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Affective Recognition in Dynamic and 
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Abstract – The past decade has witnessed a significant increase in interest in human emotional behaviours in the 
future of interactive multimodal computing.  Although much consideration has been given to non-interactive 
affective stimuli (e.g. images and videos), the recognition of emotions within interactive virtual environments has 
not received an equal level of attention. In the present study, a psychophysiological database, cataloguing the EEG, 
GSR and heart rate of 30 participants, exposed to an affective virtual environment, has been constructed. 743 
features were extracted from the physiological signals. Then, by employing a feature selection technique, the 
dimensionality of the feature space was reduced to a smaller subset, containing only 30 features. Four classification 
techniques (KNN, SVM, Discriminant Analysis (DA) and Classification Tree) were employed to classify the 
affective psychophysiological database into four Affective Clusters (derived from a Valence-Arousal space) and 
eight Emotion Labels. By employing cross-validation techniques, the performances of more than a quarter of a 
million different classification settings (various window lengths, classifier settings, etc.) were investigated. The 
results suggested that the physiological signals could be employed to classify emotional experiences, with high 
precision. The KNN and SVM outperformed both Classification Tree and DA classifiers; with 97.01% and 92.84% 
mean accuracies, respectively. 

Keywords – Virtual Reality, Affective Computing, Affective VR, Emotion-based affective physiological database  
 

1. Introduction 
The recent “resurrection” of interest in 

Virtual Reality (VR), spurred on by the 
emergence of new interface and gaming 
technologies from international crowd-funding 
communities has, once again, stimulated interest 
in the quest for true “immersion” or the 
generation of a believable sense of “presence” in 
computer-generated worlds.  Human-Computer 
Interaction (HCI) system designers have, in their 
quest to deliver compelling end user experiences 
of immersion, introduced several multi-
dimensional input/output devices (aiming to 
provide user-friendly, intuitive techniques and 
styles of interaction with real-time 3D worlds1. 
However, the one area of HCI research that, 
arguably, is best placed to achieve immersion in 
the future, is that which strives towards 
establishing direct communication between a 
computer system and the human brain and has, 
until recently, been treated as science fiction 
(referencing such popular films as The Matrix 
and Pacific Rim 2,3). In 2006, Cairns suggested 
that true “immersion” may only ever be achieved 
through the use of advanced brain-computer 
interfaces [1]. However, until that day arrives, it 
is important to understand in advance, how it 
may be possible to measure and, indeed, 
influence human engagement and emotional 
connectivity with virtual worlds using 
psychophysiological techniques.  

Brain-Computer Interaction (BCI) systems 
attempt to improve human-computer interaction 
                                                             
1  For example various types of data input controllers, 
multifunctional touch panels 
2 https://en.wikipedia.org/wiki/The_Matrix  
3 https://en.wikipedia.org/wiki/Pacific_Rim_(film)  

and increase the sense of immersion by 
interfacing directly with the human nervous 
system (both the central and autonomic nervous 
systems) and, thus, removing the artificial 
barriers to intuitive interaction afforded by 
conventional input-display techniques. These 
new interface channels can have the potential to 
introduce a large number of new communication 
techniques in advanced HCI systems, and may be 
able to improve the interaction process 
considerably (e.g. translating imaginary 
movements to virtual actions, improving levels of 
concentration, affecting emotional states, and so 
on). So far the interaction process has been 
mostly based on conventional methods, in that 
computer users typically use physical interaction 
devices to see, hear, act, sense haptic or olfactory 
stimuli and in some cases even talk to the system. 
The near-term goal of BCI systems, as an 
extension to these conventional systems (as 
opposed to a replacement, which is a longer-term 
aspiration), would be to translate human thoughts 
and emotions by direct connection to the human 
brain and use this information as a new modality 
channel for HCI systems [2]. To date, researchers 
have concentrated on the introduction of direct 
brain-computer interaction into HCI systems and 
virtual realities (VR) 4, with just some examples 
cited in the literature including the control, 
eliciting and measurement of depression and 
sadness within a virtual park [3], game adaptation 
according to stress levels [4], and using brain 
waves to either navigate through a virtual 
environment [5] or to control the balancing 
behaviours of a virtual avatar [6].  

                                                             
4 Also known as Neurogaming [1] 
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One of the sub-categories of research into 
BCI systems is described as affective computing. 
Affective computing, in essence, records 
psychophysiological signals from the users, to 
enable the BCI system to extract data of 
relevance to their emotional and cognitive states. 
This new input channel could provide several 
features for advanced HCI systems, attempting to 
support the generation of believable immersive 
experiences. As an illustration, the system could 
use this information to adapt itself to the user’s 
emotions and, by doing so, increase his/her 
performance and immersion levels, during the 
interaction process.  

Turning briefly to the field of VR and the 
relevance of issues of affect, to date, researchers 
have studied the implementation of virtual 
realities in many different areas. As well as 
entertainment, VRs and their so-called “serious 
games” counterparts have been used for training 
purposes [7], [8], [9], pain distraction [10], [11], 
rehabilitation régimes [12], [13] and emotional 
disorder therapy [14], [15], to mention but a 
handful of applications. The focus of all these 
studies has been to engage human users in an 
interactive virtual environment, and to increase 
their sense of presence and immersion within 
them, thereby effectively delivering new skills, 
knowledge or in some cases, acting as a form of 
clinical distraction. In 2006 Joels suggested that 
changes in the excitement level (depending on 
pleasurable or dis-pleasurable condition), affects 
the learning and memory process. He proposed 
that memory performance changes (either 
improvements or impairments) are highly 
dependent on the time and context of the 
emotional experience [16].  Therefore, the 
recognition of users’ emotions, when exposed to 
virtual realities, and controlling their affective 
experiences within the virtual environments 
(regardless of their purpose) can be as important 
as the VR’s contextual outcome.  

In [17] we conceptualised, designed and 
evaluated an Affective Virtual Reality (Affective 
VR), capable of evoking various emotional 
experiences on the part of the human user. In the 
present study, by employing the designed 
Affective VR, an affective computing system was 
conceptualised, designed and evaluated. To do 
this, the relationship between 
psychophysiological signals and human 
emotions, evoked through the designed Affective 
VR (presented in [17]), has been the focus of 
investigation. To support this research: 

1.  A psychophysiological experiment has 
been conducted, in which simple 
Electroencephalography (EEG), galvanic skin 
response (GSR) and Heart Rate signals of 30 
participants have been recorded whilst 
playing the most powerful affective games, 
identified in [17]. These physiological signals 
provided a comprehensive database for 
further analysis and for the construction and 

evaluation of an Affective Recognition 
system (Section 2 of the present paper). 
2.  A number of overlapping windows of 
the raw physiological signals were separated 
for the feature extraction process. 743 
physiological features were identified and 
extracted from the recorded database (Section 
3 of the present paper).  
3.  By employing a feature selection 
technique, a small number of the most 
optimum features have been identified, to 
reduce the dimensionality of the database to a 
smaller subspace, to be used in the emotion 
classification process (Section 3.4 of the 
present paper).  
4.  By employing four classification 
algorithms (K-Nearest Neighbour (KNN), 
Support Vector Machine (SVM), 
Discriminant Analysis (DA) and 
Classification Tree), the performances of a 
quarter of a million different classification 
settings (various window lengths and types, 
different number of features, etc.) have been 
evaluated and compared, using a 10-fold 
cross validation (Sections 4 and 5 of the 
present paper). 

2. Psychophysiological Database 
Construction 
2.1. Material  

2.1.1. Affective Virtual Reality 

To construct the psychophysiological 
database, the designed and evaluated Affective 
VR, presented in [17], has been used as the 
source of emotional stimuli. The Affective VR 
was based on a speedboat simulation5 (Figure 1) 
acting as the background scenario. A number of 
parameters (called affective incidents) were 
implemented in the VR to change the affective 
power of the environment, within the Circumplex 
of Affect, presented by Russell in 1980s [18]. As 
an illustration, participants were challenged by 
driving the boat and collecting scores ‘freely’, in 
a ‘minefield’ or whilst ‘being targeted by 
torpedoes’, in various experimental setups, such 
as, coloured images, black and white or inverse 
black and white screens, using a mouse, or 
joystick with or without simple force feedback 
(for more details, refer to [17]). 

As presented in [17], the environment was 
evaluated as effective in the manipulation of 
participants’ emotions, in terms changes of 
locations of those emotions within the 
Circumplex of Affect. The duration of each game 
could vary between 90 to 300 seconds, depending 
on the performance or determination of the 
participants. There were some games with time 
limitations, which had to be completed as soon as 
possible depending on the participants’ 
                                                             
5  A short video of this simulation can be viewed at: 
https://www.youtube.com/watch?v=pqn-X1Z5AoM  
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performance. However, there were also those 
games that allowed the participants to drive 
freely within the environment, with no time 
limitations (no game was allowed to be longer 
than five minutes, and would be terminated if a 
participant spent longer than five minutes).  

 
Figure 1 – Speedboat Simulation Environment 

In the present study, the two most powerful 
affective games, in each of the four Affective 
Clusters6 introduced in [19], have been identified 
using the Cosine Similarity Algorithm [20] as 
implemented in [17]. As a result of this analysis, 
the eight most powerful affective games (those, 
which have the highest probability of driving the 
emotional experience of the participants toward 
all affective clusters) have been identified. 
Following the identification of the most powerful 
affective games, two ‘neutral games’ were added 
in the experiment (the neutral game from [17], 
plus the game close to (0, 0, 0) with the highest 
standard deviation). Therefore, overall, 10 
affective games have been identified for 
presentation to the participants in the present 
experiment.  

