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Focus Article

Understanding dissolved organic
matter dynamics in urban
catchments: insights from in situ
fluorescence sensor technology
K. Khamis ,* C. Bradley and D.M. Hannah

Dissolved organic matter (DOM) is critically important for catchment biogeo-
chemical cycling, yet the DOM dynamics of many river systems remain poorly
characterized. Recently, DOM mobilization and transport in forested and agricul-
tural catchments have received increased attention; however, for urban catch-
ments, our understanding of spatio-temporal variability in DOM concentration
and composition is very limited. This is a particular concern as urbanization can
increase and alter labile DOM fluxes leading to a shift from downstream trans-
port of stream carbon to increased microbial production and respiration of
stream carbon in headwaters. Furthermore, the anthropogenic modification of
the water cycle and the flashy hydrology of urban rivers have constrained
attempts to characterize intra- and inter-seasonal variability in DOM across the
spectrum from low to storm flows. In this focus article, we synthesize the contem-
porary literature on urban DOM sources, flow paths, and spatio-temporal vari-
ability and present a conceptual model to unravel system dynamics and inform
future monitoring efforts. The potential of field deployable fluorescence sensor
technology to overcome monitoring challenges in urban rivers is highlighted.
We use a case study of a relatively well-studied UK urban river to illustrate the
potential of in situ fluorescence to reveal DOM dynamics in a system with
marked inter-event variability in DOM sources and pathways. Finally, we outline
future directions for this research, particular the need to standardize field and
laboratory protocols and advance new sensor development. © 2017 The Authors.

WIREs Water published by Wiley Periodicals, Inc.
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INTRODUCTION

Globally urbanization is increasing at a rapid rate
with urban areas forecast to triple between 2000

and 2030.1 This change in landcover is having a pro-
found effect on freshwater ecosystems, modifying

water flow pathways and strongly altering the quan-
tity and quality of nutrients and dissolved organic
matter (DOM) in rivers. DOM is a complex, hetero-
geneous, combination of compounds that vary in
their solubility and reactivity: the quality and quantity
of allochthonous DOM is derived from plant and soil
organic matter (OM), and reflects landscape, vegeta-
tion, hydrology, and climate, while autochthonous
DOM is produced by microbial processing of OM.2

The transport, processing, and transformation
changes according to the river network properties and
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the reactivity of the DOM.3 DOM quality and quan-
tity are determined by a combination of their origin
and the biogeochemical processes associated with
their production and transport.4 To date, DOM stud-
ies have focused on semi-‘natural’ or agricultural
catchments5,6 neglecting the effects of urbanization,
although, urban rivers and streams have been associ-
ated with a unique OM composition,7 with a higher
proportion of microbial OM and trace pollutants
such as pharmaceuticals, endocrine disrupters, and
polycyclic aromatic hydrocarbons (PAHs). DOM in
urban water-courses is also highly dynamic reflecting
the interaction and nonlinear mixing of DOM derived
from varying sources, transport along diverse path-
ways over different timescales, and variation in the
extent and nature of subsequent transformation.8

Unraveling this complexity is essential in the context
of satisfying regulatory requirements for water qual-
ity, particularly given the role of DOM in the associ-
ated transport of heavy metals, persistent organic
pollutants, and as a precursor of disinfection bypro-
ducts9,10 Furthermore, given the global increase in
urbanization, greater understanding of the key drivers
of urban biogeochemistry is needed urgently to:
(1) enable urban catchments to be managed and
developed more sustainably and (2) assess the poten-
tial implications for carbon cycling, particularly in
rivers with significant urban landcover.

The DOM of urban rivers is composed of a
greater fraction of low molecular weight and protein-
aceous material relative to rural systems reflecting the
importance of microbially derived OM from human
and animal waste, and algal-derived OM from eutro-
phication.11,12 However, in urban catchments DOM
is highly variable, and characterized by non-
stationarity at different scales given the interaction
between: (1) the anthropogenic sewerage and drain-
age systems, which are designed for the rapid convey-
ance of rainfall through urban catchments and
(2) waters that have passed through the ‘natural’ or
undrained areas of the catchment. Additional DOM
inputs include effluent from sewage treatment works,
and untreated sewage which may be intermittently
discharged via stormwater sewers and combined
sewer overflows during rain events, or regularly dis-
charged if the sewage treatment infrastructure is
insufficient, for example, in some rapidly developing
‘mega-cities’.13,14 The conventional model suggests
that DOM from urban sources is highly bioavailable
and subject to rapid processing characterized by the
rapid loss of labile, low-molecular weight material,
such as proteins, carbohydrates, and organic acids,
with the production of more refractory DOM of
higher molecular weight. However, the high

