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The thermal suitability of riverine habitats for cold water adapted speciesmay be reduced under climate change.
Riparian tree planting is a practical climate change mitigation measure, but it is often unclear where to focus ef-
fort formaximumbenefit. Recent developments in data collection,monitoring and statisticalmethods have facil-
itated the development of increasingly sophisticated river temperature models capable of predicting spatial
variability at large scales appropriate to management. In parallel, improvements in temporal river temperature
models have increased the accuracy of temperature predictions at individual sites. This study developed a
novel large scale spatio-temporal model of maximum daily river temperature (Twmax) for Scotland that predicts
variability in both river temperature and climate sensitivity. Twmax was modelled as a linear function of maxi-
mum daily air temperature (Tamax), with the slope and intercept allowed to vary as a smooth function of day
of the year (DoY) and further modified by landscape covariates including elevation, channel orientation and ri-
parian woodland. Spatial correlation in Twmax was modelled at two scales; (1) river network (2) regional. Tem-
poral correlation was addressed through an autoregressive (AR1) error structure for observations within sites.
Additional site level variability wasmodelledwith random effects. The resultingmodel was used tomap (1) spa-
tial variability in predicted Twmax under current (but extreme) climate conditions (2) the sensitivity of rivers to
climate variability and (3) the effects of riparian tree planting. These visualisations provide innovative tools for
informing fisheries and land-use management under current and future climate.
Crown Copyright © 2017 Published by Elsevier B.V. This is an open access article under the Open Government

License (OGL) (http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).
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1. Introduction

River temperature (Tw) has been the focus of much recent research
(Caissie, 2006;Webb et al., 2008; Hannah and Garner, 2015), oftenmo-
tivated by a desire to conserve fish populations. River temperature is
important for cold water adapted fish species, such as salmonids, affect-
ing their growth, survival and demographic characteristics (McCullough
et al., 2001; Gurney et al., 2008; Jonsson and Jonsson, 2009; Elliott and
Elliott, 2010). Climate change is expected to increase Tw (Isaak et al.,
2012; Hannah and Garner, 2015) potentially altering the thermal suit-
ability of rivers (Isaak et al., 2010, 2012; Comte et al., 2013). Riparian
tree planting is a potential tool for reducing maximum temperatures
(Malcolm et al., 2008; Hrachowitz et al., 2010; Perry et al., 2015; Ryan
and Kelly-Quinn, 2016; Garner et al., 2017; Justice et al., 2017). Howev-
er, targeted management action requires a detailed understanding of
the spatio-temporal variability of river temperatures at large spatial
scales (catchment to national); specifically, the locations and times
that temperature extremes are likely to occur and the expected effects
of climate change and mitigation action. Statistical Tw models are a
promising approach for providing this information (e.g. Isaak and
Hubert, 2001; Hrachowitz et al., 2010; Moore et al., 2013; Jackson et
al., 2017b).

Spatial statistical Twmodels have been facilitated by recent techno-
logical and statistical developments. These include 1) increased Tw data
availability (Isaak et al., 2011; Jackson et al., 2016), 2) improved moni-
toring design (Dobbie et al., 2008; Som et al., 2014; Jackson et al.,
2016; Daigle et al., 2017), 3) greater availability of spatial data e.g. “Na-
tional Stream Internet” (Nagel et al., 2016), 4) improvements in spatial
analysis software across different platforms e.g. ARC (Peterson et al.,
2013; Peterson and Ver Hoef, 2014; Jackson et al., 2016) and R
(Jackson et al., 2017b) and 5) developments in modelling approaches
that account for spatial covariance on river networks (Cressie et al.,
2006; Ver Hoef et al., 2006; Jackson et al., 2017b).

Spatial Twmodels typically focus on a single annual (static) Twsum-
mary metric, such as mean maximum weekly temperature (Moore et
al., 2013) or mean summer temperature (Hill et al., 2014). Tw is then
typically modelled as a function of landscape characteristics which are
known to affect energy exchange processes (e.g. Isaak and Hubert,
2001; Hrachowitz et al., 2010; Imholt et al., 2011) and often include
an air temperature (Ta) metric (Wehrly et al., 2009; Mayer, 2012;
Moore et al., 2013; Luce et al., 2014), although other similar metrics of
net energy availability e.g. land surface temperature (LST) could also
be used (McNyset et al., 2015). Thesemodels can be improved by incor-
porating spatial correlation on river networks (Isaak et al., 2014;
Detenbeck et al., 2016; Steel et al., 2016; Jackson et al., 2017a, 2017b)
and between catchments or regions (Cressie, 1993; Wehrly et al.,
2009), thereby accounting for the effects of advected heat or other
uncharacterised controls that vary systematically over space; e.g.
changes in hydrogeology and groundwater inputs.

Spatial Twmodels can be extended to incorporate within year tem-
poral variability, by including time varyingmetrics such as Ta or LST that
represent changes in energy availability, and discharge that influences
the thermal capacity of rivers. The effects of discharge can be incorpo-
rated directly (e.g. Sohrabi et al., 2017) or by allowing time varying co-
efficients for Tw~Ta relationships that reflect seasonality in discharge
(Li et al., 2014). However, these models have additional technical chal-
lenges as summarised by Letcher et al. (2016): in particular, the need to
address 1) apparent non-linearity in relationships between Tw and Ta
(Li et al., 2014) 2) seasonal hysteresis in Tw~Ta relationships (Li et al.,
2014; Letcher et al., 2016) 3) missing data and 4) temporal correlation
(Li et al., 2014; McNyset et al., 2015; Sohrabi et al., 2017).

In principal, spatio-temporal models have some major advantages
over static spatial Tw models. Firstly, they provide temporally varying
Tw predictions that can be used in studies of biological processes such
as fish growth (Bacon et al., 2005; Gurney et al., 2008). Secondly they
provide improved spatial coverage and characterisation where Tw
data are discontinuous, e.g. when a logger has not operated correctly
for part of the year or has moved within year preventing calculation of
the Tw summary metric. At their simplest, spatio-temporal models
can include a single metric of energy availability (e.g. Ta or LST) and a
single relationship between this metric and Tw that extends across
sites and time. The underlying assumption of these models is that all
of the spatio-temporal variability in Tw can be represented by spatio-
temporal variability in the predictor variables.

Spatio-temporal models can be extended to consider spatially and
temporally variable relationships between Tw and Ta (or LST), where
this relationship is in turnmodified by landscape characteristics that in-
fluence energy exchange processes (e.g. woodland, geology/groundwa-
ter inputs). These models can improve predictions of Tw, identify
spatio-temporal variability in climate sensitivity as indicated by the
slope of the Tw~Ta relationships (Kelleher et al., 2012; Hilderbrand et
al., 2014) and better hindcast or forecast, allowing the analysis of histor-
ical biological data, or prediction of climate change impacts. While this
model flexibility has not yet been achieved in a single model, a number
of studies have employed two stage modelling approaches whereby
site-wise models of Tw~Ta are fitted and the parameter estimates sub-
sequently modelled in relation to landscape covariates (Tague et al.,
2007; Kelleher et al., 2012; Hilderbrand et al., 2014; Segura et al.,
2015;Mauger et al., 2017; Santiago et al., 2017). Although thesemodels
incorporatemuchof the flexibility thatwould bedesired given a process
based understanding of river temperature, none of the aforementioned
spatio-temporal models also consider network or regional scale covari-
ation, a strength of static Tw models.

