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Abstract

The scaling relations that relate the average asteroseismic parameters nD and nmax to the global properties of stars
are used quite extensively to determine stellar properties. While the nD scaling relation has been examined
carefully and the deviations from the relation have been well documented, the nmax scaling relation has not been
examined as extensively. In this paper, we examine the nmax scaling relation using a set of stellar models
constructed to have a wide range of mass, metallicity, and age. We find that as with nD , nmax does not follow the
simple scaling relation. The most visible deviation is because of a mean molecular weight term and a G1 term that
are commonly ignored. The remaining deviation is more difficult to address. We find that the influence of the
scaling relation errors on asteroseismically derived values of glog are well within uncertainties. The influence of
the errors on mass and radius estimates is small for main sequence and subgiants, but can be quite large for red
giants.

Key words: stars: fundamental parameters – stars: interiors – stars: oscillations

1. Introduction

The most easily determined asteroseismic parameters of a
star are the large frequency separation, nD , and the frequency
at which oscillation power is maximum, n .max These average
asteroseismic parameters can be determined even in poor
signal-to-noise data, and as a result are commonly used in
asteroseismic analyses.

What makes nD and nmax so useful is that they are related to
the global properties of stars, their total mass, radius, and
effective temperatures, through very simple relations, often
known as scaling relations. The large frequency separation,
nD , is the average frequency spacing between modes of

adjacent radial order (n) of the same degree (ℓ). The theory of
stellar oscillations shows that (see, e.g., Tassoul 1980;
Ulrich 1986; Christensen-Dalsgaard 1993) nD scales approxi-
mately as the average density of a star, thus

n rD µ ¯ ( ), 1

or in other words, we can approximate
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The situation for nmax is a bit more complicated. As mentioned
earlier, nmax is the frequency at which oscillation power is
maximum, and thus should depend on how modes are excited
and damped. Unlike the case of nD , we do not as of yet have a
complete theory explaining the quantity. There are some
studies in this regard (e.g., see Belkacem et al. 2011, 2013), but
the issue has not been fully resolved. As explained in Belkacem
(2012) and Belkacem et al. (2011) the maximum in the power
spectrum can be attributed to the depression or plateau of the
damping rates. This is also discussed in Houdek et al. (1999),
Chaplin et al. (2008), Belkacem et al. (2012), and Appourchaux
et al. (2012). This depression of the damping rates can then be
related to the thermal timescale (Balmforth 1992; Belkacem
et al. 2011; Belkacem 2012), which in turn can be related to nac;

however, there is some additional dependence on the Mach
number (Belkacem et al. 2011; Belkacem 2012).

nmax carries diagnostic information on the excitation and
damping of stellar modes, and hence must depend on the
physical conditions in the near-surface layers where the modes
are excited. As assumed in Brown et al. (1991), the frequency
most relevant to these regions is the acoustic cutoff frequency,
nac. The sharp rise in nac close to the surface of a star acts as an
efficient boundary for the reflection of waves with n n< ac.
Brown et al. (1991) argued that nmax should be proportional to
nac because both frequencies are determined by conditions in
the near-surface layers. Kjeldsen & Bedding (1995) turned this
into a relation linking nmax to near-surface properties by noting
that under the assumption of an isothermal atmosphere the
acoustic cutoff frequency can be approximated as

n n
p

µ = ( )c

H4
, 3max ac

where c is the speed of sound and H the density scale height
(which under this approximation is also the pressure scale
height). This can be further simplified assuming ideal gas as

n nµ µ - ( )gT , 4max ac eff
1 2

where g is the acceleration due to gravity and Teff the effective
temperature. This leads to the nmax scaling relation
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While the nmax scaling relation and the relation between nmax