2.1.2. Participant Selection 

One of the most important challenges of 
designing any affective psychophysiological 
database is the minimization of variability 
between participants, in each individual affective 
session, whilst maximizing the variability 
between sessions’ experiences. This is due to the 
fact that, in any human-cantered experiment, 
minimum variability between participants’ 
experiences, in a single affective session is an 
extremely important issue. Any acceptable 
analysis, dealing with either affects or 
physiological databases, should, intuitively, be 
based on changes in emotional experiences, due 
to different environments, rather than different 
personal experiences. 

As discussed in [17], the Multi-variant 
Analyses of Variance (MANOVA) highlighted 
significant differences between the four 
participant groups (male gamers, male non-
gamers, female gamers and female non-gamers). 
According to the results presented in [17], male 
gamers, male non-gamers and female gamers 
show marked similarities in their affective 

                                                             
6 (1) Positive Valence and Low Arousal (PVLA) – (2) 
Positive Valence and High Positive Arousal (PVHPA) – 
(3) Negative Valence and Positive Arousal (NVPA) – (4) 
Negative Valence and Negative Arousal (NVNA). 

experiences, when compared to female non-
gamers. Therefore, in the present study, in order 
to minimise between participants variability, it 
was decided to recruit only male and female 
gamers in the experiment. Recruiting the male 
non-gamers (despite their highest level of 
similarity compared to the others) in the 
experiment would disturb the comparison, as no 
female non-gamers were to be recruited. 
Therefore, 30 gamer participants of both genders 
(15 of each) were recruited to take part in this 
experiment (mean age=22.76). Each participant 
received a £10 gift voucher at the end of each 
experiment. The study was reviewed and 
approved by the University of Birmingham’s 
Ethical Review Committee (Ethical Reference 
Number: ERN_13-1157). 

2.1.3. Physiological Signal Recording 

As discussed in [19], the majority of studies 
have employed EEG, Heart Rate and GSR 
signals to perform affective analysis and 
recognition. Therefore, in the present study it was 
decided to record data using these three 
techniques, for the purposes of supporting the 
psychophysiological database construction 
process. Participants were required to wear an 
EPOC EMOTIV7 headset to record EEG signals, 
as well as Shimmer+ wearable sensor 
technologies 8  to record GSR and heart rate 
activities. The EPOC EMOTIVE records the 
EEG signals, with a 128Hz sampling frequency, 
from 14 channels9. The electrodes are arranged 
according to the 10-20 EEG system. The GSR 
and heart rate data are also recorded using the 
Shimmer+ wearable sensor technologies, with a 
512Hz sampling frequency.  

A program was developed to function in 
parallel with the game, to establish a connection 
with the Shimmer+ and EPOC EMOTIV devices 
(through the software development tool kits 
(SDKs) provided by the manufacturers), as soon 
as each game was started. As well as signal 
recording, the program performed time 
synchronisation, to align the outputs received 
from the devices, prior to data storage. 
Furthermore, a wireless real-time monitoring 
application (tablet-based) was implemented, to 
enable the experimental supervisor to monitor the 
software functionality and signal qualities of the 
recording devices, without any distraction to the 
participants’ experiences.   

2.2. Method 

The experiment was performed in a quiet 
room. All participants were provided with a 32-
inch Samsung HD LCD display, a Microsoft 

                                                             
7 http://emotiv.com/  
8 http://www.shimmersensing.com/  
9 AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1 
and O2, while P3 (Common Mode Sense – CMS) and P4 
(Driven Right Leg – DRL) are used as the reference 
channels. 
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 4 

Wireless Mouse 5000, a Logitech Wingman 3D 
force feedback joystick and Sennheiser 
earphones. Each experiment commenced with a 
training session to prepare the participants for 
every possible incident within the games (as 
presented in [17]). The training introduced the 
game environment to the participants and served 
to reduce any element of surprise in the games. 
After the participants had completed the training 
session, they progressed to the two neutral 
games, followed by the other eight in a random 
order. At the end of each game the participants 
were instructed to self-assess their average 
emotional experience, based on both dimensional 
(Valence, Arousal and Dominance) and 
categorical (according to eight Emotion Labels: 
Relaxed, Content, Happy, Excited, Angry, 
Afraid, Sad and Bored) models of affect (as 
presented in [17]). The participants were given a 
5- to 15-minute break, after playing the first five 
games, in order to reduce the fatigue factor 
caused by wearing the physiological sensing 
equipment. On average, each game lasted for 
three minutes, and the complete experiment took 
approximately 1.5 hours. 

2.3. Results (Psychophysiological 
Database) 

Of a possible total of 300 affective sessions, 
290 were recorded, as 10 sessions were not 
attended by participants. During the affective 
sessions, the raw EEG signals from all 14 
channels were recorded. Furthermore, the signal 
quality of each EEG channel was available from 
the EPOC EMOTIV headset10 and was therefore 
recorded alongside the raw channel data. The raw 
Photoplethysmogram (PPG) output was recorded 
by the Shimmer+ device, mounted on the 
participant’s index finger. During this recording a 
location of the skin is illuminated, and then the 
changes in light reflection are recorded. The 
alternating current component of the PPG signal 
relates to the blood pulse pressure. The 
Shimmer+ software uses the estimation 
techniques introduced in [21] to approximate the 
heart rate of the participants using the PPG 
signal. Moreover, the GSR signal was also 
recorded using two finger straps mounted on the 
middle and ring fingers. These raw data sources 
were synchronised according to the master clock 
of the main system and stored in Microsoft Excel 
files during the run-time of the experiment. The 
emotional ratings of the participants were 
recorded and stored separately at the end of each 
game. 

3. Feature Matrix Construction 
In this study, all pre-processing, windowing 

and data analyses have been implemented using 
MATLAB software (version R2015b).     

                                                             
10 According to five classes; good, fair, poor, very bad and 
disconnected. 

3.1. Pre-Processing 

3.1.1. Filtering 

As discussed in [19], majority of affective 
recognition studies apply no filtering technique to 
heart rate and GSR signals recorded from the 
participants. Therefore in this study, we also 
decided to use the heart rate and GSR signals 
without applying any filter. However, and as 
discussed in [19], majority of previous studies 
employed a band-pass filter (majority using 4Hz 
to 45Hz) in their EEG filtering process. Eye-
blink artefacts are typically observed in 
frequencies lower than 4Hz, as humans rarely 
blink more than 4 times a second. In addition, 
high-frequency rhythms in the brain (Gamma 
range) can be observed from 30Hz up to 45Hz 
[22]. Therefore, in the present study, a 5th order 
Butterworth band-pass filter was applied to the 
raw EEG signals, whilst the lower-band was set 
to 4Hz and the upper-band was fixed at 45Hz.  

As discussed in [19], majority of artefact 
removal techniques were performed either by the 
use of Electrooculography (EOG) signals, or by 
using computationally expensive EEG artefact 
removal algorithms, such as those based on Least 
Mean Square (LMS) and Blind Source 
Separation (BSS). Due to the absence of EOG 
signal recording in this study, and the high 
computational expense of other artefact removal 
algorithms, it was decided to apply NO EEG 
artefact removal technique. 

3.1.2. Normalisation 

As discussed in [19], almost half of the 
reviewed studies employed a normalisation 
technique. However, half of the studies, which 
employed normalisation techniques, normalised 
the recorded raw signals, while the rest 
normalised the extracted features. 
Normalisation can improve the accuracy of 
regression or classification techniques, as it can 
minimise the between-participants differences, 
which could be present in any physiological 
measurements (e.g. average heart rate can vary 
between people, different skull thicknesses could 
change the power of the EEG signals [23], etc.). 
However, any normalisation technique needs to 
be calibrated according to a recorded dataset11 
[19]. Implementation of normalisation techniques 
can be considered as an advantage for offline 
classifiers, as the required features or raw signals 
would be extracted from the pre-recorded raw 
signals, before the classification process. This 
can provide all of the required data for the 
normalisation technique for the calibration 
process. Whereas in online classifiers the 
required features need to be extracted from the 
progressing raw signals, while the classification 

                                                             
11 Such as minimum or maximum values of the signal in 
min-max normalisation technique, α and β in log-
transformation algorithm, etc. 
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 5 

is in progress. This issue can turn the 
normalisation leverage to a disadvantage, as the 
normalisation calibration process could perform 
inadequately in the absence of the entire required 
dataset.  

In the present study, we decided to avoid 
feature normalisation techniques. However, 
before performing a spectral analysis on the raw 
signals (Fast Fourier Transform (FFT) – refer to 
Section 3.3.1), we applied the z-score 
normalisation technique [19] within EEG 
channels, to standardise the spectral analysis. As 
an illustration, the thickness of one part of a 
participants’ head may vary from another, or the 
channels’ signal contact quality12  may slightly 
vary. These small changes could result in 
considerable variation between the signal powers 
of the EEG channels [23]. Therefore, applying 
normalisation on the raw signals can standardize 
the power spectrum comparison between 
channels, as the overall power of each normalised 
channel could be between around -3 and 3 [19], 
regardless of the corresponding skull thickness 
and signal contact quality.     