This paper develops a model of maximum daily river temperature
(Twmax) for Scotland's salmon rivers using data from the strategically
designed, quality controlled Scotland River Temperature Monitoring
Network (Jackson et al., 2016). As far as the authors are aware, this is
the first spatio-temporal model of Tw that allows the Tw~Ta relation-
ships to vary both seasonally and spatially through changes in landscape
covariates, that incorporates terms to account for spatial correlations
and that addresses all the technical challenges of spatio-temporal
modelling identified by Letcher et al. (2016). The model outputs can
be used to investigate spatio-temporal variability in climate sensitivity
and to support land and fisheriesmanagement decisions at local and na-
tional levels. The objectives of the study are:

1) Develop a spatio-temporal model of maximum daily river tempera-
ture for Scotland's salmon rivers.

2) Assess model performance by cross-validation.
3) Improve understanding of the controls on river temperature.
4) Illustrate spatial variability in river temperature under extreme air

temperatures.
5) Understand and predict spatial variability in river sensitivity to cli-

mate change.
6) Consider the potential of riparian woodland to reduce temperature

extremes.
2. Methodology

2.1. Study area

Scotland occupies an area of ca. 80,000 km2, with an altitudinal
range of 0–1334 m. Rainfall typically varies between b700 mm in east-
ern Scotland and N4000 mm in the western highlands. Scotland's geol-
ogy, topography and steep climate gradients have resulted in many
rivers with highly variable characteristics (Anon, 2009; Soulsby et al.,
2009). There are N16,000 river catchments draining to the sea, of
which 255 have an area N 25 km2 (Fig. 1). Catchments vary from
b1 km2 to 5260 km2 for the River Tay which has a mean annual dis-
charge of ca. 5.3 km3 year−1 (Soulsby et al., 2009).

Scotland's rivers support a fisheries resource that is valued at N£100
million per year to the Scottish economy (Radford et al., 2004). There
are ca. 389 salmon rivers (Anon, 2014), 17 of which are Special Areas
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of Conservation (SAC) for Atlantic salmon under the European Union
Habitats Directive (Anon, 2009). Scotland's Atlantic salmon populations
are of both national and international importance, accounting for ca.
75% and 30% of the estimated UK and European salmon production
(pre-fishery abundance) respectively (ICES, 2016).

2.2. Water temperature data

River temperature data came from the Scotland River Temperature
Monitoring Network (SRTMN) (Jackson et al., 2016; Fig. 1), a quality
controlled network of 223 sites in 13 catchments designed to cover
the geographical distribution of Scottish rivers and the environmental
range of landscape covariates (e.g. elevation and woodland) expected
to influence Tw (Jackson et al., 2016). Tw was recorded at each site
every 15 minutes over a 12 month period between 01/07/2015 and
30/06/2016 using Gemini TinyTag Aquatic 2 (TG-4100) dataloggers
(reporting resolution 0.01 °C). Field deployed dataloggerswere calibrat-
ed against an internal reference logger which was in turn calibrated
against an external reference at a UKAS (United Kingdom Accreditation
Service) certified laboratory. During internal calibration, temperature
dataloggers showed good agreement across units, varying by b0.2 °C
over the temperature range 0–30 °C. A double calibration correction
procedure was then performed to correct observed temperatures to
Fig. 1. Scotland River Temperature
“true” temperatures (±0.02 °C). Field data quality issues (e.g. logger ex-
posure under low flow conditions/channel change, or logger burial)
were recorded during download visits and any unreliable data were re-
moved before analysis. After quality control, data remained from 218 of
the 223 sites. Maximum daily Tw (Twmax) was calculated from the raw
Tw data for each day and site.

2.3. Air temperature data

Maximumdaily air temperature (Tamax)was extracted fromgridded
UKCP09 Ta datasets (available from the UK MET Office) for the years
2003, 2010, 2015, 2016. The UKCP09 Ta datasets are a matrix of maxi-
mum, mean or minimum Ta for the UK on each day of the year; see
Perry and Hollis (2005a, 2005b) for details. Data were extracted for
2015 and 2016 to correspond to the Twmax data, and for 2003 and
2010 to illustrate model predictions of Twmax in the hottest and coldest
years respectively in the last two decades.

2.4. Spatial datasets

River networks were characterised using a corrected version of the
Centre for Ecology and Hydrology (2014) Digital River Network
(DRN), which consists of line features connected by nodes. Nodes
Monitoring Network site map.

Image of Fig. 1
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exist at all river sources and confluences, with additional “pseudo
nodes” (on river segments that are not sources or confluences) due to
the digitisation process. To predict nationally, model covariates were
calculated for all nodes in the DRN (ca. 280,000 nodes).

Scotland was divided into 44 regional polygons (Scottish Environ-
ment Protection Agency Hydrometric Areas) of approximately similar
size (Marsh and Hannaford, 2008), that contained between 1 and 11
river catchments (N25 km2). These areas were used to characterise
large scale spatial variability in temperature (see below). Each catch-
ment in the SRTMN is in a different Hydrometric Area.

Several Ordinance Survey datasets were used to calculate the covar-
iates, including the 10 m digital terrain model, MasterMap land cover
and coastline datasets (Jackson et al., 2017b).

2.5. Landscape covariates

A detailed description of the landscape covariates and their calcula-
tion can be found in Jackson et al., (2017a, 2017b). In brief, the covari-
ates were: elevation (Elevation), upstream catchment area (UCA),
percentage riparian woodland (in a 25 m buffer width extending
1000 m upstream) (%RW), summer and winter hillshading (metrics of
the amount of the direct shortwave radiation reaching the channel)
(SHS/WHS), channel width (Width), channel gradient (Gradient),
channel orientation (Orientation), distance to coast (DC) and distance
to the sea along the river (RDS).When necessary, covariateswere trans-
formed before model fitting to reduce skewness: Elevation was square
root transformed and Gradient, UCA and Width were log transformed.
Two extreme low SHS values were replaced by the next smallest
value. When pairs of covariates were strongly correlated (N0.8), one
of the pair was excluded. This reduced the list of covariates to Elevation,
UCA, %RW, SHS, Gradient and Orientation.