and nac have not been tested extensively, limited observational
studies as well as investigations using stellar models have been
performed, suggesting that the approximations are reasonable
(e.g., Bedding & Kjeldsen 2003; Chaplin et al. 2008, 2011;
Stello et al. 2008, 2009a; Miglio 2012; Bedding 2014; Coelho
et al. 2015; Jiménez et al. 2015).
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Equations (2) and (5) have been used extensively, directly or
indirectly, to determine the surface gravity, mass, radius, and
luminosity of stars (e.g., Stello et al. 2008; Bruntt et al. 2010;
Kallinger et al. 2010b; Mosser et al. 2010; Basu et al. 2011;
Chaplin et al. 2011, 2014; Hekker et al. 2011; Silva Aguirre
et al. 2011; Pinsonneault et al. 2014, etc.). Estimates of stellar
properties may be determined from Equations (2) and (5) by
treating them as two equations with two unknowns (assuming
Teff is known independently), which leads to
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Determining the mass and radius of a star in this manner is
known as the “direct” method. Comparisons with radius
determinations made by other techniques shows that the
asteroseismic radii determined from the scaling relations using
the direct method hold to about 5% for subgiants, dwarfs, and
giants (Bruntt et al. 2010; Huber et al. 2012; Miglio 2012;
Miglio et al. 2012; Silva Aguirre et al. 2012; White et al. 2013).
Examining red giants within eclipsing binaries, Gaulme et al.
(2016) found radii determined using the direct method to be
about 5% too large. These deviations motivate us to investigate
the nmax scaling relation since the nD scaling relation
deviations have already been examined.

Masses determined using Equation (7) have uncertainties on
the order of 10%–15% (Miglio 2012; Chaplin & Miglio 2013;
Chaplin et al. 2014, and references therein);however,it is
more difficult to test the masses given that there are few
binaries with asteroseismic data. Brogaard et al. (2012) used
eclipsing binaries in NGC 6791 and found the mass of red giant
stars to be lower than the mass derived from studiesthatused
the standard scaling relations (Basu et al. 2011; Miglio
et al. 2012; Wu et al. 2014). Gaulme et al. (2016) found that
for red giant stars within eclipsing binaries the direct method
overestimated mass by around 15%. Epstein et al. (2014)
examined ninemetal-poor ( < -[ ]M H 1), α-rich red giant
stars and found their masses calculated from the scaling
relation to be higher than expected. Also examining α-enriched
red giants, Martig et al. (2015) determined masses using the
scaling relations and stellar models. The lower mass limit for
each red giant was then converted into a maximum age.
Unexpectedly, Martig et al. (2015) found a group of stars in the
sample that were both young and α-rich. Additionally,
Sandquist et al. (2013), studying NGC 6819, found that red
giant masses in the cluster from asteroseismology are as much
as 8% too large while Frandsen et al. (2013) found indications
that the detached eclipsing binary KIC 8410637 red giant star’s
mass was less than asteroseismology indicated. These results
further indicate that there are uncertainties with the direct
method and that the scaling relations in Equations (2) and (5)
need to be carefully understood.

Due to the wide use of the scaling relations in asteroseis-
mology, the accuracy of the nmax and nD scaling relations are
crucial to obtain a better understanding of stellar properties.
The scaling relations are a result of approximations, and are
therefore not expected to be completely accurate. The deviation

of the nD scaling relation has been studied quite extensively
(e.g., White et al. 2011; Miglio et al. 2013a; Mosser et al. 2013;
Guggenberger et al. 2016; Sharma et al. 2016; Rodrigues et al.
2017). It has been shown that the relation n rD µ ¯ holds only
to a level of a few percent, and that n rD ¯ instead of being
equal to unity is a function of Teff and metallicity. At low glog ,
there also seems to be a dependence of n rD ¯ on mass. It is
easy to get rid of this error in stellar models, all that one needs
to do is calculate nD for the models using the oscillation
frequencies, rather than Equation (2). There are two approaches
that can be used to account for nD errors in the direct method.
One is to “correct” the observed nD using a correction
determined from models (Sharma et al. 2016) and the other
is to use a temperature and metallicity dependent reference nD
instead of the solar value of nD in Equation (2). Yıldız et al.
(2016) claimed that the deviation of n rD ¯ from unity could
be a result of changes in the adiabatic index G1, becausethis
would affect the sound travel time. They found a linear
relationship between n rD ¯ and G1,which they used to tune
the scaling relation.
Unlike the nD scaling relation, the nmax scaling relation has

not been tested as extensively. Additionally, the tests have been
indirect. Coelho et al. (2015) tested the temperature depend-
ence of the nmax scaling relation for dwarfs and subgiants and
determined the classical -gT eff