3.2. Windowing 

To extract the affective features, a portion 
(called a Window) of the corresponding 
physiological signal is extracted and analysed. 
Any affective feature, extracted from this portion 
of the physiological signal, has to be able to be 
confidently tagged by a specific emotional 
experience. The emotionally labelled affective 
features, extracted from this period, are employed 
as a single observation, within the affective 
database, for the emotion recognition training 
process. As discussed in [19], various window 
lengths have been used in different studies. 
However, they have been either shorter, or longer 
than, or equal to the stimuli length. Moreover, 
according to [19], different affective stimuli with 
various durations have been employed in the 
studies reviewed by the authors and, as a 
consequence, it has not been possible to use the 
available literature to define the most appropriate 
window length, with respect to the affective 
stimuli duration.  

3.2.1. Window Length 

As the majority of the studies have employed 
window lengths that are either equal to, or shorter 
than the stimuli duration [19], we decided to 
disregard the post- or pre-stimuli duration and, 
thus, to avoid any window length longer than the 
stimuli durations. To assess the efficiency of 
different window lengths, we selected 28 

                                                             
12  The signal quality of the channels depends on the 
wetness of the EEG electrodes foams. Although the 
appropriate preparations have been conducted, at the 
beginning of each experiment, to ensure proper channels’ 
signal quality; it cannot be stated, with confidence, that all 
channels are recorded with exactly equal contact quality 
(i.e. exactly equal wetness).  

arbitrary durations according to two different 
algorithms: 

1.  Fixed Duration: In this method, the 
duration of windows would be a fixed value 
in all sessions, for all participants, regardless 
of the stimuli duration. In this method we 
arbitrarily selected the following (17) fixed 
window durations: 2, 3, 4, 5, 10, 15, 20, 25, 
30, 35, 40, 45, 50, 55, 100, 150 and 200 
seconds (if applicable; i.e. the window length 
is not longer than the game duration).  
2.  Relative Duration: In this method, the 
duration of the windows would be calculated 
in every session, independently, according to 
the session duration. To do so, a global 
relative value was selected (as a percentage 
of the stimuli duration), to enable the system 
to calculate the window length according to 
the duration of the stimuli. In this method we 
arbitrarily selected the following window (11) 
relative durations: 5%, 10%, 15%, 20%, 25%, 
30%, 35%, 40%, 60%, 80% and 100%.  

All relative durations would be shorter than 
the stimuli duration, except the 100% window 
length, which behave as a window with the entire 
stimuli duration. Therefore, in this study, both 
windowing techniques, with durations equal to 
and shorter than stimuli length, have been 
implemented and evaluated.  

3.2.2. Window Type 

To perform spectral analysis on the signals, 
we employed a Fast Fourier Transform (FFT) 
technique (Section 3.3.1). One of the hypotheses 
of the FFT analysis technique is the periodicity of 
the target signal [24]. However, the recorded 
physiological signals are not periodic waves. 
Applying FFT on non-periodic signals would 
cause a Spectral Leakage effect, which results in 
non-zero spectral powers in high frequencies, 
which may not belong to the original signal [25]. 
To eliminate this effect, weighting window 
functions can be applied to the signal before FFT 
analysis takes place [25]. If the weighting 
window function is made of 𝑁 elements, there 
are 𝑁  coefficient weights (called 𝑊  vector) for 
all corresponding elements within the window. In 
the present study, two weighting window 
functions are implemented and evaluated: 

1.  Hamming Window: This window 
multiplies the values closer to the centre of 
the window by a coefficient close to one, and 
the values closer to the edges by a weight 
closer to zero. Equation 1 presents the 
Hamming window coefficients formula [25].  

𝑊 𝑛 = 0.54 + 0.46 𝑐𝑜𝑠 2𝜋
𝑛
𝑁

, 0 ≤ 𝑛 ≤ 𝑁 

Equation 1 – Hamming Window Coefficient Formula 

2.  Tukey Window: This window is 
similar to a rounded-edge rectangular 
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 6 

window, with a parameter 𝑟, which can be 
tuned between 0 and 𝑁. Equation 2 presents 
the Tukey window coefficients formula [25]. 
In the present study, we fixed the value of 𝑟 
at !

!
. 

𝑊 𝑛 =

0.5 1 + 𝑐𝑜𝑠
2𝜋
𝑟 𝑛 −

𝑟
2 ,                   0 ≤ 𝑛 ≤

𝑟
2

1,                                                           
𝑟
2
≤ 𝑛 ≤ 𝑁 −

𝑟
2

 

0.5 1 + 𝑐𝑜𝑠
2𝜋
𝑟

𝑛 − 𝑁 +
𝑟
2

,𝑁 −
𝑟
2
≤ 𝑛 ≤ 𝑁

 

Equation 2 – Tukey Window Coefficient Calculation 
Formula 

3.2.3. Windows Overlap 

As explained above (Section 3.2.2), the signal 
values are attenuated, due to the window 
coefficient weights, before spectral analysis13 . 
Therefore, by applying non-overlapped windows, 
almost 50% and 30% of the signal values, passed 
through Hamming and Tukey windows, 
respectively, would be attenuated by 50%. 
Consequently, this significant attenuation could 
result in considerable database signal loss. To 
resolve this issue, overlapping windows are 
employed to share the attenuated signal points 
with other windows. 

 
Figure 2 – 50% Overlapped, 100-Sample Hamming 

Windows, Over a 200-Sample Signal 

Figure 2 presents five Hamming windows, 
with 50% overlap, with 100 samples, over 200 
data points. The overlapping areas are the most 
attenuated data points in the entire windowed 
signal. In the present study it was decided to 
avoid any maximum attenuation, larger than 
(around) 5%, at all signal points. To achieve that, 
the Hamming window was shifted every !

!
 

samples, to create 83.34% overlap, with about 
5.5% maximum attenuation; and the Tukey 
window was shifted every !

!
 samples, to create 

50% overlap, with about 0.5% maximum 
attenuation.  

3.2.4. Windowing Parameters 

As discussed in Sections 3.2.1, 3.2.2 and 
3.2.3, there are two parameters in the windowing 
                                                             
13 50% of the signal values in Tukey window, with 𝑟 = !

!
, 

are attenuated with values smaller than 1, and only 1 point 
(window centre value) in the Hamming window would not 
be attenuated. 

process; (1) Duration and (2) Type. For 
duration, there are 28 arbitrary choices, which 
have been implemented in this study; (I) fixed 
(we used 17 arbitrary lengths) and (II) relative 
(we used 11 arbitrary values). There are two 
window types that have been used in this study; 
(I) Hamming and (II) Tukey windows. Therefore, 
the combinations can create 56 different 
windowing processes (2× 17 + 11 = 56). The 
optimum selection of these parameters is 
investigated in Section 5.1. 

3.3. Training Features Matrix  

The training features matrix is an n by m 
matrix, where n represents the number of 
observations (windows) and m signifies the 
number of features. Each row represents m 
features ( 𝐹! = 𝑓!! … 𝑓!" !×! , 𝑖!! 
observation), extracted from a single window, 
with observed output, 𝑦!. Equation 3 presents the 
relationship between the training feature matrix 
and the predicted outputs. Function 𝑔 (classifier, 
regression function, etc.) predicts ŷ!, at any given 
point, given the corresponding features matrix 𝐹! 
[26]. To construct the training affective features 
matrix, four steps have been followed in the 
present study: 

1.  The essential affective features, for all 
physiological measurements have been 
identified and extracted, for each window (𝐹! 
- in total 743 features per window –Sections 
3.3.2, 3.3.3, 3.3.4 and 3.3.5).  
2.  Each row of the features matrix is time-
stamped with its corresponding window 
centre time. 
3.  Each row of the features matrix is 
tagged by the affective rating, self-reported 
by the participant at the end of each game 
(Section 0). 
4.  The defected rows of the features 
matrix have been identified and deleted from 
the final training features matrix (Section 
3.3.7).  

𝑔  
𝑓!! ⋯ 𝑓!!
⋮ ⋱ ⋮
𝑓!! ⋯ 𝑓!" !×!

 =
ŷ!
⋮
ŷ! !×!

 

Equation 3 – Training Features matrix Vs. Outputs 
Function 

3.3.1. Spectral Analysis 

In this study, the Fast Fourier Transform 
(FFT) technique [24] was employed, for the 
extraction process of all spectral features. To 
extract any given frequency bandwidth power, 
four calculation techniques have been 
implemented.  

1.  Power Summation: In this technique, 
the power of all frequency samples within the 
required frequency bandwidth (from 
frequency 𝑓𝑟! to 𝑓𝑟!), are added, to generate 
the overall power summation (Equation 4). 
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 7 

This measurement derives the simple 
accumulative power, within a particular 
frequency bandwidth.  

𝑃𝑜𝑤𝑒𝑟 𝑆𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑜𝑤𝑒𝑟!"

!"!

!"!!"!

 

Equation 4 – Power Summation Equation 

2.  Power Ratio: In this technique the 
squared power of all frequency samples 
within the required bandwidth (from 
frequency 𝑓𝑟!  to 𝑓𝑟! ) are added, and then 
divided by the accumulated squared power of 
all frequency bandwidths in the signal (from 
frequency 𝑓𝑟!"#  to 𝑓𝑟!"# ), to generate the 
overall power ratio (Equation 5). This 
measurement derives a fractional power unit, 
within a particular frequency bandwidth, with 
respect to all other bandwidths.     

𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 =
(𝑃𝑜𝑤𝑒𝑟!")!

!"!
!"!!"!