molecular weight DOM may be more reactive than
previously thought (according to the size-reactivity
continuum model) due to the extent of microbial pro-
cessing.12 Labile DOM is readily processed by micro-
bial communities in-stream, potentially leading to
oxygen depletion with implications for other ecosys-
tem functions, such as nitrogen cycling, decomposi-
tion rates, and secondary production.15 New
approaches to understand and resolve problems of
poor urban water quality are needed urgently, partic-
ularly related to measurement resolution and repeat-
ability16 given projections of a continued and
sustained global increase in urban populations.17,18

Fluorescence spectroscopy has the potential to
make a significant contribution to research on urban
water quality as specific DOM components can be
characterized and quantified rapidly.19 The physical
basis for this approach lies in the absorption and
subsequent emission of energy (i.e., fluorescence) by
organic molecules when excited at specific wave-
lengths. Fluorescent DOM (FDOM) is a subset of the
absorbent component of DOM, colored dissolved
organic matter, and can be used to trace important
compositional changes.20 Determination of a full
excitation–emission matrix (EEM) in optical space,
can identify broad groups of fluorophores including
humic and fulvic acids, proteins, and amino acids
(e.g., tryptophan and tyrosine). Further information
can be derived from FDOM indices,21 such as the
Fluorescence Index (FI), which is indicative of DOM
source (higher values indicating increased autochtho-
nous as opposed to allochthonous DOM), and the
Humification Index (HIX), which is indicative of
more humic, complex, DOM. These qualitative indi-
ces are more useful when evaluated in combination22;
however, they provide a basis for developing in situ
applications of fluorescence spectroscopy.

Recently developed submersible fluorescence
sensors offer huge opportunities to significantly
improve our understanding of urban biogeochemistry
by quantifying seasonal and event dynamics, in the
context of continually varying DOM sources, path-
ways, and processing in urban catchments. In this
focus article, we explore these interrelationships in
more detail by:

1. synthesizing recent research on urban biogeo-
chemistry and deriving a conceptual model
describing urban DOM sources, pathways, and
processing;

2. providing a detailed overview of field deploy-
able fluorescence sensor technology and outlin-
ing methods to overcome challenges to water
quality monitoring in urban rivers and streams;
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3. presenting a case study on the use of in situ
fluorescence monitoring for a relatively well-
studied urban river system, highlighting how
this technology can be used to develop our fun-
damental knowledge of urban DOM dynamics.

4. highlighting current uncertainties and detailing
promising future directions for work with
respect to standardizing monitoring programs
and capitalizing on recent advances in sensor
technologies.

URBAN RIVER BIOGEOCHEMICAL
PROCESSES

Urban catchments are characterized by a high diver-
sity of DOM sources (‘natural’ but additionally
anthropogenic sources) and a complex drainage sys-
tem in which engineered structures (storm drains,
sewers, ditches, and retention tanks) complement
‘natural’ flow pathways. When considered in terms
of transport, or hydraulic routing, engineered path-
ways are (very) fast and natural pathways are gener-
ally slower. The fast, engineered pathways are
primarily active during periods of rainfall via the
storm drainage and combined sewer overflow (CSO)
networks. This structural complexity (both above

and below ground) combined with the flashy flow
regime complicates the quantification of urban
hydrological and biogeochemical process interac-
tions. Detailed monitoring of urban drainage systems
is also problematic and limited by the constraints of
conventional sampling methods, particularly in the
catchment headwaters given their spatial extent and
variability.23 Hence, in reviewing urban hydrological
and biogeochemical processes for temperate regions,
we focus on two specific components of the hydro-
graph: low flow (Figure 1(a)) and stormflow
(Figure 1(b)) for headwater systems, recognizing that
there will inevitably be differences in the process
dynamics that characterize urbanized low-gradient
and floodplain areas downstream.