1 2 scaling held to ;1.5% over the
1560 K range in Teff that was tested. Yıldız et al. (2016)
examined the G1 dependence on nmax and found that the
inclusion of a G1 term alone, from the derivation of nac, did not
improve mass and radius estimates calculated using the scaling
relations and in fact made mass and radius estimates worse than
the traditional scaling relations (this is examined further in
Section 3). Yıldız et al. (2016) found that additional tuning of
the scaling relations (as a function of G1) was needed. Other
tests of the nmax scaling relation depend on comparing the
radius and mass results obtained by using Equations (2)
and (5) with those obtained from either detailed modeling
of stars (Stello et al. 2009a; Silva Aguirre et al. 2015)
or of independently determined masses and radii (e.g.,
Bedding & Kjeldsen 2003; Bruntt et al. 2010; Miglio 2012;
Bedding 2014).
In addition to the inaccuracies in the scaling relations, there

is another problem with using Equations (6) and (7) in stellar
radius and mass determination. The basic equations
(Equations (2) and (5)) that link nD and nmax to the mass,
radius, and temperature of a star assume that all values of Teff
are possible for a star of a given mass and radius. However, the
equations of stellar structure and evolution tell us otherwise—
we know that for a given mass and radius, only a narrow range
of temperatures are allowed. Additionally, we know that the
mass–radius–temperature relationship depends on the metalli-
city of a star; the scaling relations do not account for that. Thus,
an alternative to using Equations (6) and (7) is to perform a
search for the observed nD , nmax , T ,eff and metallicity in a fine
grid of stellar models and to use the properties of the models to
determine the properties of the star. This is usually referred to
as “Grid Based Modeling” (GBM) though it is more correctly a
grid-based search and has been used extensively to determine
stellar parameters (e.g., Chaplin et al. 2014; Pinsonneault
et al. 2014; Rodrigues et al. 2014). There are many different
schemes that have been used for GBM (e.g., Stello et al. 2009b;
Basu et al. 2010; Kallinger et al. 2010a; Quirion et al. 2010;
Gai et al. 2011; Creevey et al. 2013; Hekker et al. 2013; Miglio
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et al. 2013b; Serenelli et al. 2013). While grid-based methods
give more accurate results, they can give rise to model
dependencies. Whether one uses the direct method to estimate
masses, radii, and glog , or used GBM, the results can only be
as correct as the scaling relations.

One of the most important applications of the asteroseismic
scaling relations has been in estimating the surface gravity of
stars. Spectroscopic surface-gravity measurements are notor-
iously difficult and inaccurate and affect metallicity estimates.
It is becoming quite usual to use asteroseismic glog values as
priors before determining the metallicity from spectra (e.g.,
Bruntt et al. 2012; Brewer et al. 2015; Buchhave &
Latham 2015).

In this paper, we examine the nmax scaling relation in a
similar manner as to how the nD scaling relation has been
tested. We use a set of stellar models to do so. We should note
from the outset that we are not testing the basic assumption that
n nµmax ac, which is beyond the scope of this paper, but
whether nac (and hence nmax ) follows the proportionality in
Equation (4). We also examine the consequence of our results
on asteroseismically derived stellar properties, in particular,
values of glog , that are used so widely.

The rest of the paper is organized as follows.We describe
the models and nmax calculations in Section 2, the results are
presented and discussed in Section 3. The consequences of the
results are discussed in Section 4 and we give some concluding
remarks in Section 5.

2. Stellar Models and νmax Calculations

2.1. The Models

We use a grid of models to examine the nmax scaling relation.
The models were constructed with the Yale Rotating Evolu-
tionary Code (YREC; Demarque et al. 2008) in its non-rotating
configuration. Models were created for seven different masses,
M=0.8, 1.0, 1.2, 1.4, 1.6, 1.8, and ☉M2.0 beginning at the
zero-age main sequence through to the red giant branch.
Models were stopped at the point where nmax of the models
calculated using Equation (5) was 3 μHz, where in Equation (5)
we adopted n = 3090max, μHz. For each mass, models were
constructed with eight metallicities, [Fe/H]=−1.50, −1.00,
−0.75, −0.50, −0.25, 0.0, 0.25, and 0.50. The grid does not
include core helium burning stars. Two separate grids were
constructed, one with the Eddington T–τ relation in the
atmosphere and one set with Model C of Vernazza et al. (1981;
henceforth referred to as the VAL-C atmosphere). In the latter
case, the atmosphere was assumed to be isothermal for
t 0.00014 to avoid a temperature minimum. A temperature

minimum is a feature that arises because of magnetic fields,
which our models do not include. The models were constructed
without the diffusion and gravitational settling of helium or
heavy elements.