(𝑃𝑜𝑤𝑒𝑟!")!
!"!"#
!"!!"!"#

 

Equation 5 – Power Ratio Equation 

3.  RMS Power: In this technique the Root 
Mean Square (RMS) power of all frequency 
samples within the required bandwidth (from 
frequency 𝑓𝑟! to 𝑓𝑟!) is calculated (Equation 
6). 𝑁  is the number of frequency samples, 
available within the corresponding 
bandwidth.  

𝑅𝑀𝑆 𝑃𝑜𝑤𝑒𝑟 =
(𝑃𝑜𝑤𝑒𝑟!")!

!"!
!"!!"!

𝑁  

Equation 6 – RMS Power Equation 

4.  RMS Power Ratio (db): In this 
technique, the logarithmic measure of the 
Root Mean Square (RMS) power is 
calculated. To do so, the RMS power of the 
required frequency bandwidth (from 
frequency 𝑓𝑟! to 𝑓𝑟!) is calculated. Then, the 
logarithmic measure of this value, divided by 
the RMS power of all frequency bandwidths 
(from frequency 𝑓𝑟!"#  to 𝑓𝑟!"# ), is 
calculated. 𝑁  and 𝑀  are the number of 
frequency samples, available within the 
corresponding bandwidth and all bandwidths, 
respectively (Equation 7). The unit in this 
measurement is the decibel (db). This 
measurement derives a normalised power unit 
of the RMS power of a frequency bandwidth, 
respect to the RMS power of all frequency 
bandwidths14.  

                                                             
14  The Log-Transformation, discussed in [19], while 

𝛽 = 10  and 𝛼 = −10𝑙𝑜𝑔!"
(!"#$%!")!

!"!"#
!"!!"!"#

!
 as a 

reference point. 

𝑅𝑀𝑆 𝑃𝑜𝑤𝑒𝑟 𝑅𝑎𝑡𝑖𝑜 = 10𝑙𝑜𝑔!"

(𝑃𝑜𝑤𝑒𝑟!")!
!"!
!"!!"!

𝑁

(𝑃𝑜𝑤𝑒𝑟!")!
!"!"#
!"!!"!"#

𝑀

 

Equation 7 – RMS Power Ratio (db) Equation 

3.3.2. Participant-Related Features 

In total, three features, related to the 
participant, have been extracted, in each window. 
These are the gender (male vs. female), hand 
preference (right vs. left handed) and age (four 
classes: 12-18, 18-24, 24-30 and 30-40 years 
old), each of which has been recorded within the 
features matrix.    

3.3.3. EEG Features 

Table 1 presents all features extracted from 
the EEG signals. 13 out of 14 EEG features, 
presented in [19], have been extracted from the 
EEG signal within each window. Only the event-
related potentials (EPR), reviewed in [19], have 
not been employed in this study. This was due to 
the fact that the affective stimulations were 
presented during the game period, whereas EPR 
features need to be extracted according to 
specific stimuli presentation instances. In 
addition to the 13 EEG features introduced in 
[19], the 𝐴𝑙𝑝ℎ𝑎 − 𝐵𝑒𝑡𝑎 𝑅𝑎𝑡𝑖𝑜  measurement, 
presented in Equation 8, has been implemented in 
this study. According to [27], Alpha waves can 
indicate a relaxed awareness, without any 
attention or concentration, whereas Beta waves 
can be associated to active thinking, active 
attention or solving concrete problems. 
Therefore, this ratio can indicate an “attention 
measure” in a location of the brain (large 
𝐴𝑙𝑝ℎ𝑎 − 𝐵𝑒𝑡𝑎 𝑅𝑎𝑡𝑖𝑜  indicates high alpha 
activities and lower beta activations, signifying 
lower attention and concentration, and vice 
versa).  

𝐴𝑙𝑝ℎ𝑎 − 𝐵𝑒𝑡𝑎 𝑅𝑎𝑡𝑖𝑜 =
𝐵𝑒𝑡𝑎 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑃𝑜𝑤𝑒𝑟
𝐴𝑙𝑝ℎ𝑎 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑃𝑜𝑤𝑒𝑟

 

Equation 8 – Alpha-Beta Ratio Equation  

All spectral powers, in all frequency ranges 
(theta, slow-alpha, alpha, beta and gamma), have 
been extracted four times, using one of the power 
calculation formulae presented in Section 3.3.1 
(Equation 4, Equation 5, Equation 6 and Equation 
7). Therefore all related measurements (e.g. 
asymmetric ratio 15 , EEGw

16 , etc.) have been 
calculated four times, using all four power 
calculation formulas. Consequently, in total, 707 

                                                             
15  Asymmetric Spectral Power Density = !!"#$!!!"#!!

!!"#$!!!"#!!
 , 

While “P” is the spectral power in either “Alpha” or 
“Slow-Alpha” frequency rhythms [45], [46]. 
16 𝐸𝐸𝐺! = log ( !!

!
!!!
(!!!!!)

!
!!!

) , While “N” is the number of 

channels. θ, α and β are Theta, Alpha and Beta frequency 
rhythms, respectively [29]. 
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 8 

features have been extracted from all fourteen 
single and seven paired channels of EEG signals.  

3.3.4. GSR Features  

Table 3 presents all features extracted from 
the GSR signals. All GSR features, presented in 
[19], have been extracted from the raw GSR 
signal, within each window. In addition, three 
extra features have been introduced in the present 
study and have been extracted from the GSR 
signal: (1) mean of the positive values in the GSR 
first derivative, as well as negative values 
(employed by [28], [29], [30]) have been 
extracted; (2) mean of the GSR first derivative’s 
peak values (local maxima), as well as the 
average peaks of the original signal (employed by 
[28], [30]) have been recorded; (3) the GSR 
fluctuation frequency has also been extracted, 
using Equation 9 (𝑋!(𝑖) is the 𝑖!!  element of the 
first derivative of the GSR signal; and 𝑠𝑖𝑔𝑛 𝑎  
presents the sign function). The fluctuation 
frequency signifies the number of times the 
signal changes direction (i.e. increase to decrease 
and vice versa).  

𝐹𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 𝑠𝑖𝑔𝑛 𝑋!(𝑖) ≠ 𝑠𝑖𝑔𝑛 𝑋!(𝑖 + 1)
!!!

!!!

 

Equation 9 – Signal Fluctuation Frequency Equation 

The spectral power has been extracted four 
times, each time by using one of the power 
calculation formulas presented in Section 3.3.1 
(Equation 4, Equation 5, Equation 6 and Equation 
7). Consequently, in total, 14 features have been 
extracted from the raw GSR signals.  

3.3.5. Heart Rate Features 

Table 2 presents all features extracted from 
the heart rate signals. Seven out of eight heart 
rate features, presented in [19], have been 
extracted from the raw heart rate signal, within 
each window. The sampling frequency of the 
Shimmer+ device (512Hz) did not provide the 
appropriate frequency resolution required for 
extracting low frequency spectral power17 from 
the heart rate signal. Six additional features have 
also been implemented in this study and were 
extracted from the heart rate signal: (1) minimum 
and (2) maximum heart rate values within a 
window are extracted; (3, 4) mean of both 
positive and negative values of the first derivative 
of the heart rate signals are also recorded; (5) the 
mean of the peak values (local maxima) of the 
first derivative of the heart rate is extracted from 
each window; (6) the heart rate fluctuation 
frequency is also obtained, using the algorithm 
presented in Equation 9 (Section 3.3.4).  

The spectral powers have been extracted four 
times, using one of the power calculation 
formulae presented in Section 3.3.1 (Equation 4, 
Equation 5, Equation 6 and Equation 7). 

                                                             
17 0.01Hz to 0.04Hz as presented in [28], [30], [47], [48], 
[49], [50]. 

Consequently, in total, 22 features have been 
extracted from the raw Heart Rate signals. 

3.3.6. Affective Tagging 

Each affective feature vector 𝐹! (each row of 
the features matrix, extracted from a single 
window) has to be tagged by the corresponding 
emotion (𝑦!), which has been experienced by the 
participant. As discussed in Section 2.2, 
participants were asked to self-assess their 
average emotional experience during each game, 
using both dimensional and categorical models. 
The dimensional ratings (using Valence, Arousal 
and Dominance axes) are converted into one of 
the four Affective Clusters 18  (PVLA, PVHA, 
NVPA and NVNA – for more information refer 
to [19]). As the self-assessments are conducted at 
the end of each game, rather than continuously 
during the gameplay, the below hypothesis has 
been presented in this study. According to this 
hypothesis, we divided the emotional experience 
of the participants, during a single session 
(game), into two affective periods:  

1.  ‘Emotion Build-Up’ Period: This 
period occurs during the first part of each 
game. Within this period, the emotional 
experience of the participant can be 
unpredictable, as it can be representative of a 
residual state from a previous game or some 
other pre-cognitive state.  
2.  ‘Emotion Persistence’ Period: This 
period occurs during the last part of each 
game. Within this period, the emotional 
experience of the participant has been 
influenced by the current game, and can be 
(reasonably) confidently labelled by an 
affective cluster or label. This means that all 
emotional experience variations within this 
period are considered as minimal. This also 
means that the affective experience of the 
participants within this period is always close 
to the average affective label and cluster, 
reported by the participants at the end of the 
game. 