During low flows, river flow predominantly
comprises groundwater and waters that have fol-
lowed deep sub-surface flow pathways through the
soil matrix associated with areas of natural and semi-
natural vegetation including parks, woodland, and
gardens.24 This baseflow may be augmented by agri-
cultural areas bordering urban regions, effluent from
waste water treatment works (WwTW) and industry
with additional, but less predictable, inputs from
cross-connected sewers and leaky drainage pipes.25,26

These water sources all have a distinct DOM compo-
sition, often associated with specific flow paths to the
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river network, which vary in residence time and
potential for photodegradation and microbial proces-
sing of DOM.27 Conversely, during storm flow
events, runoff from impervious surfaces and flow
through the storm drainage system are increasingly
important24 and can contribute >50% of total river
flow. Under these conditions, even rainfall on areas
of woodland, or other urban green space, is likely to
be routed rapidly to the river channel through shal-
lower water flow pathways.28,29

During baseflow conditions, in-stream sources
and processing of DOM are important: reflecting a
‘transformation-focus’ in the river where the DOM
mainly comprises material from algal biomass.8

Extracellular release and cell lysis provide a highly
labile source of DOM consisting of predominately
sugars and amino acids,30 while transformation of
DOM by bacteria can lead to production of humic
material.31 Effluent from water treatment plants and
industrial activities generally have high DOM con-
centrations, particularly low molecular weight mate-
rial (e.g., phenols, indoles, and proteinaceous
material), however, their lability will largely depend
on the treatment processes prior to discharge.32

Groundwater inputs are particularly important dur-
ing baseflow, the DOM of which can be enriched
with protein-like material through leakage from the
sewerage system33,34 or labile humic material from
recharge waters associated with urban green space.35

Inputs from deeper soil flow paths with water
sourced from woodland/green spaces are proportion-
ately less important but will be high in aromatic com-
pounds and hence will be more recalcitrant than
other DOM sources.36

During storm events, DOM sources and path-
ways are altered, with previously disconnected DOM
stores may be re-connected to the main channel
(Figure 1(b)) and the riverine DOM system becomes
transport dominated.8 In-stream sources (benthic
algae) are rapidly flushed or scoured from the system,
possibly only contributing to a first flush of DOM37

(Figure 2). Similarly, biofilms are scoured from the
storm drainage—sewerage system during high magni-
tude events, representing a highly labile source of
DOM consisting of protein-like material and carbo-
hydrates mobilized earlier in the event.38 Deposited
material on gravel bars and river banks is re-
suspended and can represent a significant source of
PAHs.39 CSOs rapidly route diluted sewage to the
river network consisting of highly labile DOM,
diluted in proportion to the event magnitude.38 In
addition, detergents and leaf litter can be mobilized
as surfaces are rewetted during storm conditions and
rapid leaching of proteins and carbohydrates can

occur.40 Mobilization of dust from impervious sur-
faces also provides a source of PAH and low molecu-
lar weight OM.41 In contrast, rising water tables can
lead to groundwater exfiltration into the drainage
and sewerage network thereby diluting labile
DOM.42 Both anthropogenic green spaces and wood-
land patches are likely to be characterized by the
increasing predominance of shallow, sub-surface flow
paths, or overland flow if the soil matrix becomes
saturated or the surface is impermeable (e.g., road
surfaces): the shorter residence time and change in
flow path leads to ‘fresher’ humic-like material that is
potentially more labile.43

Individual flow pathways differ markedly in
their potential for DOM processing due to differing
residence times and potential for photo-oxidation.
For storm events where an initial flush of scoured
biofilms occurs, or when coarse OM is transported
rapidly to the river, there may be limited time for
microbial processing or transformation (Figure 2).
Moreover, as the drainage infrastructure is frequently
below ground, there is limited potential for DOM
photodegradation with implications for DOM qual-
ity and NO3

− uptake.27 During both low flow and
high flow, sewerage networks rapidly transport a
high volume of labile DOM to WwTWs for proces-
sing. The residence time within the treatment plant
(usually <12 h) and biodegradability of final effluent
DOM depends upon the treatment level.44 However
during high-flow events, untreated or partially trea-
ted sewage can be discharged to the river when avail-
able storage capacities are exceeded (Figure 2).45
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hence, a parcel of water has increased time for micro-
bial processing. During ‘normal’ flow conditions, the
signal is generally more humified and less labile43 but
as the soil becomes saturated, surface flows can
enable the rapid routing of fresh humic material to
the channel.46