Both grids were constructed assuming Grevesse & Sauval
(1998) solar metallicities and thus =[ ]Fe H 0 is defined by

=( )☉Z X 0.023. To determine Y,we first constructed two
standard solar models (SSM), one with Eddington and one with
VAL-C atmosphere. The initial Y and Z needed to construct the
SSM was translated to the Y–Z relation assuming that Z=0
when Y has the primordial value of 0.248. Since the
construction of the SSMs yields solar-calibrated mixing length
parameters, those values were used to construct the models of

the grid (a = 1.70MLT for Eddington models, 1.90 for VAL-C
models).
The models were constructed using the OPAL equation of

state (Rogers & Nayfonov 2002) and OPAL high-temperature
opacities (Iglesias & Rogers 1996) supplemented with low-
temperature opacities of Ferguson et al. (2005). Nuclear
reaction rates of Adelberger et al. (1998) were used, except
for that of the g( )N p O,14 15 reaction, where the Formicola
et al. (2004) rate was used.

2.2. Calculating νmax

We calculate nmax for our models assuming that nmax is
proportional to the acoustic cutoff frequency, which is the
assumption that leads to the scaling relation in Equation (5).
The acoustic cutoff frequency is the frequency above which
waves are no longer trapped within the star. Waves of higher
frequency form traveling waves and these high-frequency
“pseudo modes” are visible in power spectra. While below nac
the modes are a sum of Lorentzians nearly equally spaced in
frequency, above nac the pseudo mode shapes are more
sinusoidal. These pseudo mode peaks are believed to be a
result of interference between the waves that arrive at the
observer having traveled different paths (e.g., Kumar &
Lu 1991). These high-frequency waves can either travel
directly toward the observer, leaving the star, or travel into
the star before being reflected and leaving the star. Since the
two waves travel different paths on their way to the observer,
this results in constructive or destructive interference (depend-
ing on the path length difference and wavelength) creating
peaks in the power spectrum. These pseudo modes can be used
to observationally determine the acoustic cutoff frequencies of
stars (García et al. 1998; Jiménez et al. 2015, etc.).
When it comes to the acoustic cutoff frequency of models,

there are challenges. The acoustic cutoff divides modes into
those that are trapped inside a star, and the pseudo modes that
are not. In the former case, the displacement eigenfunctions
decay in the atmosphere, in the latter they do not. However,
there is no clear boundary between the two, as is demonstrated
in Figure 1. Thus when it comes to the acoustic cutoff
frequency of models, one relies on an approximate theory (see,
e.g., Gough 1993) that shows that the acoustic cutoff is
given by

n
p

= -⎜ ⎟⎛
⎝

⎞
⎠ ( )c

H

dH

dr16
1 2 , 8ac

2
2

2 2

where H is the density scale height. In the case of an
isothermal atmosphere, this reduces to the expression in
Equation (3). As is clear from both Equations (8) and (3), nac

is a function of radius. The acoustic cutoff of a model is
assumed to be the maximum value of nac close to the stellar
surface. The acoustic cutoff frequencies defined by
Equations (8) and (3) are reasonably similar (see Figure 2).
However, the frequency calculated using Equation (8) has
sharp changes close to the top of the convection zone, where
large variations of the superadiabatic gradient cause large
changes in nac, making it difficult to determine what the cutoff
frequency should be. It is difficult to determine nac from the
eigenfunctions, since the change from an exponential decay
to an oscillatory nature is not sharp. However, they can guide
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us. Judging by the behavior of the eigenfunctions shown
in Figure 1 and comparing the results with what we get
as a maximum from Equation (3) for the same models
(Figure 2), using the isothermal approximation to calculate
nmax should be adequate. In fact, this is what is usually
done.

The nmax scaling relation is a proportionality and the Sun is
used as the reference; in other words, for any given model, we
can define the ratio

n
n

= =
- -
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T
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max,

2
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Figure 1. Scaled eigenfunctions of modes with frequencies close to nac for (a) a solar model, (b) a model of a subgiant of mass M1.2 and [Fe/H]=−0.25, and (c)
amodel of a red giant of mass M1.4 and [Fe/H]=0.25. The legends indicate the frequencies, in units of μHz, that correspond to the eigenfunctions. Note that the
lower-frequency eigenfunctions in each case show a linear decay in rlog , the higher frequency ones show a more oscillatory nature.

