition.  

Fig. 9. SEM surface morphologies of the tool surfaces showing adhesion of aluminium on (a) G3500 and (b) PNC, 

(c) NC/NiBN and (d) NC/WC:C 

Fig. 10. Confocal microscope height mappings of (a) G3500, (b) PNC, (c) NC/Ni-BN, (d) NC/WC:C, v.s. Al (e, f) the 

EDS composition within the marked areas, condition: against Al, 350 °C.  

Fig. 11. Ion-induced secondary electron micrographs of FIB milled cross-sectional tool/blank interface on (a) 

G3500, (b) NC/NiBN with its XRD patterns, (c) NC/WC:C with its Raman spectrum inside the wear track, 

condition: against Al, 350 °C. 