IN SITU ENVIRONMENTAL
FLUORESCENCE

Over the last 20 years, fluorescence spectroscopy has
become an increasingly popular method for rapid
characterization of DOM from natural and engi-
neered freshwater systems.4,47–49 The physical basis
for this approach has been treated in numerous texts
and papers and the interested reader is directed to
Lackowicz.50 Fluorescence spectroscopy can provide
quantitative and qualitative information on DOM
composition and concentration.20 Specific fluores-
cence peaks, that represent flurophores of similar
chemical composition, can be targeted based on a
priori knowledge (peak picking: cf. Coble et al.51).
In urban catchments, there has been a specific focus
on the protein-like peaks (tryptophan: Peak T and
tyrosine: Peak B). Carstea et al.11 highlight that in
an urban catchment during base flow and low-
intensity storm events, protein-like fluorescence is
pronounced when compared to rural systems. How-
ever, high-magnitude rainfall events route waters via
alternate flow paths and a distinct humic-like fluo-
rescence signal (Peaks A and C) is apparent. An
additional peak of interest for urban systems is asso-
ciated with fluorescent whiting agents, or optical
brighteners, found in household detergents that can
indicate cross-connections between the sewerage and
storm drainage networks.52 However, separating this
peak from the natural humic signal in urban systems
can be difficult.53,54 Fluorescence can also be used to
target PAHs, and has been applied in marine envi-
ronments where shortwave length peaks (<260 nm
excitation) have been associated with a number of
commonly occurring compounds.55 However, fur-
ther work is required to test the validity of this
approach for urban rivers with rapidly changing
DOM composition.

A number of excitation or emission wave-
lengths can be targeted and used to calculate fluo-
rescence indices, such as the FI index and HIX.
These have been used to highlight the importance of
photodegradation and microbial processing of
DOM in urban ponds56 but their suitability for
urban rivers has been questioned11 with recent work
highlighting nonlinear behavior when source waters

are mixed.57 One promising index for urban river
systems is the ratio of protein:humic fluorescence
(Peak T/Peak C58) that can identify wastewater in
urban rivers. A full EEM (map of optical space) can
be measured in minutes and the fluorophores pre-
sent modeled using PARAFAC, a three-dimensional
extension of factor analysis, or machine learning
techniques such as self- organizing maps,.59,60 The
dominance of tryptophan-like fluorescence (TLF
herein) in urban rivers has been identified using
these techniques, with distinct anthropogenic humic-
like fluorescence (HLF herein) peaks that may be
used to track different water sources.4 However,
until relatively recently these approaches have
required sample collection and transportation to a
laboratory for subsequent analysis on high powered,
expensive benchtop spectrofluorometers.

Recent development of in situ, fluorescence
instruments has been facilitated by the advent of
cheap and reliable UV light emitting diodes,
enabling significant reductions in instrument size
and power consumption.61 These new instruments
are better suited to freshwater monitoring than the
original expensive submersible fluorometers devel-
oped for marine research.62 Baker et al.63 were the
first to highlight the potential for in situ TLF moni-
toring as a rapid indication of organic pollution in
human influenced rivers. However, they used a por-
table handheld unit focused on a single peak, with a
small measurement cell and no logging capability,
thus prohibiting longer-term deployment for contin-
uous monitoring. Carstea et al.64 adapted a labora-
tory instrument to enable in situ, full EEM
measurements at sub-hourly resolution. This
approach provided information on cross-
connections in the urban drainage network missed
by routine grab sampling but maintenance, power
consumption, and fouling were major issues. More
recently researchers have shown that open face sub-
mersible sensors, tuned to specific fluorescence
peaks (i.e., HLF or TLF), are suitable for long-term,
in situ monitoring.65,66 These commercially avail-
able instruments are low powered with anti-fouling
solutions and are relatively inexpensive. However,
monitoring of additional parameters is needed
(e.g., turbidity and temperature) to account for
interferences (see below). Khamis et al.67 used a
low-cost, flow-through fluorescence sonde (bank-
side, flow cell measurement system, see Figure 3(e)),
to measure both HLF and TLF, alongside tempera-
ture and turbidity. This approach yielded a rich
dataset but there was a significant power demand
(automatic peristaltic pump) and more maintenance
was required than for open face sensors.
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To improve process understanding and flux esti-
mates there is a distinct need to move from physical
sampling regimes to continuous in situ monitor-
ing.16,68 While the specific benefits of using in situ
fluorometry are clear,16,69 solutions to the challenges
of monitoring in urban systems are still being
explored. During storm flow conditions, turbidity can
be particularly high (>200 Nephelometric Turbidity
Unit (NTU)) which can increase scattering and atten-
uation of excitation light and interfere with the fluo-
rescence signal.61 Laboratory-derived empirical
correction factors based on standardized sediment
particles have been successfully developed for HLF
and TLF sensors.65,66 Laboratory correction algo-
rithms based on site-specific sediments have also been
proposed.70 In certain situations, it may be necessary
to apply in situ calibrations either via routine field
sampling and laboratory analysis67 or via parallel in
situ monitoring with and without filtration.71 Fluo-
rescence is a temperature-sensitive process and partic-
ular peaks are more sensitive to quenching at high
temperature.72 Laboratory techniques for developing
corrections are well established within the research
community but are yet to be implemented by sensor
manufacturers.65,66,70,73 Inner-filtering (signal satura-
tion at high DOM concentrations) is also an issue
that can either be addressed by routine parallel sam-
pling or targeted storm sampling to highlight specific
hydrograph components when issues may arise.66