Figure 2. Acoustic cutoff frequency for the three models shown in Figure 1 calculated as per Equation (3) (red solid line) and Equation (8) (blue dotted–dashed line).
The cutoff frequencies for the three models using Equation (3) are 4.94 mHz, 1.55 mHz, and 0.07 mHz, respectively, and quite consistent with the change in behavior
of the eigenfunctions.
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Figure 3. Ratio  (Equation (11)) for the sets of models with Eddington atmospheres (top row) and VAL-C atmospheres (bottom row) plotted as a function of Teff and
glog . The different colors and symbols refer to different metallicities. The dashed gray line at  = 1 is provided for reference. Note the clear, systematic offset that is a

function of metallicity.

Figure 4. Ratio  calculated using Equation (15) to calculate nmax for the models with Eddington atmospheres plotted as a function of Teff (a) and glog (b). Symbols
and colors correspond to metallicities as indicated in Figure 3. The underlying light-gray points show the ratio  calculated using the original scaling relation. Results
for VAL-C atmospheres are similar and hence not shown. Note that the systematic offset has disappeared, but there is still a remaining departure from the scaling
relation.
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For each of our models, we can also define

n
n

= ( )R , 10ac
ac

ac,SSM

where nac,SSM is the acoustic cutoff of an SSM constructed with
the same input physics (particular atmospheres) as the models.
The use of a solar model having the same physics to define the
ratio allows us to minimize effects related to improper
modeling of the surface layers. If the nmax scaling relation is

perfect, the ratio

 = ( )R

R
11ac

sc

will be unity, if not, the scaling relation does not hold. We
examine how  behaves in the next section. This  parameter
is the inverse of the fν parameter discussed in Yıldız
et al. (2016).

Figure 5. Comparison of the ratio  for models with and without diffusion of helium and heavy elements. Panel (a) shows the results for the original scaling relation
while panel (b) shows the results with the μ-term included. For the sake of clarity, only diffusion models of initial metallicity =[ ]Fe H 0.0 are shown.

Figure 6. Ratio  when the effects of both μ and G1 are included. The
underlying light-gray points show the ratio  calculated using the original
scaling relation. Symbols and colors correspond to metallicities as indicated in
Figure 3.

Figure 7. Ratio  calculated using Equation (17) to calculate nmax for the
models with Eddington atmospheres. The underlying light-gray points show
the ratio  from Equation (16). Note that all systematic errors have been
reduced. Symbols and colors correspond to metallicities as indicated in
Figure 3.
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3. Results

Figure 3 shows the ratio  plotted as a function of Teff and
glog separately for the Eddington and VAL-C models. Two

features stand out immediately. First, that there is a metallicity
dependence, which results in a systematic offset of  for
models with non-solar metallicity. Second, that there is a
deviation at all metallicities at low Teff and low glog , i.e., in
evolved models.

The origin of the metallicity dependence is easy to
understand, and it is somewhat surprising that it has been
neglected for so long, even in grid-based modeling of average
asteroseismic data. To understand the effect, we need to go
back to the origin of the scaling relation.

Equation (3) tells us that nac behaves as c/H. However,for
an isothermal atmosphere r= ( )H P g . Since rµc P then

n
r

µ ( )g
P

. 12ac

The assumption of an ideal gas law tell us that


r m

= ( )P T
, 13

where  is the gas constant, and μis the mean molecular
weight. Substitution of Equation (13) into Equation (12) gives

n
m

µ ( )g
T

. 14ac

It should be noted that Jiménez et al. (2015) did include this
term in their work.