2.6. Statistical methods

2.6.1. Modelling motivation and approach
The modelling approach was informed by the objectives of the

study, the findings of previous Tw modelling studies, and prior knowl-
edge of the processes controlling Tw variability (e.g. Hannah et al.,
2004, 2008; Garner et al., 2014, 2015, 2017). Ta and Tw are both strong-
ly influenced by radiative fluxes, so measures of Ta are frequently used
to infer the availability of energy to heat rivers, and to predict spatial
(e.g. Chang and Psaris, 2013; Hill et al., 2014; Turschwell et al., 2016)
and temporal variability in Tw (e.g. Jeong et al., 2013; Li et al., 2014;
Letcher et al., 2016). Previous studies suggest that there will be strong,
site-specific relationships between Tw and Ta that can predict much of
the temporal variation in Tw (Isaak et al., 2012; Mayer, 2012; Krider
et al., 2013; Carlson et al., 2017). Further, these relationships will vary
spatially (between sites) depending on the influence of landscape char-
acteristics that affect river energy budgets (Mayer, 2012; Krider et al.,
2013; Arismendi et al., 2014; Jackson et al., 2017b) and temporally de-
pending on seasonal changes in river discharge that in turn affect ther-
mal capacity (Sohrabi et al. 2017). It is also increasingly recognised that
Tw data can exhibit substantial spatial structure (covariance) within
river networks (Isaak et al., 2014), at least partially reflecting advected
heat exchange, and can be spatially correlated across catchments,
reflecting large scale hydro-climatic controls. Finally, it is well
recognised that daily Tw time series are auto-correlated (Caissie,
2006; Li et al., 2014; Letcher et al., 2016). Thus, the models developed
in this study aimed to describe spatial and temporal variability in
Twmax as a function of Tamax, moderated by process relevant landscape
covariates, while also incorporating temporal and spatial correlation at
various scales.

2.6.2. Tw~Ta relationship and landscape covariates
Many studies have modelled the relationship between Tw and Ta

using linear (e.g. Stefan and Preud'homme, 1993; Isaak et al., 2012;
Krider et al., 2013; Rice and Jastram, 2015) or non-linear (e.g. Mohseni
et al., 1998; Soto, 2016) models or both (e.g. Mayer, 2012; Bal et al.,
2014; Segura et al., 2015). Logistic functions are often thought necessary
to capture the sigmoidal relationships observed between Tw and Ta
when data are aggregated over longer (N6 months) time periods
encompassing multiple seasons (Mohseni et al., 1998). However, logis-
ticmodels do not always improve on linearmodels and thus simpler lin-
ear models are often preferred (Krider et al., 2013). Examination of the
daily Twmax data collected in this study (Fig. 2) suggested that a linear
relationship between Twmax and Tamax over shorter timescales (e.g. a
month) with the slope and intercept of the relationship changing over
time would adequately describe the data. We therefore considered
models in which Twmax was linearly related to Tamax and the intercept
and slope of the relationship was allowed to change smoothly with
day of the year (DoY). Thesemodels improved short termTwmax predic-
tions (as slopes obtained by fitting to the data for a whole year are
inappropriate over shorter time periods e.g. too steep over winter, see
Fig. 2), allowed for an apparently non-linear relationship between
Twmax and Tamax at low and high temperatures (through lower slopes,
particularly inwinter) and accounted for hysteresis in the Twmax~Tamax

relationship due to seasonality (Li et al., 2014; Letcher et al., 2016). This
is illustrated in Fig. 2. More generally, the effect of the landscape covar-
iates on the Twmax~Tamax relationship was incorporated by also
allowing the intercept and slope to change smoothly with the land-
scape covariates. This is important for characterising spatial variabil-
ity in climate sensitivity (i.e. the slope of the Tw~Ta relationship)
and extends previous studies which have generally only included
landscape covariates as main effects (Jonkers and Sharkey, 2016)
where they do not affect climate sensitivity, or have incorporated
their effects in a two stage model (e.g. Mayer, 2012; Chang and
Psaris, 2013; Segura et al., 2015).
2.6.3. Spatial and temporal correlation
Spatial correlation was modelled at two scales (1) the river net-

work scale (River Network Smoother: RNS) and (2) regional scale
(Hydrometric Area Smoother: HAS). Full details of the RNS can be
found in Jackson et al. (2017b). In brief, the RNS is a modified version
of the approach developed by O'Donnell et al. (2014) for predicting
water quality on river networks, fitted using a set of ‘reduced rank’
basis functions with the degree of smoothing at a confluence con-
trolled by the proportional influence of upstream tributaries weight-
ed by Strahler river order (Strahler, 1957). None of the RNS bases
were highly correlated (N0.8) with any of the covariates, so the
RNS should not account for variability that would otherwise be ex-
plained by the covariates. River networks are catchment-specific,
so a separate RNS was fitted to each catchment. The HAS is a large
scale spatial smoother that allows Twmax in neighbouring hydromet-
ric areas to be correlated. The HAS is fitted using a reduced rank
Gaussian Markov random field spatial smoother; see Millar et al.
(2015, 2016) for details.

Temporal correlation was modelled by assuming an order 1
autoregressive (AR1) error structure for the daily Twmax observations
within each site. The AR1 correlation ρ was assumed to be the same
for all sites.
2.6.4. Estimating temporal correlation
It was not possible, with the software available, to estimate ρ, fit the

spatial smoothers and the covariate-dependent Twmax~Tamax relation-
ships at the same time. To overcome this, ρ was first estimated from a
model which explained as much of the spatial and temporal variation
as possible using the covariates but which ignored any spatial correla-
tion. The estimate of ρ was then treated as fixed and plugged into
models which fitted spatial correlation terms and investigated the rela-
tionships with the covariates in more detail.



Fig. 2. Relationship between Twmax and Tamax for one site over a twelvemonth period. Points are pairs of daily temperature observations. Lines illustrate how the intercept and slope of the
relationship vary over time. For simplicity, only monthly relationships are shown. Solid lines for the first six months of the year (January–June), dashed lines for the second six months
(July–December) illustrate seasonal hysteresis in the relationships. Colours range between blue (cool) and red (warm) and vary according to the maximum observed daily
temperature in each month.
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Specifically, ρ was estimated from a model of the form

Twmax � Tamax þ Catchmentþ Catchment : Tamax þ s DoYð Þ þ s DoYð Þ
�Tamax þ s Elevationð Þ þ s Elevationð Þ � Tamax þ s Gradientð Þ
þs Gradientð Þ � Tamax þ s Orientationð Þ þ s Orientationð Þ � Tamax

þ s UCAð Þ þ s UCAð Þ � Tamax þ s %RWð Þ þ s %RWð Þ � Tamax

þs SHSð Þ þ s SHSð Þ � Tamax þ RE Siteð Þ ð1Þ

with Twmax assumed to have Gaussian errors with an AR1 structure.
Here, s(.) denotes a smooth term. Residual diagnostics confirmed that
the error structure was reasonable. Based on preliminary fits and the
likely complexity of responses, the smooths had 2 degrees of freedom
(df) for the landscape covariates, giving at most a modal form, and 5
df for DoY. A cyclic smoother was used for DoY. The df were fixed (not
estimated from thedata) so themodel could befitted as a series of linear
terms (see below) and to ensure that the fitted model didn't change if
Tamax was either translated (e.g. centred) or scaled. The terms s(DoY)
and s(DoY) × Tamax allow the intercept and the slope of the Twmax~-
Tamax relationship to vary smoothly with DoY, and similarly for the
landscape covariates. The terms Catchment and Catchment:Tamax

allow for Catchment-specific intercepts and slopes (with: denoting the
interaction between the categorical variable Catchment and Tamax). Fi-
nally, RE(Site) denotes a Site random effect allowing the intercept to
vary independently with a Gaussian distribution across Sites. Including
all these terms should capture most of the temporal and spatial varia-
tion in Twmax, giving an unbiased estimate of ρ. The model was fitted
as a linear mixed model by restricted maximum likelihood (REML) in
package ‘nlme’ (Pinheiro et al., 2017) having obtained themodelmatrix
from package ‘mgcv’ (Wood, 2016) using the fixed df for each smooth
term. All analysis was done in R version 3.2.3 (R Core Team, 2015).