Alternatively, in situ monitoring of absorbance at

254 nm can be utilized but this may be cost prohibi-
tive. Where possible additional parameters, such as
pH and electrical conductivity, should be recorded to
account for any potential issues associated with sig-
nificant changes in ionic strength (e.g., salt spreading)
or pH. With careful pre-installation laboratory cali-
bration and compensation algorithm development,
coupled with parallel sampling74 and ancillary
parameter monitoring, in situ fluorescence sensors
can provide new insights into urban DOM dynamics.

In the following section, we illustrate the infor-
mation that can potentially be obtained from an in
situ application of a fluorescence sensor, by present-
ing and interpreting monitoring data collected from
an urban river, the Bourn Brook, in the UK.

CASE STUDY: BOURN BROOK,
BIRMINGHAM, UK

The Bourn Brook, is a tributary of the River Rea,
Birmingham, UK (52�270N, 1�540W; Figure 3), which
has been intensively studied.9,60,61,63 Briefly, the
catchment is 27.9 km2 in area with ~80% urban/sub-
urban land use, ~10% anthropogenic green spaces,
and a small amount of woodland in the headwaters.
There are no wastewater treatment works in the
catchment, but an extensive, aging (>100 years) net-
work of storm sewers and CSOs feed the main chan-
nel. These characteristics are typical of urbanized
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FIGURE 3 | (a) Map of UK with Birmingham highlighted, (b) land use of the Bourn Brook catchment, (c) image of the Bourn Brook directly
downstream of the monitoring site. (d) Cyclops 7 (Turner Designs, San Jose, CA, USA) open face tryptophan-like fluorescence sensor, and (e) FL30
multiwavelength, flowcell fluorometer (Albillia Co, Neuchatel, Switzerland).
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headwater catchments across Northern Europe. The
DOM dynamics of the Bourn Brook have been char-
acterized using both traditional indicators of quality
and quantity [i.e., biochemical oxygen demand
(BOD) and dissolved organic carbon (DOC)] and
fluorescence spectroscopy. Carstea et al.11 collected
hourly grab samples and undertook subsequent labo-
ratory analysis11; while a number of authors have
utilized in situ sensors to measure: (1) TLF65; (2) TLF
and HLF,67 and (3) the full EEM.64 The Bourn
Brook displays a typical urban hydrology and is par-
ticularly responsive to rainfall events (Figure 4). Dur-
ing low-flow conditions, the river has a microbial
DOM signal suggesting the predominance of autoch-
thonous DOM production.11 In storm events, the
DOM flux appears to be controlled by antecedence,
with exhaustion effects apparent following successive
storm events as reductions in both DOC and TLF
have been observed.11,65 Diurnal variability has also
been observed during low-flow periods, which is

most pronounced for the HLF peak, suggesting
photodegradation and microbial processing can be
detected with in situ instrumentation.67 In addition,
stochastic events have been observed when monitor-
ing at fine temporal resolution (5 min) including
DOM pulses thought to originate from sewerage/
drainage cross-connections or industrial discharges.64