Does the m term take care of the systematic difference seen
for the non-solar metallicity models? To test this, we
recalculated Rsc by modifying Equation (5) to

n
n

m
m
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and calculated  using the resultant modified Rsc. The results
are shown in Figure 4. It can be seen clearly that the addition of

the m factor removes the difference between models with
different metallicities. One explanation for the usual omission
of the μ term is that the abundances of X, Y, and Z for an
observed star, and therefore the value of μ, can be difficult to
determine. The application of the modified nmax scaling relation
to observed stars will be discussed in Section 5. While the
importance of the μ term in the nmax scaling relation might
seem to contradict what was found by Yıldız et al. (2016), it
should be noted that Yıldız et al. (2016) use models with a
much smaller range in μ than the models presented in
this work.
The main contribution to the difference in mean molecular

weight between models with different metallicity is caused by
differences in helium rather than metals. This means that, in
models with diffusion, we should see a trend in the unmodified
 as a function of evolution that is different from that for
models without diffusion. To test this, we constructed
Eddington models with diffusion for masses of M=0.8, 1.0,
1.2, and 1.4Me and compared them to their corresponding
non-diffusion models. The results, for diffusion models with
initial metallicitiesof =[ ]Fe H 0.0, are shown in Figure 5. As
can be seen, the models with diffusion do indeed show a
different trend, however, the trend disappears once the mean
molecular weight is taken into account (see Figure 5(b)). Thus
we conclude that if we are to use the nmax scaling relation, we
need to explicitly use the μ dependence in the expression. The
μ term could also be incorporated in the direct method provided
that the model’s μ value was known or could be calculated.
Since r= Gc P2

1 ,we should also include a G1 in the
scaling relation for nmax such that Equation (15) becomes

n
n

m
m

=
G
G
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.
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2
eff

eff,

1 2 1 2
1
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1 2

Figure 6 examines the ratio  when Rsc is calculated using
Equation (16). As can be seen, the inclusion of the G1 term also

Figure 8. Fractional differences between (a) Tmax and Teff and (b) Rmax and R for each model with an Eddington atmosphere. Symbols and colors correspond to
metallicities as indicated in Figure 3.
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reduces the differences between the models of different
metallicities and lessens the deviations from  = 1.

Even when the main deviation from the scaling relation is
removed, there is a residual difference at low Teff . Most of this
deviation can be explained by the fact that the maximum value
of nac does not occur at r=R but at a different radius. As seen
in Figure 7, this deviation is significantly lessened if
Equation (16) is modified so that nmax is instead scaled as

n
n

m
m

=

´
G
G
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, 17
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max

max,

max

max,

2
max

max,

1 2

max

max,

1 2
1,max

1,max,

1 2

where R ,max M ,max T ,max m ,max and G1,max are the radius, mass,
temperature, mean molecular weight, and G1 at the radius where
nac is the maximum (note that for all models =M Mmax since
the atmosphere is usually assumed to be massless), and Rmax, ,

Mmax, , Tmax, , m max, , and G 1,max, are the same quantities for a
solar model with the same physics. As can be seen in Figure 7,
when taking into account that the maximum value of nac is not
at r=R, the remaining deviation in the scaling relation is
dramatically reduced. To compare the differences between the
values of Tmax and Teff and Rmax and R, refer to Figure 8.

4. Consequences of the Error on the νmax Scaling Relation

Because the nmax scaling relation is used extensively along
with the nD scaling relation to estimate stellar properties, any
deviations from the scaling relation will add to systematic
errors in the estimates. In this section, using the errors in the
nmax scaling relation implied from our previous analysis, we

examine the consequences on stellar glog , radius, and mass
estimates.
As mentioned earlier, asteroseismic estimates of glog are

often used as priors in spectroscopic analyses used to estimate
atmospheric properties and parameters. Thus errors in aster-
oseismic estimates of glog because of nmax errors is a troubling
matter. To test what systematic errors could result, we calculate

glog for the models from nmax using the usually accepted
relation for n ,max but with nmax of the models calculated with
the acoustic cutoff frequency, i.e.,

n
n

=
 

⎛
⎝⎜

⎞
⎠⎟ ( )g

g

T

T
, 18ac

ac,SSM

eff

eff,

1 2

and compare that to the actual glog of the models. The results
are shown in Figure 9(a). As can be seen, there is indeed a
systematic error, but for the metallicity range of stars for which
asteroseismic glog values have been measured, the systematic
error is well within the uncertainty range of data uncertainties
(of the order of±0.01 dex). The systematic effects are
somewhat larger in the low-temperature range that corresponds
to red giants. This error can be made much smaller if a μ term
or a μ and G1 term are included, i.e., if g is calculated as

n
n

m
m

=
-

  
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or if also including the G1 term,
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The effects of calculating glog using Equations (19) or (20)
can be seen in Figure 9(b). The addition of the μ term or the μ

Figure 9. (a) The error made in glog estimates when the original scaling relation is used and (b) when the μ term is included (colored points) and when the μ and G1
terms are included (background gray points). Symbols and colors correspond to metallicities as indicated in Figure 3. (c) The difference between glog estimates if the
μ term is included or not, plotted as a function of [Fe/H] for models with different values of D DY Z . In each panel the gray dashed lines at±0.01 indicate typical
uncertainties in asteroseismic glog , with a dotted gray line at 0.0 for reference.