2.6.5. Model selection
The relationship between Twmax and the covariateswas investigated

in a forwards and backwards stepwise model selection procedure. The
starting model was

Twmax � Tamax þ s DoYð Þ þ Elevationþ Gradientþ Orientationþ UCA
þ%RWþ SHSþ RNS : Catchmentþ HASþ RE Siteð Þ
þRE Siteð Þ : Tamax

ð2Þ

with Twmax assumed to have a Gaussian AR1 structure with ρ=0.67. A
cyclic smoother with 5 fixed df was used for DoY. The term
RNS:Catchment denotes a separate RNS for each Catchment. Each RNS
was allowed up to 7 df based on RNS complexity found in previous stud-
ies (Jackson et al., 2017b). The HAS essentially allowed the intercept of
the Twmax~Tamax relationship to vary between Catchments in a corre-
lated way. The df for the HAS were unrestricted allowing a wide range
of possible relationships, from uncorrelated to identical intercepts. The
terms RE(Site) and RE(Site):Tamax allowed random effects for the inter-
cept and the slope of the Twmax~Tamax relationship. The model was
fitted bymaximum likelihood using amodification of the ‘bam’ function
in package mgcv that called the BFGS optimiser (Nocedal and Wright,
1999). Bam is designed for use with large datasets and allows a fixed
AR1 structure to be fitted (Wood, 2016). The landscape and DoY

Image of Fig. 2
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covariates had a simpler form in the starting model than in Eq. (1) be-
cause the inclusion of the spatial correlation terms made model fitting
more numerically challenging.

The starting model was then refined using forwards and backward
stepwise selection. At each stage, the main effects of the landscape co-
variates and DoY could switch between absent and linear and between
linear and smooth (on 2 fixed df for the landscape covariates and 5 fixed
df for DoY) and the RNS:Catchment and HAS terms could switch be-
tween present and absent. In addition, the slope of the Twmax~Tamax re-
lationship was allowed to vary with any of the covariates that were
present as main effects. If the main effect was linear/smooth, then the
covariate was constrained to affect the slope of the Twmax~Tamax rela-
tionship linearly/smoothlywith the same fixed df. These constraints en-
sured that fitted models were invariant to translations or scaling of
Tamax. Finally, the slope of the Twmax~Tamax relationship was also
allowed to vary with Hydrometric Area, giving correlated Catchment-
specific slopes (written HAS:Tamax). However, it was not possible to
constrain the df of the HAS on the slope to be the same as that on the
intercept.

Model selection was based on an adjusted Bayesian Information Cri-
terion:

BICadj ¼ ln Nð ÞM−2L ð3Þ

where L is the maximised log-likelihood, N is the number of sites (N=
218) andM is the number of df in themodel. Random effects (RNS, HAS
and Site)were given13, 1 and 1df respectively, reflecting thenumber of
variance components estimated. The model with the lowest BICadj was
selected as the finalmodel. BICadjwas used rather than the Akaike Infor-
mation Criterion (AIC) because it penalises additional model terms
more heavily and simpler models tend to be more transferable
(Millidine et al., 2016; Jackson et al., 2017a); i.e. give better predictions
in catchmentswhichhave no Twmax data and are not used in themodel-
ling process. To get (approximately) unbiased estimates of the variance
components andmodel standard errors, the final model was refitted by
restricted maximum likelihood.

2.6.6. Model performance
Model performance was assessed using two types of cross-valida-

tion. Thefirstwas 10-fold cross-validation inwhich the siteswere divid-
ed at random into 10 approximately equally sized subsets (ca. 22 sites
each). Each subset was removed in turn, the model refitted to the re-
maining data and used to predict Twmax at the missing sites. This ap-
proach is similar to that typically used in other studies. The second
approach involved leaving out all the sites in each catchment in turn,
refitting to the remaining data and predicting Twmax in the missing
catchment. This provides a better indication of howwell themodel pre-
dicts to new catchments where there are no Tw data. Model perfor-
mance was summarised by the root mean square error (RMSE), bias
and standard deviation (SD) of the model predictions:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
s;d

x̂sd−xsdð Þ2
vuut ð4Þ

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
s;d

x̂sd−x̂
� �

− xsd−xð Þ
� �2

vuut ð5Þ

Bias ¼ x̂−x ð6Þ

where xsd and x̂sd are the observed andpredicted Twmax at site s on day d,

xand x̂are themean observed and predicted Twmax, and n is the number
of observations (total number of site and day combinations). Standard
deviation was used rather than variance so that all three metrics are
on the same scale and can be compared. RMSE, bias and SD were
calculated for the whole year and for each month in turn to investigate
seasonal changes in performance.

2.7. Model illustration

The effects of the covariates on Twmax were illustrated by partial ef-
fects plots and by a series ofmaps of predicted Twmax. The first mapwas
a ‘reference’ prediction in which all the landscape covariates were held
at their median value, the RNS and HAS were centred about zero, DoY
was set to 158 (the middle of the hottest week nationwide during the
study) and Tamax at each river node was set to the mean observed
Tamax at that node during the hottest week. The reference map shows
Twmax predictions if the Twmax~Tamax relationship is assumed to be
spatially consistent throughout Scotland. The mean Tamax in the hottest
weekwas preferred to the Tamax on the hottest day as the referencemap
was less susceptible to local variation in Tamax. High Tamax values were
chosen because they provided greater spatial contrast in the other co-
variate effects and because high Twmax is often the focus of manage-
ment. The subsequent maps showed the difference between the
predicted Twmax when one (or more) of the covariates also varied spa-
tially and the reference prediction.

Spatial patterns in predicted Twmax were illustrated for two days
during the study, when observed Tamax was on average at its highest
(DoY 182) and lowest (DoY 16) across Scotland (identified by summing
Ta matrices). The observed values of Tamax on these days were used to
make the predictions for each river node. Standard errors were also
plotted to visualise spatial variability in prediction error.