Then, we hypothesised that the first 30% 
duration of each game constitutes the Emotion 
Build-Up Period, while the last 70% can be 
considered as the Emotion Persistence Period. As 
the emotional experience of the participants can 
be unpredictable during the Emotion Build-Up 
period, all windows, which have a centre time-
stamp within the first 30% period of the each 
game, have been deleted from the features 
matrix. Then, all windows, which have a centre 
time-stamp within the last 70% period of the each 
game, have been tagged by the Affective Cluster 
and Emotion Label reported by the participants, 
at the end of that game.    

                                                             
18  The cluster is determined according the dimensional 
ratings of the participants at the end of each game and the 
cluster boundaries, presented in Section [19]. 
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Table 1 – Extracted EEG Features List – All Features Were Extracted From Each Window 

Feature Description Feature Description 

14 Single Channels Theta 
Rhythms 

4Hz to 8Hz Frequency 
Range Power 

7 Paired Channels19 Signal 
Quality 

As Reported by EPOC 
EMOTIV, in 5 Classes 

14 Single Channels Slow-
Alpha Rhythms 

8Hz to 10Hz Frequency 
Range Power 

7 Asymmetric Power 
Ratio15 Using Slow-Alpha 

Rhythms 

7 Symmetric Channel 
Pairs 

14 Single Channels Alpha 
Rhythms 

8Hz to 13Hz Frequency 
Range Power 

7 Asymmetric Power 
Ratio15 Alpha Rhythms 

7 Symmetric Channel 
Pairs 

14 Single Channels Beta 
Rhythms 

14Hz to 26Hz Frequency 
Range Power Left Frontal EEGw

16 AF3, F3, F7 and FC5 
Channels 

14 Single Channels 
Gamma Rhythms 

30Hz to 45Hz Frequency 
Range Power Right Frontal EEGw

16 AF4, F4, F8 and FC6 
Channels 

14 Single Channels20 
Signal Quality 

As Reported by EPOC 
EMOTIV, in 5 Classes Left Parietal EEGw

16 P7 and O1 Channels 

7 Paired Channels21 Theta 
Rhythms 

4Hz to 8Hz Frequency 
Range Power Right Parietal EEGw

16 P8 and O2 Channels 

7 Paired Channels21 Slow-
Alpha Rhythms 

8Hz to 10Hz Frequency 
Range Power Frontal EEGw

16 AF3, AF4, F3, F4, F7, F8, 
FC5 and FC6 Channels 

7 Paired Channels21 Alpha 
Rhythms 

8Hz to 13Hz Frequency 
Range Power Parietal EEGw

16 P7, P8, O1 and O2 
Channels 

7 Paired Channels21 Beta 
Rhythms 

14Hz to 26Hz Frequency 
Range Power Overall EEGw

16 All 14 Channels 

7 Paired Channels21 
Gamma Rhythms 

30Hz to 45Hz Frequency 
Range Power 

7 Signal Quality for all 
Measurements22 

As Reported by EPOC 
EMOTIV, in 5 Classes 

Table 2 – Extracted Heart Rate Features List – All Features Were Extracted From Each Window 

Feature Description Feature Description 

Mean Average of the Heart Rate 
Signal 

Mean of the Negative 
Values in the First 

Derivative 

Average of the Negative 
Values of the First 

Derivative of the Heart 
Rate Signal 

Minimum Minimum Value of the 
Heart Rate Signal 

Mean of The First 
Derivative Peaks 

Average of the Peak 
Values (Local 

Maximums) of the First 
Derivative of the Heart 

Rate Signal 

Maximum Maximum Value of the 
Heart Rate Signal 

Heart Rate Medium 
Frequency Spectral Power 

0.04Hz to 0.15Hz 
Frequency Range Power 

Standard Deviation Standard Deviation of the 
Heart Rate Signal 

Heart Rate High Frequency 
Spectral Power 

0.15Hz to 0.5Hz 
Frequency Range Power 

Mean of The Peaks 
Average of the Peak Values 
(Local Maximums) of the 

Heart Rate Signal 

Heart Rate Spectral Power 
Ratio23 

Fractional Ratio of the 
Heart Rate Medium and 

High Spectral Power 

Mean of The First 
Derivative 

Average of the First 
Derivative of the GSR 

Signal 
Fluctuation Frequency 

Frequency of the GSR 
Signal Direction 

Changing 

Mean of the Positive 
Values in the First 

Derivative 

Average of the Positive 
Values of the First 

Derivative of the GSR 
Signal 

– – 

                                                             
19 Average signal quality of two symmetric channels, within the corresponding window 
20 Average channel’s signal quality, within the corresponding window 
21 Voltage subtraction of two symmetric channels 
22 Average signal quality of all target channels, within the corresponding window 
23 Heart Rate Spectral Power Ratio =  !"#$%& !"#$%#&'( !"#$%&'( !"#$%

!"#$ !"#$%#&'( !"#$%&'( !"#$%
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Table 3 – Extracted GSR Features List – All Features Were Extracted From Each Window 

3.3.7. Defective Data Removal 

All windows exhibiting EEG signals with an 
average signal quality below “fair” (according to 
the EPOC EMOTIV signal quality classes10) have 
been removed from the features matrix. 
Furthermore, all windows exhibiting infinity or 
NAN (Not-A-Number) values have also been 
removed from the features matrix.  

3.4. Features Selection 

3.4.1. Minimal-Redundancy-Maximal-
Relevance (mRMR) 

As discussed in Section 3.3, a total of 743 
features have been extracted from the raw 
physiological signals. To be able to perform 
emotion classification, the dimension of the 
features matrix has to be reduced to a subspace. 
This subspace has fewer features (labelled Most 
Optimum Features throughout the paper), while 
they can adequately capture the essence of the 
data [26]. To perform the feature selection, the 
minimal-redundancy-maximal-relevance 
(mRMR) technique has been employed. Consider 
the features matrix of 𝐹 ∈ ℝ!×!, while 𝑁 is the 
number of observations and 𝐷 is the number of 
features. The mRMR algorithm finds the most 
optimum subset 𝐹! ∈ ℝ!×! , such that 𝑑 ≪ 𝐷 , 
and 𝐹! can optimally characterise 𝐹 [31]. 

The mRMR algorithm employs Shannon’s 
Entropy [32] to identify those features, which are 
mutually exclusive with respect to each other 
(minimal redundancy), whilst remaining mutually 
inclusive with respect to the classification 
clusters (maximal relevance – Affective Clusters 
or Emotion Labels in this study) [31]. To perform 

the analysis, the database has to be discretised 
prior to the Shannon’s Entropy calculations. 
Therefore, all features were discretised according 
to 3 classes (-1, 0 and 1), with respect to the 
features’ mean and standard deviation values24 
[31].  

3.4.2. Feature Selection Parameters 

In the present study, 30 arbitrary values have 
been used as the number of required features (d – 
1 to 30), each of which could be selected 
according to either Affective Clusters or Emotion 
Labels. Furthermore, the mRMR technique can 
produce various lists of 30 Most Optimum 
Features, according to different windowing 
techniques employed in the features matrix 
construction process (28 different window 
lengths for each windowing technique, Hamming 
and Tukey – Section 3.2.4). This combination 
can create 1680 different settings (2×28×30 =
1680) , for classification according to either 
Affective Clusters or Emotion Labels25.  

                                                             
24  
𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑠𝑒𝑑 𝐹! =
1                                                        𝐹!" > 𝑚𝑒𝑎𝑛 𝐹! + 𝑠𝑡𝑑 𝐹!
0            𝑚𝑒𝑎𝑛 𝐹! − 𝑠𝑡𝑑 𝐹! ≤ 𝐹!" ≤ 𝑚𝑒𝑎𝑛 𝐹! + 𝑠𝑡𝑑 𝐹!
−1                                                     𝐹!" < 𝑚𝑒𝑎𝑛 𝐹! − 𝑠𝑡𝑑 𝐹!

 

, while “mean” and “std” are the average and standard 
deviation of 𝐹! , respectively [31].  
25  E.g. (1) most optimum feature for the 2-second 
Hamming window, (2) 2 most optimum features for the 2-
second Hamming window, … , (1680) 30 most optimum 
features for the 100% Tukey window. 

Feature	 Description	 Feature	 Description	

Mean	 Average of the GSR Signal Mean of the Positive Values 
in the First Derivative 

Average of the Positive 
Values of the First 

Derivative of the GSR 
Signal 

Minimum	 Minimum Value of GSR 
Signal 

Mean of the Negative 
Values in the First 

Derivative 

Average of the Negative 
Values of the First 

Derivative of the GSR 
Signal 

Maximum	 Maximum Value of GSR 
Signal 

Mean of The First 
Derivative Peaks 

Average of the Peak 
Values (Local 

Maximums) of the First 
Derivative of the GSR 

Signal 

Standard Deviation	 Standard Deviation of the 
GSR Signal 

GSR Low Frequency 
Spectral Power 

0Hz to 2.4Hz Frequency 
Range Power 

Mean of The Peaks	
Average of the Peak Values 
(Local Maximums) of the 

GSR Signal 
Fluctuation Frequency 

Frequency of the GSR 
Signal Direction 

Changing 

Mean of The First 
Derivative	

Average of the First 
Derivative of the GSR 

Signal 
– – 
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4. Classification and Affect 
Recognition 
4.1. Classification Techniques 

As discussed in [19], Support Vector 
Machine (SVM) [33], Discriminant Analysis 
(DA) [34] and Classification Trees [35] have 
been employed by the majority of the studies, 
reviewed. In the present study, we evaluated the 
performance of these classifiers (SVM, DA and 
Classification Tree), plus the K-Nearest 
Neighbour (KNN) classifier [36], in the affect 
recognition process. All classifications and cross-
validations have been implemented within 
MATLAB software (version R2015b), using the 
Statistics and Machine Learning Toolbox26. 

