

University of Birmingham

A regime of droit moral detached from software
copyright - the undeath of the ‘author’ in free and open
source software licensing
Zhu, Chen

DOI:
10.1093/ijlit/eau004

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Zhu, C 2014, 'A regime of droit moral detached from software copyright - the undeath of the ‘author’ in free and
open source software licensing', International Journal of Law and Information Technology, vol. 22, no. 4, pp.
367-392. https://doi.org/10.1093/ijlit/eau004

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a pre-copyedited, author-produced PDF of an article accepted for publication in International Journal of Law and Information
Technology following peer review. The version of record, Chen Wei Zhu; A regime of droit moral detached from software copyright?—the
undeath of the ‘author’ in free and open source software licensing, International Journal of Law and Information Technology, Volume 22,
Issue 4, 1 December 2014, Pages 367–392, https://doi.org/10.1093/ijlit/eau004, is available online at:
https://academic.oup.com/ijlit/article/22/4/367/684783/A-regime-of-droit-moral-detached-from-software

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 09. Apr. 2024

https://doi.org/10.1093/ijlit/eau004
https://doi.org/10.1093/ijlit/eau004
https://birmingham.elsevierpure.com/en/publications/127a7ac6-8e94-49f3-b0c6-ecb43614189e

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 1

A Regime of Droit Moral Detached from

Software Copyright?

—The Undeath of the ‘Author’ in Free and

Open Source Software Licensing

Chen Wei Zhu

School of Law

University of Birmingham

Published in International Journal of Law and Information Technology (2014) 22, 367–392

doi: 10.1093/ijlit/eau004

1. Introduction

2. A ‘Private’ Moral Right Regime?

 2.1 From the Hacker Ethic to Open Source: A Very Brief History

 2.2 Filling the Lacuna: The Prevalent Attribution Requirement

3. Rehabilitating Craftsmanship: Authorial Personas of FOSS Programmers

 3.1 The Lingering Romantic Aesthetic in Software Copyright

 3.2 The Postmodern Critique of the Romantic Author

 3.3 Engaging with the Code: Craftsmanship and FOSS Programming

 3.3.1 Two Traits of Programmer as Craftsman

 3.3.2 Differences between Craftsmanship and Postmodernism

 3.4 Intermediate Conclusion: Why Does Craftsmanship Matter?

 4. Re-inventing the Legal Persona for FOSS Authorship

 4.1 Jacobsen v Katzer: Failure to Depart from ‘Authorship as Property’

 4.2 Crafting Stewardship: A Normative Call for ‘Authorship as Responsibility’

5. Conclusion

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 2

1. Introduction

Who are the ‘authors’ of free and open source software (FOSS) projects such as the iconic

GNU/Linux operating system? How do FOSS programmers claim ‘authorship’ in their

collaboratively created code through their licensing schemes (including the widely used

‘copyleft’ scheme)? To what extent does this FOSS ‘authorship’ deviate from the late

18th-century Romantic aesthetic that has purportedly shored up modern copyright law
1
?

Have FOSS licensing schemes succeeded in carving out for FOSS programmers a unique

legal persona that can be detached from the established software copyright?

Compared with many scholarly writings on the legal enforcement of FOSS licences, the size

of the legal literature tackling the above questions about FOSS authorship is considerably

smaller
2
. Dusollier observes that ‘[t]he author is barely mentioned in copyleft, despite playing

a prominent role in the system’ and this marked absence ‘unfortunately conceals the

importance of the author figure in the philosophical model of copyleft’.
3
 As all copyleft

licences are also copyright licences in the first place
4
, Dusollier’s observation tallies with

Ginsburg’s worry that ‘the figure of the author is too-often absent’ in ‘contemporary debates

over copyright’ and this absence may only lead to an incomplete understanding of

‘copyright’s role in fostering creativity’.
5
 In the similar vein, the lack of discussion of

1
 For a definitive account of the Romantic-author vision and its lasting influence on modern copyright, see

Martha Woodmansee, ‘The Genius and the Copyright: Economic and Legal Conditions of the Emergence of the

“Author” ’ (1984) 17 Eighteenth-Century Studies 425-48

2 For example, Dusollier’s attempt to link FOSS authorship with the postmodern aesthetic in a 2003 law

journal article still remains arguably the most important contribution in the legal literature. Severine Dusollier,

‘Open Source and Copyleft: Authorship Reconsidered?’ (2003) 26 Columbia Journal of Law and the Arts

281-296. More recently, Mira Rajan has also provided her view on the issue. See, in particular, Section II (B)

(subtitled ‘Free Software: A Practical Need for Moral Right’) in Rajan, ‘Creative Commons: America's Moral

Rights?’ (2011) 21 Fordham Intellectual Property and Entertainment Law Journal 905-969, 936-45; Rajan, in

an earlier article, has sketched out a few problems concerning programmers’ legal authorship in a general

context. Rajan, ‘Moral Rights in Information Technology: A New Kind of “Personal Right”?’ (2004) 12 (1)

International Journal of Law and Information Technology 32-54, 48-49

3 Dusollier, ibid., 288

4 For example, the most widely used copyleft licence—GNU General Public Licence (GPL)—clearly

recognises contributors’ right to assert copyright in their contribution. Preamble, GPL 3.0 at

<http://www.gnu.org/licenses/gpl.html> accessed 30 May 2013

5 Jane Ginsburg, ‘The Concept of Authorship in Comparative Copyright Law’ (2003) 52 DePaul Law

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 3

authorship in FOSS licensing schemes can also risk losing sight of the whole picture of the

FOSS licensing jurisprudence.