Because the 2015–2016 monitoring period was relatively mild in
terms of both high and low Tamax the spatial variability of Twmax was il-
lustrated under more extreme climate conditions using the maximum
Tamax observed at each node in 2003 (hottest of the last 20 years) and
theminimum observed in 2010 (coldest of the last 20 years), combined
with the DoY (174 and 16) that gave the highest and lowest effect re-
spectively. The hottest and coldest Tamax did not necessarily occur on
DoY 174 and 16, so the predictions represent a potential for extreme
temperatures rather than the Twmax that would have occurred on
those days.

Climate sensitivity is often defined as the responsiveness of a river to
a given Ta increase (Mohseni and Stefan, 1999; Kelleher et al., 2012;
Mayer, 2012). Given the linear Twmax~Tamax relationship used in this
study, it was possible to illustrate the effect of a 1 °C change in Tamax

on Twmax for any given DoY. The DoY values used were 169 and 350,
those associated with the steepest (summer) and shallowest (winter)
slope in the Twmax~Tamax relationship respectively, andwhichprovided
an envelope of potential effect sizes.

The potential of riparian shading to mitigate temperature extremes
was explored by repeating the predictions for summer 2003 andwinter
2010 with %RW first set at 0 and then at 100% and then plotting the dif-
ferences in the predictions.

3. Results

3.1. Daily maximum river water temperature model

The final model of Twmax was:

Twmax � Tamax þ s DoYð Þ þ s DoYð Þ � Tamax þ Elevationþ Elevation

�Tamax þ%RWþ%RW� Tamax þ OrientationþHAS

þHAS : Tamax þ RNS : Catchmentþ RE Siteð Þ þ RE Siteð Þ : Tamax

ð7Þ

The final model explained 91.9% of the variability in Twmax and all
the terms in the final model were significant (likelihood ratio test: p b

0.01 in all cases). Ten-fold cross validation suggested that bias in the
predictions was small (b0.5 °C) and that RMSE varied across months,
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from 1.15 °C in October to 2.12 °C in June, with an annual value of 1.57
°C (Table 1). Prediction error was slightly greater when catchments
were left out one at a time, with an annual RMSE of 1.60 °C (Table 1).

DoY, Elevation and %RW affected both the intercept and the slope of
the Twmax~Tamax relationshipwhereas Orientation only affected the in-
tercept. The intercept and slope increased betweenwinter and summer
and declined in the autumn (Fig. 3a) indicating that, during the sum-
mer, Twmaxwas higher for a given air temperature andmore responsive
to changes in Tamax. Increasing elevation reduced Twmax at low Tamax

(e.g. by ca 1 °C at Tamax of 0 °C over an altitudinal range of 0–625 m)
but had a negligible effect at higher Tamax (Fig. 3b). There was a positive
relationship between %RW and Twmax at low Tamax and a negative rela-
tionship at high Tamax (Fig. 3c). For example, at a Tamax of 25 °C, Twmax

under 100%RWwas ca. 2 °C lower than under 0%RW. Orientation had a
small positive effect on Twmax with higher temperatures predicted for
north-south rather than east-west orientations (Fig. 3d).

The spatial effects of the covariates on Twmax are illustrated in Fig. 4
for the hottestweek of the study. Fig. 4a shows the spatial effect of Tamax

with the other covariates held constant at their median values and es-
sentially shows the predictions that would be obtained if the Twmax~-
Tamax relationship was assumed to be spatially consistent. Fig. 4b–h
are difference plots that illustrate the additional spatial effects of the co-
variates, both individually (Fig. 4b–f) and combined (Fig. 4g). The Hy-
drometric Area smoother increased Twmax predictions in the west and
north, and reduced temperatures in a small area of the north east rela-
tive to other areas. It had an overall effect size of around 2.5 °C (Fig.
4b). The river network smoothers explained spatially structured residu-
al variability for those catchments with data (Fig. 4c) although their ef-
fect size was small (ca ±0.5 °C). Elevation decreased Twmax in
mountainous areas and increased Twmax in low lying areas, predicting
higher Twmax in the low lying urban south-central area of Scotland
and coastal areas, relative to the reference predictions (Fig. 4d). The ef-
fect of %RWwas patchy within catchments, but also showed large scale
spatial patternswith increased Twmax in areas of sparsewoodland cover
at higher altitudes, such as the Cairngorm Mountains in the centre of
Scotland, and to the north and west. Across Scotland, %RW altered
Twmax by ca. 2 °C, with lower Twmax in areas of higher %RW. Orientation
had a small (±0.25 °C) and patchy effect, varying within catchments,
but not showing any clear large scale effects. The combination of covar-
iates resulted in differences in Twmax predictions of between −3 and
+2 °C (Fig. 4g) relative to the reference predictions (Fig. 4a). Fig. 4g
shows that a simple Twmax~Tamax model would tend to over predict
Twmax in the south and under predict in the north and west, as well as
having some substantial within catchment biases.

3.2. Spatial variability in Twmax in 2015–16

The spatial variability in Twmax predictions for the hottest and
coldest days of the study is shown in Fig. 5, with associated standard
Table 1
Monthly RMSE results from ten-fold and leave one catchment out cross validation.

Month removed Ten-fold Leave one catchment out

RMSE Bias SD RMSE Bias SD

1 1.43 −0.05 1.43 1.49 −0.03 1.49
2 1.22 0.47 1.13 1.24 0.47 1.15
3 1.26 −0.29 1.23 1.25 −0.29 1.22
4 1.34 −0.04 1.34 1.35 −0.03 1.35
5 2.04 0.12 2.04 2.06 0.17 2.06
6 2.12 −0.29 2.1 2.16 −0.23 2.15
7 1.79 0.42 1.74 1.84 0.46 1.78
8 1.62 −0.17 1.62 1.64 −0.1 1.64
9 1.26 −0.36 1.2 1.26 −0.29 1.23
10 1.15 0.21 1.14 1.17 0.26 1.14
11 1.5 0.43 1.43 1.56 0.47 1.49
12 1.71 −0.44 1.65 1.76 −0.39 1.72
Overall 1.57 −0.00 1.57 1.60 0.04 1.60
errors. On the hottest day, Twmax was predicted to vary by ca.10 °C
across Scotland and to be warmer at lower elevations in the north and
south (Fig. 5a). There was also substantial within catchment variability
in Twmax that reflected the combined effects of Tamax and the landscape
covariates, producing a patchy mosaic of Twmax predictions
superimposed on broader scale catchment wide patterns (Fig. 5e). For
example, in the River Dee, Twmax varied by ca. 5 °C, with higher Twmax

predicted for upper river tributaries where woodland was absent and
the river flowed north-south. On the coldest day, the range of Twmax

predictionswas smaller across Scotland (ca. 7 °C),with Twmax predicted
to be warmer in the south and at the coast (except in the north and
west) and cooler in high altitude continental areas, particularly in the
north (Fig. 5b). At the scale of the River Dee, winter Twmax generally de-
creased with distance inland from the coast towards the Cairngorm
Mountains reflecting the combined effects of Tamax and Elevation.