4.1.1. Support Vector Machine (SVM) 

Support Vector Machines are supervised 
classification and regression methods, originally 
designed for binary classifications, but with the 
capability for extension to be implemented in 
multi-class and regression applications. SVM 
classifier is a Kernelized algorithm, which 
attempts to cluster a feature space according to a 
number of known labels, with maximum possible 
distance between the clusters’ borders, by using a 
kernel function [33]. There are various Kernel 
functions that could be implemented in SVM 
classification algorithms [37]. In the present 
study, the Linear, 2nd Order Polynomial 
(Quadratic), 3rd Order Polynomial (Cubic) and 
Gaussian Kernel functions have been 
implemented and evaluated in the SVM 
classification. Twenty-four arbitrary Kernel 
Scales, for the Gaussian Kernel function, have 
been selected and evaluated in the cross-
validation process (0.005, 0.01, 0.015, 0.02, 
0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.1, 0.15, 
0.2, 0.25, 0.3, 0.35, 0.4, 1, 1.4, 2, 3, 4, 5 and 5.7).  

4.1.2. Discriminant Analysis (DA) 

Discriminant Analysis is a supervised 
discrimination (classification) algorithm, which 
categorises feature spaces into binary or multi-
class clusters [34]. In the present study, Linear 
(LDA) and Quadratic (QDA) Discriminant 
Analyses have been implemented and evaluated 
in the affect recognition process.  

4.1.3. Classification Trees 

Classification Trees (also known as Decision 
Trees) are supervised classification algorithms 
which are defined by separating and partitioning 
a feature space, using multiple rules (called 
Splits), and defining a local model, into which 
feature spaces can be categorised as binary or 
multi-class clusters. The number of Splits in a 
tree can be defined as its complexity level. As an 
illustration, a tree with 50 Splits is five times 

                                                             
26 http://uk.mathworks.com/help/stats/index.html  

more complex than a tree with only 10 Splits 
[35]. In the present study, twenty different 
arbitrary Splits numbers have been selected and 
evaluated in the cross-validation process (5 to 
100 with step size of 5).  

4.1.4. K-Nearest Neighbour (KNN) 

K-Nearest Neighbour is a supervised 
classification algorithm, which categorises 
feature spaces into binary or multi-class clusters. 
To do so, the algorithm employs a training 
dataset to classify further data points according to 
the K closest data points in the training dataset (K 
nearest neighbours – using Euclidean distance27) 
[36]. In the present study, 30 different arbitrary K 
values have been implemented and evaluated in 
the cross-validation process (1 to 30).  

4.2. Hyper-Parameters Tuning 

As explained in Section 3.2.4, 56 different 
windowing settings can be applied (each of 
which with different length and type) to generate 
56 various feature matrices. The feature selection 
algorithm, presented in Section 3.4, is capable of 
identifying different sets of the most optimum 
features, by employing different feature matrices 
constructed from various window lengths and 
types, to classify the physiological affective 
space. On the other hand, the feature selection 
algorithm, presented in Section 3.4, can generate 
30 feature sets, each of which containing between 
1 and 30 of the most optimum features. This will 
result in 1680 different training matrices for the 
classification process (Section 3.4.2). By 
employing the Affective Clusters (4 clusters – 
dimensional assessment) and Emotion Labels (8 
labels – categorical assessment), the classifiers 
could categorise the physiological responses into 
four or eight classes, respectively (Section 2.1.1). 

The performance of the classifiers, trained 
according to each training matrix, vary in terms 
of the classification accuracy. These variables are 
the hyper-parameters of the affect recognition 
system. Hyper-parameters are the restrictions of 
learning algorithms, which can be tuned prior to 
the training process, resulting in various 
classification performances [38]. The process, in 
which the best set of hyper-parameters, which 
can produce the best classification performance, 
is identified, is called hyper-parameters tuning 
[38]. In machine learning algorithms, cross-
validation is mainly used as a measure in the 
hyper-parameters tuning process. However, 
various searching algorithms (e.g. grid or random 
search) are employed in addition, in order to 
identify the best set of hyper-parameters, which 
generate the best classification accuracy [38].   

                                                             
27  𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑓!! − 𝑓!! !!

!!!  , while f1i  

and f2i  are the ith features of the 1st and 2nd points 
respectively. And “D” is the number of features, employed 
to present each point in the affective space.  
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It is almost impossible to train each classifier 
according to all possible hyper-parameter 
variations, as there are infinite combinations 
(considering all possible window lengths, rather 
than a finite number of arbitrary selections). 
Therefore, by selecting the arbitrary window 
lengths (Section 3.2.4), the number of required 
features (Section 3.4.2) and the classification 
settings (Section 4.1.1, Section 4.1.2, Section 
4.1.3 and Section 4.1.4), the number of possible 
hyper-parameters tuning variations have reached 
to 132,720 28  for each classification process 
(according to either Affective Clusters or 
Emotion Labels – 265,440 in total). According to 
[38], this small subset of the infinitely larger 
settings space may be sufficient in the hyper-
parameters tuning process, as the majority of the 
hyper-parameters variations do no matter much, 
as only those which result in high accuracy 
actually matter. To assess the performance of 
different classifications settings, the accuracies of 
the classifiers have been estimated through a 10-
Fold (random folding) Cross-Validation 
technique [39]. To train and cross-validate the 
performance of all 265,440 classifiers, a 
processing farm service (HPC29) was employed 
to speed up the process.  

To perform the comparison, the scatter plots 
of the classification accuracies, for each setting, 
have been analysed. As an illustration, the 
scattered dots in Figure 3 define different 
classifiers with various settings. For example, if 
the classifier employs five features for the 
classification, different window types (Hamming 
vs. Tukey), window lengths (28 different window 
lengths), classifier settings (different K-value in 
KNN, etc.), and so on, can result in various 
accuracies (all scattered dots presented in a 
vertical manner for five features). However, as 
the best performing classifier in each setting has 
to be selected the setting, which generates the 
maximum classification accuracy is identified 
and highlighted (e.g. the line, highlighting the 
maximum values in Figure 3). The analyses of 
different hyper-parameters variations are 
presented in Sections 4.3, 4.4 and 4.5. The best 
performing classifiers (with the highest accuracy) 
have been identified and presented in Section 5.1.   

4.3. Number of Features Evaluation 

Figure 3 presents the performance of the 
classifiers with respect to the different number of 
features. As it can be obtained by the graph, the 
DA performance has not been changed 
considerably, by employing more or less features, 
whereas employing more features has increased 

                                                             
28  
(1680×27)!"# + (1680×2)!" +
(1680×20)!"#$$%&%'#(%)* !"## + (1680×30)!"" =
132,720 
29 High Performance Computing (HPC) services provided 
by Queen Marry University of London (QMUL): 
http://docs.hpc.qmul.ac.uk/  

the accuracy of the Classification Tree. The 
accuracy of both KNN and SVM classifiers, with 
respect to the number of employed features, 
follows a Sigmoid function30 pattern. This means 
that their accuracies have increased by employing 
more features, with saturation occurring around 
98%. As it can be seen in the graphs, the 
accuracy of KNN and SVM classifiers has 
increased around 0.6% by increasing the number 
of features from 20 to 30. By increasing the 
number of features, the complexity of the 
classifier grows, which consequently increases 
the classifier’s processing and timing expense. 
Therefore, we decided to not to employ more 
than 30 features in the classification process.    

4.4. Windowing Settings Evaluation 

As discussed in Section 3.2.4, there are two 
tuning parameters for the windowing process; 
window type (Hamming vs. Tukey) and length 
(17 fixed vs. 11 relative). As shown in Figure 4, 
the performances of KNN, SVM and 
Classification Tree are slightly better when using 
the Hamming window, compared to the Tukey 
window. The DA classifier performance did not 
change considerably by employing either the 
Hamming or Tukey window.  

Figure 5 presents the classification accuracies 
of the classifiers, respect to different fixed 
window lengths. Figure 6, on the other hand, 
presents the classification accuracies of the 
classifiers, with respect to different relative 
window lengths. As it can be seen in the graphs 
the performance of KNN, SVM and 
Classification Tree classifiers have been 
increased by employing shorter windows (in both 
fixed and relative windowing techniques). 
However, the DA performance has not been 
changed considerably by using different window 
lengths. 

4.5. Classifiers Settings Evaluation 

As discussed in Section 4.1, each classifier 
can be tuned according to a parameter. As can be 
seen in Figure 7, the performance of the KNN 
classifier is slightly attenuated, whilst “K” is 
increased. This means that the KNN classifier 
performs better when considering fewer 
neighbours in the affective space, in its attempts 
to classify the affective features. According to 
this analysis the 1st Nearest Neighbour (K=1) has 
the highest accuracy, compared to other “K” 
values. In contrast, as shown in Figure 7, the 
accuracy of the Classification Tree is boosted, 
while the number of Splits is increased. This 
means that the Classification Tree performs 
better, if more conditions are defined and a more 
complex tree is generated. According to the 
analysis, the Classification Tree has its maximum 
accuracy if 100 Splits are generated in the Tree. 
                                                             
30 𝑠𝑖𝑔𝑚 𝑥 = !!

!!!!
  , The term “sigmoid” means S-shaped 

[51].  
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On the other hand, the performance of the DA 
classifier is attenuated if a 2nd order polynomial 
(quadratic instead of linear) function is 
employed. 