Gross pollution events have also been detected: a die-
sel spill was recorded in situ and associated with a
specific fluorescence fingerprint.64

Recent work has highlighted the sensitivity of in
situ fluorescence measurements to ambient environ-
mental conditions66 with significant work conducted
on the Bourn Brook developing and refining correc-
tion factors. Khamis et al.65 identified sediment parti-
cle size as an important control on the instrument
specific response, while Khamis et al.67 highlighted
the variability of temperature compensation coeffi-
cients between sensor types and fluorescence peaks
(e.g., TLF was more sensitive to temperature
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quenching than HLF). The suitability of laboratory-
derived coefficients versus field calibration was tested
during a short deployment of an open face TLF sen-
sor (Figure 3(d)). During autumn 2014, eight discrete
storm events were observed with significant variabil-
ity in turbidity (Figure 4). Raw TLF records appeared
to systematically overestimate concentrations relative
to laboratory records (Figure 4(c); Root Mean Square
Error (RMSE) = 31.4 ppb). Records corrected using a
laboratory derived correction factor based on a spe-
cific representative particle size (silt) did not perform
as well as the field calibration (Figure 4(c), R2 = 0.72
vs R2 = 0.81), indicating the need for field-based cali-
brations in monitoring programs wherever
possible.67,71

The utility of fluorescence as a surrogate for
water quality from phosphate, nitrate ammonia, and
BOD75 through to microbial counts76 has also been
explored recently. Studies on the Bourn Brook have
highlighted the utility of fluorescence as a tool to
monitor widely used measures of DOM quantity
(DOC) and quality (BOD). For a grab sample moni-
toring program, Carstea et al.11 recorded strong cor-
relations (r = 0.84) between Peak C, a HLF peak,
and total organic carbon. Carstea et al.,64 using an in

situ sensor, recorded similar correlations (r = 0.83)
between HLF and DOC, however, these data were
not compensated for turbidity or temperature. Recent
work with in situ sensors on the Bourn Brook sug-
gests strong relationships with both BOD and DOC
can be obtained with careful calibration (Figure 5).
TLF displayed the strongest relationship with BOD
(Figure 5(b) and (d)) in agreement with the litera-
ture49 while there was more scatter in the DOC rela-
tionship. TLF is a better surrogate for the reactive
component of the DOM pool while HLF is a better
surrogate for the more refectory, stable pool of
DOM and hence a good indicator of DOC 67,77

(Figure 5). This work indicates that when standard-
ized calibration protocols are followed, sensors with
differing designs (i.e., open face vs flow cell; Figure 3
(d) and (e)), optical configurations, and compensa-
tion coefficients can produce similar slopes for the
relationship between TLF and BOD (Figure 5
(b) and (d)).

Using high-resolution fluorescence and ancil-
lary data recorded during a field deployment,65 we
can begin to unpick event dynamics: exploring
potential DOM sources and DOM pathways to the
river.69 In this case study, we examine hysteresis
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loops for three events (see Figure 4; stars denote
events 1–3) of varying magnitude and antecedent
conditions. For Event 1, there is a pronounced TLF
increase for a small increase in discharge and turbid-
ity (Figure 6(a)). The steep clockwise response sug-
gests that DOM sources were close to the river
channel or in-channel (e.g., benthic algae30). The
high TLF coupled with low turbidity suggests that
the DOM was largely organic and probably scoured
from the bed as increased connectivity to the wider
catchment would be associated with an increase in
inorganic particles and a greater increase in turbid-
ity.78 In addition, the low antecedent rainfall
(14 days <1 mm) would have enabled the growth of
in-channel periphyton and epilithic algae. For Event
2 (Figure 6(b)), a greater increase in discharge was
observed but with a delayed increase in TLF
(i.e., clockwise hysteresis) suggesting that sources
were more distal than for Event 1. It is likely that
benthic algae had not recovered from the scouring

during Event 1 and the DOM increase represented
material flushed from the engineered drainage sys-
tem of storm drains and CSOs.79 The increased tur-
bidity suggests that more of the catchment was
connected to the river via storm drains and thus
deposited inorganic material was mobilized from
impervious surfaces.78 Event 3 (Figure 6(c)) was a
prolonged storm following a series of precipitation
events with high antecedent rainfall (>50 mm). A
small TLF increase on the rising limb was again
apparent, most probably due to CSO inputs. How-
ever, the low TLF at high flow is indicative of source
limitation. This is likely an exhaustion effect as
much of the source material in the catchment was
mobilized and transported during previous events.
Hence, the majority of the discharge comprised
dilute event water that was rapidly conveyed
through the fast-engineered flow paths that had
been previously scoured of deposited OM and
attached biofilms.
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CONCLUSIONS