The lowest standard errors (b0.5 °C)were in catchmentswith Twmax

data. The highest standard errors were in the islands where there were
no data and where nearby Hydrometric Areas also had limited or no
data. Standard errors were lower in winter than summer, although the
spatial patterns were similar (Figs. 5b, d).

3.3. Spatial variability in Twmax under extreme climate conditions

When compared to 2015–2016, mean and maximum Twmax predic-
tionswere 1.8 and 2.7 °C higher for summer 2003 (Fig. 6a) and 1.05 and
0.53 lower for winter 2010 (Fig. 6b). The warmest rivers in summer
2003 were predicted to be in the north and west, corresponding to
low elevation and low%RW (Figs. 3b, c and 4d, e). However, this pattern
also reflected the influence of Hydrometric Area (Fig. 4b) which in-
creased Twmax in the north and west at high Tamax. In winter 2010,
Twmax was predicted to be warmer in south-central Scotland and at
the coast, than in the north and central highlands (Cairngorm Moun-
tains) (Fig. 6b), largely corresponding to differences in elevation (Figs.
3b and 4d).

3.4. Climate sensitivity of rivers

The slope of the Twmax~Tamax relationship measures the sensitivity
of rivers to changing Ta with steeper relationships indicating greater
sensitivity to climate change. Fig. 7 illustrates the predicted change in
Twmax for a 1 °C rise in Tamax. Twmax was predicted to increase by be-
tween 0.4 °C and 0.7 °C in summer (Fig. 7a). The increase was smaller
in winter, ranging between−0.02 and 0.36 °C (Fig. 7b). The most sen-
sitive rivers were predicted to be in the north and north-west of Scot-
land and the Cairngorm Mountains (Fig. 7), areas are all characterised
by low %RW. The rivers in the north and north west are also influenced
by a strong Hydrometric Area effect that increases the slope of the
Twmax~Tamax relationship (Fig. 4b). The higher elevation of mountain-
ous areas are also associated with greater Twmax~Tamax slopes.

3.5. Predicted effects of woodland

One of themore feasible climatemitigation options for river systems
is the planting of riparian areas with native trees. Fig. 8 illustrates the
predicted change in Twmax as %RW increases from 0 to 100% in summer
and winter. The effect of %RW is larger at low or high Tamax (Fig. 3c), so
the greatest changes in Twmax (up to−2.8 °C) are predicted to occur at
nodes with the most extreme Tamax, mainly in low lying areas away
from the east coast.

4. Discussion

Evidence based management of rivers and fisheries require a de-
tailed understanding of the spatial and temporal variability of river tem-
peratures if managers are to meet the challenges posed by climate
change. Importantly, tools are needed that highlight where rivers are



Fig. 3. Joint effects of a) Tamax andDoY, b) Tamax and Elevation, c) Tamax and %RWand the effect of d) Orientation on Twmax. The other covariates are fixed at theirmedian values. Pointwise
95% confidence bands are shown for the Orientation effect. Vertical black lines on the x-axis of the channel orientation plot indicate the presence of data.
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likely to become too hot for target species, will be sensitive to climate
change, and are susceptible to management action e.g. riparian tree
planting.

Although it is simple to describe these information requirements,
the modelling needed to underpin this evidence base is challenging
and developing rapidly. The models in this study included linear and
non-linear terms, seasonally varying coefficients, interaction terms
and temporal and spatial correlation at different scales. This complexity
was necessary to adequately represent the underlying processes and
structure in the data. As far as the authors are aware, this is the first
time all of thesemodelling components have been incorporated in a sin-
gle model that can predict river temperature and climate sensitivity
across time, catchments and regions. The model and its predictions im-
prove understanding of river temperatures, climate sensitivity and the
likely effectiveness of riparian planting for Scotland. The Twmax re-
sponses to landscape covariates are also potentially generalizable and
themodelling approach could be applied to other countries with similar
spatial and river temperature datasets. These issues are discussed fur-
ther below.
4.1. Modelling approach and performance

Statistical models can be used to predict Tw at large spatial scales
using landscape covariates that act as proxies for energy exchange pro-
cesses. Increasingly, spatial models are being developed at catchment
(Isaak and Hubert, 2001; Hrachowitz et al., 2010; Imholt et al., 2011;
Ruesch et al., 2012; Chang and Psaris, 2013; Detenbeck et al., 2016;
Steel et al., 2016; Jackson et al., 2017b) and regional scales (Wehrly et
al., 2009; Mayer, 2012; Moore et al., 2013; Luce et al., 2014;
Turschwell et al., 2016) to inform management. A few studies have ex-
tended these spatial models to include time varying predictors such as
Ta or other metrics of energy exchange (McNyset et al., 2015) thereby
generating spatio-temporal Tw predictions. However, to date, these
models have not included interactions between Ta and time (e.g. DoY)
or landscape covariates. As such, Tw sensitivity (to changes in Ta) is
constant across the year and the effects of landscape covariates are inde-
pendent of time and Ta. The modelling approach presented here
allowed both the slope and intercept of the Tw~Ta relationships to
vary temporally (with DoY) and spatially (with landscape covariates).

Image of Fig. 3


Fig. 4. Effects of Tamax, landscape and spatial covariates on Twmax for the hottest week in the study. Panel a shows the effect of Tamax, conditioned on the median values of the other
covariates and DoY 158, consistent with predictions assuming a constant Twmax~Tamax relationship. Panels b-g are difference plots, illustrating the additional effects of covariates, both
individually (b–f) and combined (g). Histograms show the distribution of predicted values/differences across all river nodes in Scotland.
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Fig. 5.National Twmax predictions for a) the hottest and b) coldest days of the study (DoY 182 and 16 respectively). Panels c and d show associated standard errors. Panels e and f expand
the predictions for the Aberdeenshire Dee.
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This allowed Twmax to exhibit a seasonally variable response to Ta (cli-
mate sensitivity) and for landscape characteristics to furthermodify this
response.

Although there is increasing awareness of the need to consider spa-
tial correlation in river temperature models, not all studies do so (e.g.
Mayer, 2012; McNyset et al., 2015; Jonkers and Sharkey, 2016). In the
current study the final model incorporated spatial correlation at two
scales (RNS and HAS), representing river network and regional scale
spatial covariance, with consequent benefits for model selection (re-
duced risk of over fitting), more accurate estimates of uncertainty and
more precise predictions in catchments and regions where there are
data (Isaak et al., 2014).