Figure 8 presents the performance of the 
SVM classifier, according to four different 
Kernel functions; linear, 2nd order polynomial 
(quadratic), 3rd order polynomial (cubic) and 
Gaussian function with 24 different Kernel 
scales. As illustrated by the graph, the 

performance of the SVM classifier is boosted 
when a higher order non-linear Kernel function is 
employed. The Gaussian Kernel function with 
relatively large kernel scales (either 2 or 3) 
performed better than the Linear and Quadratic 
Kernel functions. Although the Cubic Kernel 
performance was very similar to the Gaussian 
function, the best performing classifiers (Section 
5.1) employed the Gaussian Kernel. 

 
Figure 3 – Classifiers Performance Respect to Different Number of Features, According to Affective Clusters

 
Figure 4 – Window Type Vs. Classifiers Accuracy, According to Affective Clusters 
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Figure 5 – Window Fixed Length Vs. Classifiers Accuracy, According to Affective Clusters 

 
Figure 6 – Window Relative Length Vs. Classifiers Accuracy, According to Affective Clusters 

 
Figure 7 – KNN, Classification Tree and DA Classifiers Settings vs. Accuracy, According to Affective Clusters 
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Figure 8 – SVM Classifier Settings Vs. Accuracy, According to Affective Clusters – The Right Top Graph Presents the Kernel 

Scale Between 0.005 and 5.7 – The Bottom Graphs Presents Magnified Versions, with Kernel Scale Between 0.005 and 0.4 
(Left) and 0.4 and 5.7 (Right). 

 
Figure 9 – Classification Methods Comparison, According to Affective Clusters and Emotion Labels – The Horizontal Axes 
Presents 28 Different Window Lengths; 17 Fixed (Left Side of the Vertical Dashed Line) and 11 Relative (Right Side of the 

Vertical Dashed Line) 

5. Discussion 
5.1. Best Performing Classifiers 

To be able to compare the performance of all 
classification techniques, the best performing 
classifier setting (e.g. K value in KNN, etc.), for 
each window length, has been identified. As a 
result, 28 settings for each classification 
technique (KNN, SVM, DA and classification 
tree) have been identified. Figure 9 presents the 
best classification accuracy, for each classifier, in 
each window length. The horizontal axis of the 
figure presents 28 different window lengths; 17 
Fixed (left side of the vertical dashed line) and 11 
Relative (right side of the vertical dashed line). 
An Analysis of Variance (ANOVA) 31  showed 
that the different windowing techniques (fixed vs. 
                                                             
31  Classifiers accuracy is considered as the dependent 
variables, while relative vs. fixed windowing technique 
and different classifiers as the independent parameters. 

relative) is not a significant factor in changing the 
classifications performances (PWindowing = 0.691). 
However, the performances of different 
classification techniques are significantly 
different, in terms of their classification accuracy 
(PClassification < 0.001). The KNN (96.78% 
(±1.42%) and 97.24% (±1.14%) mean accuracy, 
for Affective Clusters and Emotion Labels 
respectively, across all window lengths) and 
SVM (92.77% (±3.42%) and 92.91% (±3.97%) 
mean accuracy, for Affective Clusters and 
Emotion Labels respectively, across all window 
lengths) perform better than the Classification 
Tree (61.54% (±2.46%) and 51.06% (±3.62%) 
mean accuracy, for Affective Clusters and 
Emotion Labels respectively, across all window 
lengths). The DA classifier performs worst than 
the other three, with 48.28% (±0.96%) and 
44.53% (±1.98%) mean accuracy, for Affective 
Clusters and Emotion Labels respectively, across 
all window lengths.  
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As there is a high and significant negative 
correlation between the window durations and 
the accuracies of the KNN and SVM classifiers 
(𝑟!"#$% 68 = −0.69 and 𝑟!"#$%&'" 44 = −0.61, 
P<0.001 – for both Affective Clusters and 
Emotion Labels), one could conclude that, by 
decreasing the window length, the accuracy of 
the KNN and SVM classifiers can be improved. 
In the fixed windowing technique, the KNN 
classifier achieved its best performance by the 2-
second window with 98.61% accuracy, for both 
Affective Clusters and Emotion Labels. The 
SVM classifier achieved its best performance 
using the same 2-second window, with 98.06% 
and 98.29% accuracy, for Affective Clusters and 
Emotion Labels, respectively. In the relative 
windowing technique on the other hand, the 
KNN and SVM classifiers achieved their best 
performance by the 5% window with 98.7% and 
97.47% accuracy, for Affective Clusters and 
Emotion Labels, respectively.  

5.2. Most Optimum Features 

As discussed in Section 3.4, 743 features 
were extracted from the recorded physiological 
signals, while no more than the 30 most optimum 
features were selected, for the classification 
process, using the mRMR algorithm. There are 
56 different windowing techniques (different 
length and type – Section 3.2.4), which result in 
56 various sets of most optimum features. 
Furthermore, depending on the classification 
class (either Affective Clusters of Emotion 
Labels) provided for the mRMR algorithm, 
different sets of most optimum features could be 
nominated (Section 3.4). The mRMR algorithm 
guarantees to find the d most optimum features, 
which have minimum mutual information 
amongst each other (minimum redundancy), 
whilst maximum mutual information with respect 
to the classification classes (maximum relevance 
– Affective Clusters or Emotion Labels). 
Therefore, in total, 112 different sets of the most 
optimum features32 (each of which containing 30 
features – Section 3.4.2) have been identified by 
the mRMR algorithm.  

On the other hand, to consider the 
performance of classifiers as well (according to 
the cross-validation accuracies), the sets of most 
optimum features, extracted from the Tukey-
based windows, were excluded33. Therefore, 56 
different sets of the most optimum features were 
analysed and the unique features, which are 
present in at least one of the 56 sets, were 
identified. This Unique Most Optimum Features 
List contains 250 features, out of the 743 
features, recorded at the beginning of the process. 
Furthermore, by considering the best performing 
                                                             
32 28 sets for Hamming and 28 sets for Tukey windows, 
for both Affective Clusters and Emotion Labels 
(28×4 = 112). 
33 All classifiers with the highest accuracy (Section 5.1) 
employed Hamming window technique. 

KNN and SVM classifiers34 in each window, the 
features, which have not been employed in the 
classification process, have been excluded, and 
the number of features in the Unique Most 
Optimum Features List has been reduced to 230 
features. This guarantees that these sets of 
optimum features are those, which not only 
preserve the maximum relevance and minimum 
redundancy aspect of the mRMR results, but also 
generate the best classification accuracies, 
according to both Affective Clusters and Emotion 
Labels.  

Analysing this list can highlight the 
superiority of each feature against the others. To 
do so, the popularity of all features of the Unique 
Most Optimum Features List (containing the 230 
features), within the 56 different sets of most 
optimum features35, have been calculated. This 
value has been reported as a percentage, 
signifying the number of windows (among all 56 
windows) that employed a particular feature. This 
analysis has not been used in the classification 
process, and has only been developed for 
appropriate presentation purposes. Table 4 
presents the Unique Most Optimum Features 
List, grouped according to their measurement 
categories. The table presents the popularity 
percentages as well, and these signify the 
occurrence frequency ranges in which each 
feature group has been employed within a 
windowing and classification technique (among 
all 56 windows). Among participant-related 
features, ‘Age’ has been employed by all 
windows, as the most optimum feature, to 
classify the participants’ emotional experiences 
(according to both Affective Clusters and 
Emotion Labels). This signifies the fact that the 
participants’ age can provide a substantial 
amount of information, to classify their emotional 
experiences. This relationship has been addressed 
by other studies, as well [40], [41], [42], [43].   

On the other hand, and as discussed in 
Section 3.3.1, four different calculation 
techniques have been employed in performing 
the spectral analysis. In Table 4 the rhythms 
measured with various techniques have been 
combined. As an illustration, the alpha rhythm 
asymmetric ratio for the AF3-AF4 paired 
electrodes has been employed by 68% of the 
windowing and classification techniques, whilst 
17.5% measured the powers through Summation 
(Equation 4), 3% based on the Power Ratio 
(Equation 5), 1.5% according to the RMS Ratio 
db (Equation 7) and the remaining 46% through 
the RMS (Equation 6) technique. To compare the 
popularity percentages of the spectral 

                                                             
34  The KNN and SVM classifiers outperformed the 
Classification Tree and DA classifiers, considerably 
(Section 5.1), so only these 2 were considered in this 
process.  
35 28 Hamming windows for classification according to 
Affective Clusters and 28 according to the Emotion 
Labels. 
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measurements according to all 4 techniques 
(Equation 4, Equation 5, Equation 6 and Equation 
7), an ANOVA analysis was conducted. The 
analysis showed that there is no statistical 

difference between the spectral power calculation 
techniques (PMeasurment_Technique = 0.542). One can 
conclude that, no spectral analysis technique is 
superior when compared to the others. 

Table 4 – Selected Features According to the mRMR algorithm and the Best Performing Classifiers  

5.3. Affective Clusters vs. Emotion 
Labels Classification  

Figure 10 presents the performance of KNN 
and SVM classifiers, while classifying the 
features space with respect to Affective Clusters 
and Emotion Labels. An Analysis of Variance 

(ANOVA)36 showed that the performance of the 
classifiers, in categorising the emotions into 
either Affective Clusters or Emotion Labels is not 
                                                             
36  Classifiers accuracy is considered as the dependent 
variables, while different classifiers and Affective Clusters 
vs. Emotion Labels classification technique as the 
independent parameters. 