In this focus article, we have advocated the enhanced
process-level understanding that may be obtained
using new in situ fluorescence sensor technology.
Hitherto, our ability to unravel the complexity of
urban DOM dynamics has been constrained signifi-
cantly by the availability of instruments for in situ
monitoring of urban rivers at appropriate spatial and
temporal resolution. Relatively understudied urban
river environments present significant challenges at
several levels given the interaction between DOM
sources and pathways that influence DOM processing
and hence DOM availability downstream. Continuous
field-based monitoring can provide invaluable addi-
tional information to supplement traditional manual
water sampling and laboratory analysis. Where the
challenges of in situ calibration are addressed success-
fully, applications of in situ fluorescence technology
have enormous potential as part of a wider toolbox to
aid interpretation of linkages between the hydrology
and biogeochemistry of urban rivers. This can range
from helping to understand the wider significance of
isolated pollution events, such as oil spills to identify-
ing specific thresholds that govern the routing of water
through urban catchments (i.e., thresholds in anteced-
ent moisture content or rainfall intensity). Recent
advances in sensor technology and logging have wider
applications that can further enhance our understand-
ing of process dynamics. For example, sensor output
can be used to trigger automated pump sampling,
which can be regulated by prescribed thresholds, or
rate of change (of river flow or water quality), thus
permitting laboratory sample analysis of additional
compounds of interest (e.g., emerging contaminants)
throughout an event at resolutions that were previ-
ously unfeasible.16 For urban rivers, this is important
given the wider suite of (laboratory) analyses that are
needed to characterize urban water quality, particu-
larly where there are concerns over emerging contami-
nants80 or potential sewer cross-connections.

However, in situ applications of fluorescence
technology require significant attention in quality
assurance and control. Regular field inspection of
sensors is required given the potential for sensor

fouling, and continuous quality control of sensor
output is essential. Further work is also required to
develop standardized calibration protocols, and
there is an urgent need for simpler standards to
check and correct for instrument drift. For example,
the use of quinine sulfate to calibrate HLF sensors
requires laboratory access and the use of sulfuric
acid. The latter limits the wider use of these in situ
sensors outside the research community.81 In future,
it may be possible to standardize calibration com-
pounds between individual fluorescence peaks to
increase confidence in sensor output. However, one
of the main challenges of in situ applications of
fluorescence sensors is understanding the degree to
which sensor calibrations are site, or catchment,
specific and further work is needed to develop cali-
bration algorithms that account for nonstationarity
(including the potential effects of changes in sedi-
ment particle size on sensor output, which may
change during an event). In addition, the long-term
stability of the photo-diodes and light emitting
diodes (LEDs) used for in situ applications has yet
to be established, emphasizing the need for regular
calibration of sensor output.82

Where these problems are addressed, in situ
fluorescence sensors may be used to capture multiple
fluorescence peaks, providing high-frequency moni-
toring of fluorescence indices and enabling the rou-
tine use of peak ratios to fingerprint pollution and
DOM sources. Given the need to improve our under-
standing of hydrological and biogeochemical process
interactions (especially in urban contexts), the devel-
opment and wider application of in situ monitoring
technologies have the potential to transform our abil-
ity to quantify environmental system dynamics at dif-
ferent spatial and temporal scales. The possibilities
are enhanced further by recent reductions in the cost
of individual sensor units and components. Addi-
tional benefits may arise by tailoring the sensor
design to specific freshwater applications. Given that
the early fluorescence sensors were developed for
marine applications, some features (e.g., operating at
high pressures) are redundant and may be removed
to reduce sensor costs, enabling funds to be used to
build more distributed networks of sensor nodes.
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