8

The Astrophysical Journal, 843:11 (12pp), 2017 July 1 Viani et al.



and G1 terms lessens the deviations between models of different
metallicities and brings the value of glog from scaling more
into agreement with the actual glog values of the models.

In Figure 9(c), we examine the difference in glog estimates if
the μ term is included or not as a function of [Fe/H]. We ignore
the G1 term here, as determining the value of G1 for an arbitrary star
with a given [Fe/H] is not as clear as determining μ for that star.
So, in Figure 9(c), we are examining the difference between glog
calculated with Equations (18) and (19). Since the ratio m m
depends on the Y–Z relationship, we include different values of
solar metallicity and different values ofD DY Z as a function of
[Fe/H]. In Figure 9(c),both the Grevesse & Sauval (1998) value
of =( )☉Z X 0.023 (GS98) and the Asplund et al. (2009) value
of =( )☉Z X 0.018 (AGSS09) are used. The added uncertainty
because of the uncertainty in D DY Z is small (less than
±0.01 dex) at low metallicity, but increases with an increase in
metallicity. We are yet to gather asteroseismic data for stars with
[Fe/H] larger than about 0.5, thus the errors for observed stars are
expected to be quite low and smaller than typical glog
uncertainties. While this is a reassuring confirmation that the
original scaling relation has produced trustworthy glog estimates,
Figure 9(b) shows that glog estimates are improved if
Equations (19) or (20) are used.

What of the errors in radius and mass estimates that arise
due to deviations in the nmax scaling relation? Using
Equations (6) and (7),each model’s radius and mass was
determined, where n n max max, was calculated using
n n ac ac, . Here nD was calculated using the scaling relation
in Equation (2), as opposed to calculating nD for each model
using mode frequencies. This was done in order to avoid
introducing errors in the radius and mass estimates from the
nD scaling errors. The same exercise but with nD values

calculated from mode frequencies will be performed later in

the paper. However, for now we just want to examine the
effects of the errors due to nmax scaling deviations. The
results are shown in Figures 10(a) and 11(a). As can be seen,
there are systematic errors in both mass and radius estimates.
Errors in both estimates are reduced substantially when
Equations (6) and (7) are modified to include the effect of the
mean molecular weight and G1, i.e.,

n
n
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The errors in results obtained with these expressions are shown
in Figures 10(b) and 11(b).
The total error in radius and mass estimates obtained using

the scaling laws are of course a combination of errors in the
nD scaling relation as well as the nmax scaling relation. To

determine what that is, instead of determining radius and
mass using input nD values calculated using the scaling
relation, we calculated the input nD using the frequencies of
=ℓ 0 modes assuming Gaussian weights around nmax with

FWHM of n0.66 max
0.88 as from Mosser et al. (2012). Once the

value of nD from mode frequencies was calculated for each
model, Equations (21) and (22) were again used to determine
the error in radius and mass estimates. The results are show in
Figure 12, which also shows the errors in radius and mass
estimates when the μ and G1 terms are not included. Including

Figure 10. (a) The error made in radius estimates when the original nmax scaling relation is used. (b) The same when the nmax scaling relation is modified to include the
μ and G1 terms. Symbols and colors correspond to metallicities as indicated in Figure 3. nD in both cases was calculated using the scaling relation to avoid introducing
errors in the radius estimates from the nD scaling errors.
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the μ and G1 terms helps reduce the deviations somewhat, but
there is still substantial error in mass (±10%–15%) and
radius (±5%).