Where models have incorporated spatial correlation, they are have
often been constrained to consider only linear responses between Tw
and covariates (Ruesch et al., 2012; Roberts et al., 2013; McNyset et
al., 2015; Detenbeck et al., 2016; Steel et al., 2016; Turschwell et al.,
2016). While this is reasonable when responses are demonstrably line-
ar, it limits the realistic representation of more complex relationships.
The modelling approach in this study used smoothers to represent
river network (O'Donnell et al., 2014; Jackson et al., 2017a, 2017b)

Image of Fig. 5


Fig. 6. a) Summer and b) winter Twmax predictions under “extreme” climate conditions. Plots are conditioned on the hottest and coldest Tamax observed at each node in 2003 and 2010
respectively and the DoY that gives the highest and lowest predictions (174 and 16 respectively).
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and regional (Millar et al., 2015, 2016) scale spatial covariance thereby
allowing the models to be fitted within the ‘mgcv’ package for R. This
made it possible to incorporate more complex responses between
Twmax and landscape covariates (Jackson et al., 2017a, 2017b) while
also including an auto-regressive temporal correlation structure that
has rarely been considered in previous spatio-temporal models
(McNyset et al., 2015). Finally, the model included random effects
allowing the intercept and slope of the Twmax~Tamax relationship to
vary between sites, again improvingmodel selection inference and esti-
mates of uncertainty.

Although associated with greater complexity, spatio-temporal
models have a number of potential benefits over simpler spatial models
that focus on seasonal or annual summary temperature statistics. By in-
corporating Tamax as a covariate, and characterising spatial and tempo-
ral variability in the Twmax~Tamax relationship, the model can predict
Twmax for dates outside the study period, allowing hindcasting and fore-
casting. This is important where temperature is to be included as a pre-
dictor variable in other studies but Tw data are temporally constrained.
Furthermore, by modelling daily data, model predictions can be used in
detailed biological studies, e.g. fish (Bacon et al., 2005) and invertebrate
(Imholt et al., 2010) growth. Spatio-temporal models can also be fitted
when there aremissing Twmax values in temperature logger time series.
This avoids the need for directly comparable time series at all sites, po-
tentially allowing greater spatial coverage and better representation of
spatial Tw variability. Finally the spatio-temporal models presented
here allow simultaneous assessment of Tw variability and temporally
varying climate sensitivity in a single model.

Although many papers have illustrated individual components of
the final model presented in this study (see introduction), as far as the
authors are aware, this is the first paper to incorporate all these compo-
nents in a single large scale spatio-temporal model of a Tw metric,
thereby addressing the key technical challenges to the development of
daily spatio-temporal temperature models summarised by Letcher et
al. (2016). Although challenging to specify and fit, the additional
model complexity providesmore flexiblemodels, reducingbias and giv-
ingmore appropriate estimates of uncertainty compared to simpler ap-
proaches. This is important where management decisions, with
associated costs, are dependent on model outputs.

It is not possible to make direct comparisons of model performance
between this and other studies because the few examples of spatio-
temporal models of daily Tw focus on mean Tw (McNyset et al., 2015;
Letcher et al., 2016; Sohrabi et al., 2017) rather than maximum Tw
and cover different geographic ranges and numbers of sites. For exam-
ple, Letcher et al. (2016) monitored four sites in an 11.8 km2 catchment
while McNyset et al. (2015) monitored 510 sites across a 20,000 km2

catchment. Setting aside these issues, the overall RMSE reported in
this paper (1.57 °C) compares reasonably with that in McNyset et al.
(2015) (1.29 °C) and Sohrabi et al. (2017) (1.25 °C) but is much higher
than that in Letcher et al. (2016) (0.59 °C). However, onlyMcNyset et al.
(2015) can be considered broadly comparable to this study, as Sohrabi
et al. (2017) and Letcher et al. (2016) also incorporated discharge data
in their models, data that were not available in our study (see limita-
tions below).
4.2. Physical process representation

The final model can be reasonably explained by an understanding of
physical processes and Tw. The intercept and slope of the Twmax~Tamax

relationship varied smoothly with DoY, increasing between winter and
summer before declining in the autumn (Li et al., 2014). This likely re-
flects the influence of lower discharges over the summer and higher dis-
charges inwinter, which in turn result in higher and lower sensitivity to
climate forcing respectively (Luce et al., 2014; Sohrabi et al., 2017).

Image of Fig. 6


Fig. 7. Sensitivity of rivers to climate change. Maps show the predicted change in Twmax for a 1 °C change in Tamax in a) summer (DoY 169) and b) winter (DoY 350). The DoYs maximise
and minimise the slope of the Twmax~Tamax relationship respectively.
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Consistent with previous studies, Elevation had a negative effect on
Twmax (Isaak and Hubert, 2001; Hrachowitz et al., 2010; Imholt et al.,
2011; Ruesch et al., 2012; Chang and Psaris, 2013; Trumbo et al.,
2014; Steel et al., 2016; Jackson et al., 2017b). However, in this case El-
evation was not simply acting as a proxy for air temperature as this was
already included as an explanatory variable. The effect of Elevation was
greatest at low Tamax and thus potentially reflected the influence of
snow melt on Twmax (Leach and Moore, 2014; Leach et al., 2016) at
higher altitudes.

There was a very small positive relationship between %RW and
Twmax for low values of Tamax and a stronger negative relationship at
high Tamax consistent with previous studies of the effects of riparian
woodland (Hannah et al., 2008; Malcolm et al., 2008; Garner et al.,
2014, 2015). In summer, woodland reduces the amount of incoming
short-wave radiation reaching the channel through shading (Hannah
et al., 2008; Garner et al., 2015). In the winter, woodland directs long-
wave radiation back to the water surface reducing net energy losses
and maintaining higher minimum temperatures than open sites
(Hannah et al., 2008; Garner et al., 2015).

The effect of channel orientation was small, but physically plausible
and independent of Tamax (i.e. main effect only). Higher temperatures
were predicted for north-south rather than east-west orientations
(Malcolm et al., 2004; Gomi et al., 2006; Garner et al., 2017) where
the effects of shading by channel incision or riparian vegetation would
be expected to be smaller.

The HAS characterised large-scale spatially correlated variability
in Twmax that was not adequately explained by the landscape covar-
iates. It could include the effects of hydrogeology, hydrology and
climate (not explained by Tamax) that were not well characterised
in the models. The overall effect of the HAS was to increase Twmax

predictions in the west and north of Scotland relative to other
areas (Fig. 4b).
The RNS characterised fine scale spatial variability within catch-
ments. The effect was small in all of the catchments (Fig. 4c), suggesting
that residual spatial structure in the Twmax data was limited or, more
likely, that it varied seasonally and was not adequately described by a
temporally constrained RNS.

4.3. Management implications

The outputs of the model in this study provide valuable tools for
guidingmanagement decisions and, in particular, riparian tree planting.
Depending upon the management objectives, Figs. 6–8 can be used to
determine good locations for planting. However, the uncertainty in
the predictions should also be considered (Fig. 5b, d), particularly if
the primary aim of planting is to manage thermal regime. In locations
where uncertainty is high (e.g. Islands) further investigation would be
desirable before substantial resource was invested.

Maximum summer temperatures are frequently the focus of man-
agement, due to their potentially detrimental impacts on cold water
adapted fish (Elliott and Elliott, 2010). Consequently, maps of maxi-
mum temperature are often prioritised by managers aiming to reduce
temperature extremes. However, many conservation organisations are
concerned about the wider ecological impacts of climate change, in
which case the illustrations of climate sensitivity (Fig. 7) may be more
valuable for focussing management action (Kelleher et al., 2012;
Hilderbrand et al., 2014).