Feature Group Detail Mean Popularity Percentage 
(25th – 75th Percentiles) 

Age Participants age according to 4 classes 100% 

GSR Minimum Mean Fluctuation Frequency 100% 89.29% 67.86% 

Heart Rate Maximum 55.36% 

Alpha Rhythm 
Asymmetric Ratio All 7 paired channels 43.82% (21.42% - 65.62%) 

Heart Rate Fluctuation Frequency 39.29% 

Slow-Alpha Rhythm 
Asymmetric Ratio All 7 paired channels 38.52% (25.44% - 54.91%) 

EEG Gamma Rhythms 
6 paired channels (Excluding F7-F8) 

8 single channels (Excluding AF3, F3, F4, F7, F8, 
P8) 

33.93% (7.14% - 58.92%) 

Heart Rate Mean of the Peaks 30.36% 

Hand Preference Participants dominant hand 28.57% 

EEGw 

4 paired channels (Excluding F7-F8, FC5-FC6, O1-
O2) 

7 single channels (Excluding F3, F4, F7, F8, FC6, 
T8, P8) 

28.57% (8.48% - 43.75%) 

GSR Low Frequency Power 23.21% 

Heart Rate Medium Frequency Power 23.21% 

EEG Theta Rhythm 5 paired channels (Excluding F3-F4, T7-T8) 
3 single channels (AF4, P7, O2) 22.77% (6.25% - 26.78%) 

EEG Alpha Rhythm 
5 paired channels (Excluding F3-F4, P7-P8) 

8 single channels (Excluding AF3, AF4, F3, F4, T7, 
P8) 

20.19% (8.48% - 26.78%) 

Alpha-Beta Ratio 
All 7 paired channels 

8 single channels (Excluding F3, F4, F8, FC6, T7, 
O1) 

17.38% (9.37% - 19.64%) 

EEG Beta Rhythm 
6 paired channels (Excluding T7-T8) 

7 single channels (Excluding AF3, F3, F7, F8, FC5, 
T8, P8) 

15.93% (3.57% - 30.35%) 

Heart Rate Power Spectral Ratio 12.5% 

Gender Male or Female 10.71% 

Heart Rate Mean 10.71% 

EEG Slow-Alpha Rhythm 6 paired channels (Excluding FC5-FC6) 
6 single channels (AF3, AF4, T8, P7, O1, O2) 10.71% (2.67% - 8.92%) 

GSR Mean of the first derivative 3.57% 

Heart Rate Minimum High Frequency Power 3.57% 1.79% 
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statistically different (PClusters = 0.569). However, 
the performances of KNN and SVM classifiers 
are significantly different, in terms of their 
classification accuracy (PClassification < 0.001). On 
average, KNN (97.01% (±1.3%) mean accuracy 
across different windowing techniques, Affective 
Clusters and Emotion Labels) outperformed the 
SVM algorithm (92.84% (±3.67%) mean 
accuracy across different windowing, Affective 
Clusters and Emotion Labels) with around 4%.  

As well as the classification accuracy, the F1-
Score is another measure that could evaluate the 

performance of a classifier. Equation 10 presents 
the F1-Score formula, which is the harmonic 
mean of Precision (the fraction of the identified 
instances that are relevant), and Recall (the 
fraction of relevant instances that are identified) 
[44]. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

Equation 10 – F1-Score Equation [44] 

 
Figure 10 – Accuracy Comparison of KNN and SVM Classifiers, According to Both Affective Clusters and Emotion Labels  

 
Figure 11 – KNN and SVM Mean F1-Score Across All Clusters  

Figure 11 presents the KNN and SVM 
classification F1-Score, averaged across classes37. 
No game in the experiment has been able to 
evoke sadness on the part of the participants. 
Therefore, the classifiers, trained according to 
Emotion Labels, have not been able to classify 
any part of the features space into the “Sad” 
cluster.  To be able to compare the performance 
of the classifiers (with respect to their F1-Score), 
an Analysis of Variance  (ANOVA) has been 
                                                             
37 F1-Score is calculated within each class. Therefore in 
each windowing technique, 4 and 8 F1-Score for each 
(respectively) Affective Cluster, and Emotion Label, are 
calculated.   

conducted. The analysis highlighted a significant 
difference in F1-Score generated by different 
classifiers (PClasifier < 0.001) and classification 
according to either Affective Clusters or Emotion 
Labels (PClassification-Class < 0.001). This means that 
the classifiers’ F1-Score, in categorising the 
emotions into either Affective Clusters or 
Emotion Labels, is statistically different (unlike 
the accuracy analysis). Table 5 presents the mean 
F1-Scores for Affective Clusters, Emotion Labels 
and classifiers. On average, KNN outperformed 
the SVM classifier, while the classification 
according to Affective Clusters performed better, 
when compared to Emotion Labels. 
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Table 5 – Mean F1-Scores Across Classifiers, Classes and All Windowing Techniques – (A - B) Presents the (A) 25th and (B) 
75th Percentile 

6. Conclusion 
The human-computer interface has become 

one of the most important research topics in 
computer science since the introduction of the 
first computers (calculators) in the 17th century. 
As highly complex real-time systems, computers 
and their interfaces are undergoing an evolution 
on a hitherto unheard-of scale, in what has 
become a quest to ensure that they become 
synergistic, even symbiotic with their human 
users – transparent, usable, intuitive, sensitive 
and reactive. As a key part of this evolution, the 
field of Brain-Computer Interaction is 
introducing a new dimension to the human 
interaction process, by establishing direct human 
brain and computer connection, in an attempt to 
enhance this symbiosis as much as is technically 
and ethically possible. 

This paper demonstrated the phases of 
designing, conceptualisation and evaluation of an 
affective computing system, implemented in 
virtual reality. The findings of this study 
suggested that the physiological signals, 
measured from central and autonomic nervous 
system, could be employed to classify emotional 
experiences. By employing a feature selection 
technique, the dimension of the extracted 
affective features matrix was reduced from 743 to 
only 30 most optimum features, for the 
classification process. By assessing the 
performance of 28 different windowing 
techniques, we concluded that there is no 
difference in employing either relative or fixed 
windowing techniques. Therefore, as the relative 
windowing technique cannot be implemented in 

real-time applications (as the duration of the 
stimuli cannot be determined until the end of the 
VR session), the fixed windowing technique 
could be a more appropriate and credible choice 
to adopt for real-time applications. However, the 
analysis suggested that the shorter window length 
could perform better in the classification process. 
Furthermore, by training more than a quarter of a 
million different classifiers (using KNN, SVM, 
DA and Classification Tree algorithms), the 
classification accuracies of the affective 
recognition system, under various settings, have 
been investigated. According to the cross-
validation results, the KNN and SVM 
outperformed both Classification Tree and DA 
classifiers. However, the KNN classifier 
performed slightly better than the SVM in the 
classifying both Affective Clusters and Emotion 
Labels (5% higher accuracy and F1-Score). 

The final motivation of this research is to 
implement the designed affective recognition 
system, into an Adaptive Virtual Reality 
(Adaptive VR) demonstration, capable of 
adapting its internal environment according to the 
human users’ emotion. Such a development could 
have significant implications for the development 
of dynamic human-centred interface techniques, 
supporting efficient human-system 
communication styles in a wide range of real-
world applications.  For example, in command 
and control for military or counter-insurgency 
operations, it may be possible to endow multi-
input situational awareness display systems with 
the capability to support end users’ decision-
making capabilities, generating responses and 
outcomes based on their instantaneous workload, 

Emotion 
Label 

Mean F1-Score  
(25th – 75th Percentiles)  

Affective 
Cluster 

Mean F1-Score  
(25th – 75th Percentiles) 

Relaxed 95.50% (94.31% - 98.07%) 
PVLA 94.73% (92.81% - 97.56%) 

Content 95.06% (93.78% - 97.74%) 

Happy 94.12% (92.50% - 97.27%) 
PVHPA 95.35% (94.34% - 97.34%) 

Excited 95.61% (94.04% - 97.94%) 

Angry  94.40% (91.69% - 97.63%) 
NVPA 94.82% (93.28% - 97.42%) 

Afraid 93.11% (89.86% - 97.25%) 

Sad Not Available 
NVNA 90.76% (87.78% - 96.12%) 

Bored 94.87% (93.64% - 97.59%) 

Emotion 
Labels 

Classifier 

Mean F1-Score  
(25th – 75th Percentiles) 

Affective 
Clusters 

Classifier 

Mean F1-Score  
(25th – 75th Percentiles) 

KNN 96.94% (96.23% - 98.09%) KNN 96.29% (95.29% - 97.66%) 

SVM 92.40% (89.81% - 96.19%) SVM 91.54% (88.70% - 95.42%) 
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stress and emotional characteristics, as remote 
military incidents evolve and crucial tactical and 
strategic decisions need to be made.  Also in the 
healthcare domain, where the successful use of 
Virtual Reality in the delivery of real and 
imaginary scenes to support patients’ cognitive 
restoration or physical/mental rehabilitation 
depends significantly on their emotional status 
and their motivation to engage.  These are but 
two applications domains where the complexity 
of the human perceptual, motor and cognitive 
subsystems are only now being given the 
academic and scientific attention they deserve in 
the future development of symbiotic, engaging 
and immersive interfaces. 
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