5. Discussion and Conclusions

We used a large set of models to test how well the nmax
scaling holds, and find that just as in the case of nD , there are
significant departures from the scaling law. The largest

source of the deviation is the neglect of the mean molecular
weight and G1 terms when approximating the acoustic cutoff
frequency. The deviations in the scaling relations cause
systematic errors in estimates of glog , mass, and radius. The
errors in glog are, however, well within errors caused by data
uncertainties and are therefore not a big cause for concern,
except at extreme metallicities.
The results from our work would suggest we should start

using the μ and G1 terms explicitly in the scaling relation, as in

Figure 12. Combined effect of the deviation of both nD and nmax on radius (a), (c), and mass (b), (d) estimates. The upper panels (a), (b) show the fractional
differences using the original scaling relation and the lower panels (c), (d) show the deviations once the μ and G1 terms are taken into account. Symbols and colors
correspond to metallicities as indicated in Figure 3.

Figure 11. Same as Figure 10 but showingerrors in mass estimates.
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Equation (16). Additionally, when using the scaling relations to
determine radius and mass the μ and G1 terms should be
included, as in Equations (21) and (22). For stellar models,
ideally the best method is to use the actual value of μ and G1
calculated in each model. For models where the values can be
determined the modified scaling relation can be easily
implemented. For models where G1 is not readily accessible,
we suggest still including the μ term in the nmax scaling
relation, which, as seen in Figure 4, is an improvement over the
traditional nmax scaling relation.

For observational data, incorporating these terms is not as
straight forward. Even ignoring the G1 term and just determining
μ for an observed star is complicated. One possible way to
implement the μ term into the scaling relation for observed
stars would be to create stellar models and estimate the value of
μ in this manner. For observed stars implementing the modified
nmax scaling relation into the direct method (Equations (21) and
(22)) is not recommended due to the difficulty of determining
the G1 and μ terms from observational data. However, for
observed stars a grid-based method gives more precise
estimates of radius and mass and should be used over the
direct method. So, the difficulty in applying this result to
observed stars is less critical.

Furthermore, we should treat the nmax scaling the way we
have begun to treat nD scaling, i.e., either calculate corrections
to the relation or determine a reference nmax that depends on
Teff to replace n max, as the constant of proportionality. For the
non-diffusion Eddington atmosphere models a correction
formula as a function of Teff is provided in Appendix B. For
GBM, we would suggest that nmax for the grid of models be
calculated from the ratio n nac ac,SSM to avoid most of the
systematic errors.
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for helpful comments and suggestions. This work has been
supported by NSF grant AST-1514676 and NASA grant
NNX16AI09G to S.B. W.J.C., G.R.D., and Y.E. acknowledge
the support of the UK Science and Technology Facilities
Council (STFC). Funding for the Stellar Astrophysics Centre is

provided by The Danish National Research Foundation (Grant
DNRF106).
Software: YREC (Demarque et al. 2008).

Appendix A
Fractional Difference between the Original and Modified

Scaling Relation as a Function of [Fe/H]

The effects of the μ correction can be seen if we plot the
fractional difference between the traditional value of nmax , as in
Equation (5), and the value of nmax,corrected,which includes the
μ term as in Equation (15). So, examining

n n
n
-max max,corrected

max,corrected
. By

comparing Equations (5) and (15) it can be seen that

n n
n

m m
-

= --( ) ( )☉ 1. 23max max,corrected

max,corrected

1 2

The fractional difference between the traditional nmax and
nmax,corrected is shown in Figure 13 as a function of [ ]Fe H for
different values of D DY Z and ( )☉Z X .

Appendix B
νmax Correction as a Function of Temperature

Here we provide a correction formula for the non-diffusion
Eddington models from Figure 3, solely as a function of Teff.
For the Eddington atmosphere models, Figure 14 plots the
difference between nmax determined from the acoustic cutoff
frequency and nmax determined using Equation (16) (which
includes the μ and G1 terms) as a function of Teff. A fifth-order
polynomial was fit to the data, giving the relationship,
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While this correction formula may be useful, the best and most
accurate method to apply the μ and G1 corrections is to calculate

Figure 13. Fractional difference between the traditional nmax value and the μ
corrected nmax as a function of [ ]Fe H for different values of D DY Z
and ( )☉Z X .

Figure 14. Difference between nmax calculated from the acoustic cutoff
frequency and nmax calculated using Equation (16) including the μ and G1
terms. The gray points show the non-diffusion Eddington atmosphere models
and the red dashed line is a polynomial line of best fit (see Equation (24)).
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μ and G1 for individual models and apply Equation (16) to
calculate n .max
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