Riparian planting is the primary climate change mitigation option
being considered by fisheries and river managers in Scotland. Conse-
quently, maps that identify the likely consequences of changing riparian
landuse are potentially valuable tools for planning and policy. However,
the physical realism of the “planting potential maps” developed in this
study was constrained by a) the lack of detail in the available national
spatial data setswhich, in terms ofwoodland, essentially only identified

Image of Fig. 7


Fig. 8. Thepredicted change in Twmaxwhen %RW is increased from0 to 100% in a) summer and b)winter. Plots are conditioned on thehottest and coldest Tamax observed in 2003 and 2010
respectively and the DoY that give the highest and lowest predictions of Twmax (174 and 16 respectively).
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the presence of trees rather than their density, height etc.; b) the ab-
sence of interaction terms in themodel that allow the effects of riparian
woodland to vary with other covariates (e.g. DoY, channel orientation,
gradient, width). Process based studies have shown that such consider-
ations are important. For example, shading from riparian woodland has
a greater effect in narrow low gradient rivers, channel orientation has a
substantial impact on shading at intermediate canopy densities (Garner
et al., 2017) and canopy density can substantially affect the influence of
woodland (Imholt et al., 2013; Leach et al., 2016; Garner et al., 2017).
Additionally, deciduous woodland will inevitably have a greater shad-
ing effect in summer.

In the short term, the maximum temperature and temperature sen-
sitivity maps might be combined with an understanding of finer scale
processes to develop a simple scoring system for prioritising tree plant-
ing. Alternatively, it may be possible to develop a single, process derived
metric of shading that encompasses topography, riparian vegetation
characteristics (i.e. height, density), channel width, channel orientation
and velocity,which can then be incorporated into a national spatio-tem-
poral statistical model.

4.4. Limitations and future work

Although the models and data presented in this study represent a
significant body of work and advancement inmethodology, several lim-
itations remain and these warrant further discussion. First, the model
was fitted to a single year of data during which temperatures were gen-
erally mild. In colder winters, ice cover prevents surface heat exchange
and detaches the Twmax~Tamax relationship (Mohseni and Stefan,
1999). Greater winter snow accumulations may also further moderate
spring temperatures (Toffolon and Piccolroaz, 2015; Sohrabi et al.,
2017). Under such conditions, the slope of the Twmax~Tamax relation-
ship could be lower in the winter and spring. In contrast, hotter, drier
summer conditions may increase the slope of the Twmax~Tamax rela-
tionship as high Tamax often coincides with low river flows and lower
thermal capacity increases rates of heating (Mohseni and Stefan,
1999). With more years of data, it may be possible to include year ran-
dom effects, thereby providing predictions for an average condition. Al-
ternatively, discharge and snow cover metrics could be included in the
model. Although there is an extensive gauging station network in Scot-
land (Marsh and Anderson, 2002), there are no models that provide
spatially distributed information on discharge (e.g. NOAA, 2016) for
Scotland's rivers. ‘Prediction in Ungauged Basins’ has been a decadal ini-
tiative of the International Association of Hydrological Sciences
(Sivapalan, 2003) and the development of a model that predicts spatial
and temporal variability in discharge in Scotland may benefit Tw
modelling.

The characterisation of covariates and choice of underlying spatial
data could also be improved. This study necessarily used spatial data
that covered the whole of Scotland and that could be processed with
available computer resources (Gallice et al., 2015; Millar et al., 2015;
Jackson et al., 2016, 2017b). This sometimes required the use of coarser
(e.g. DTM), less informative (e.g. woodland) datasets than might have
been available or manageable when working at a more local scale. For
example, measures of illumination (topographic shading) could be im-
proved using a finer scale DTM. Where working at more local scales, it
might be possible to use finer scale DTMs or to drawon remotely sensed
lidar data. Similar arguments also apply to the representation of riparian
land usewhere detailed data on tree species, heights or stemdensity are
available for particular areas, but are not available nationally.

The SRTMN sites used to underpin this study were chosen to avoid
anthropogenic impacts and the effects of lochs (e.g. Mellina et al.,
2002) where possible (Jackson et al., 2016). This means that themodels
are focussed on understanding spatial variability in near-natural river
systems (ignoring issues of historical landuse and vegetation change).

Image of Fig. 8
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However, thermal discharges (Bae et al., 2015; Xin and Kinouchi, 2013),
abstraction (Bae et al., 2015; Xin and Kinouchi, 2013) inter-basin water
transfers (Elmore et al., 2016), impoundment and release of water from
reservoirs and dams (Dickson et al., 2012; Maheu et al., 2016) andmor-
phological alteration of rivers can all affect river temperature. Where
these effects have (unknowingly) been introduced to our dataset they
will be reflected in unexplained variability in Tw. Predictions of Tw for
rivers affected by these pressures will be less accurate than for other
areas, but would instead reflect a prediction of more natural or “refer-
ence” conditions. Futurework could therefore investigate opportunities
for incorporating data on “pressures” into the existing models, while
also strategically locating new Tw monitoring to characterise their ef-
fects. This application could also inform river management under legis-
lation such as the EUWater Framework Directive, where there is a need
to identify and manage pressures to attain good ecological status.

Finally, themodels in this study were constrained by the form of the
RNSwhich modelled spatial covariance within catchments. This covari-
ance was fixed across the year (i.e. did not interact with DoY) thereby
implicitly assuming that any spatial structure in Twmax that could not
be explained by the covariates was constant over time. This is unlikely
to be true as spatial variability in Tw is greater at higher temperatures
and low flows during the summer (Jackson et al., 2017b) and sites
with positive residuals in the summer could well have negative resid-
uals in thewinter with effects cancelling out over the year. Consequent-
ly, the RNS may be not be adequately explaining the residual spatial
structure in the data. Future models could benefit from a temporally
varying RNS (that interacts with DoY), but this cannot be implemented
with existing software and would require statistical development.

5. Conclusions

This paper reports the results of a novel, large scale Tw modelling
study that used the strategically designed and quality controlled Scot-
land River Temperature Monitoring Network (SRTMN) to understand
and predict daily maximum river temperatures across Scotland. The
model developed here overcomes some major technical challenges to
include time varying Tw~Ta relationships, temporal and spatial correla-
tion (atmultiple scales), and non-linear effects of landscape controls. By
incorporating Tamax as a covariate, the model can predict Twmax for
dates outside the study period, allowing hindcasting and forecasting,
and can impute missing Twmax values for discontinuous or incomplete
temperature logger time series. By allowing interactions between Ta,
DoY and landscape covariates, seasonally variable climate sensitivity
across the whole of Scotland could be predicted for the first time. The
maps of predicted Twmax under different scenarios are valuable tools
for understanding and managing thermal regime with benefits for riv-
ers and fisheries management.
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