The main thrust of this paper is that neither the Romantic-author vision nor the postmodern

authorless creativity is suitable for defining FOSS programmers’ authorial and legal

persona(s). It is proposed that the issue can be better understood in the context of the

computer hacker tradition
6
 that has had a lasting influence in moulding FOSS programmers’

authorial consciousness. Under this hacker tradition, FOSS programmers do not work as

individualistic Romantic author, but they are practically minded ‘craftsmen’ who are steeped

in software development as an engineering discipline. The creativity of these FOSS

programmer-craftsmen is not just driven by a desire to express their unique individual genius

personalities, but rather it is also sustained by an intrinsic enjoyment of making software as

functional artefacts
7
. Their craftsmanship does not prevent them from claiming authorship, at

both individual and collective levels, to their work via their licensing schemes. This

re-examination will also call into question US copyright’s treatment of software programs as

literary works but not utilitarian objects and thus shed some light on the mechanism of FOSS

licensing schemes that are in themselves a product of the hacking tradition.

In order to elaborate on the above argument, the rest of the paper is divided into three parts.

The first part (Section 2) gives a brief review of the history of FOSS and how programmers’

moral right of attribution is situated in the hacker tradition. It also introduces a significant

legal lacuna in Anglo-American copyright law, which fails to recognise software

programmers’ moral right of attribution. The second part (Section 3) assesses the influence of

the Romantic aesthetic in modern software copyright law. The Romantic author vision is then

contrasted with two alternative theories of authorship, i.e., postmodernism (by Barthes and

Foucault) and the ‘craftsmanship’ theory (by Richard Sennett
8
), the latter of which I argue is

more appropriate to describe FOSS programmers’ practical mode of creativity but has been

unfairly neglected in the legal literature. The third part (Section 4) explores programmers’

legal persona as shaped by FOSS licensing schemes, which attempt to create a private regime

of moral right of attribution for programmers. It spells out the relationship between FOSS

programmers’ ‘attribution’ right and the craftsmanship theory, which deviates from the

mainstream doctrinal understanding of ‘authorship as property’ under US case law. The

fourth part (Section 5) concludes.

Review 1063-92, 1063

6 For a historical account of the early hacker culture, Steven Levy, Hackers—Heroes of the Computer

Revolution (Penguin Books, London 1984, 1994)

7
 Software is both functional and textual, but current copyright law tends to emphasises on the textual

aspect of programming. Martin Kretschmer, ‘Software as Text and Machine: The Legal Capture of Digital

Innovation’, 2003 (1) The Journal of Information, Law and Technology (JILT) at

<http://www2.warwick.ac.uk/fac/soc/law/elj/jilt/2003_1/kretschmer/> accessed 30 May 2013

8
 Richard Sennett, The Craftsman (Yale University Press, New Haven & London 2008)

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 4

2. A ‘Private’ Moral Right Regime?

This section gives a brief historical overview of the development of FOSS licensing. It

highlights the conspicuous absence of moral rights protection of software programmers in the

Anglo-American copyright system. In order to fill this significant legal lacuna, various FOSS

licensing schemes have incorporated an attribution requirement, whose prevalence has

arguably created a ‘private’ moral right regime as well as a difficult puzzle to figure out about

FOSS programmers’ legal persona.

2.1 From the Hacker Ethic to Open Source: A Very Brief History

The FOSS movement emerged from the computer-hacker community which was originally

based in a few US academic institutions such as the Massachusetts Institute of Technology

(MIT) in the 1950s and 1960s. Early computer hackers dutifully observed their community

norm known as the ‘hacker ethic’ according to which they were ‘actively willing to share

technical tricks, software, and (where possible) computing resources with other hackers’.
9

This hacker ethic was carried out in full measure well into the early 1970s. Richard Stallman,

who later founded the free software movement, recalls that when he first joined the MIT

Artificial Intelligence Lab in 1971, he naturally ‘became part of a software-sharing

community that had existed for many years.’

This software-sharing ethic, according to him, is

‘as old as computers, just as sharing of recipes is as old as cooking.’
10

However, in the early 1980s, the rise of copyright control over software
11

 soon eclipsed this

software-sharing hacker ethic and a lot of former hackers were hired by proprietary software

corporations.
12

 Deeply disappointed by this shift, Stallman invented the very first ‘copyleft’

licence in 1985 after a two-year long dispute with James Gosling, who sold his version of

Emacs to a proprietary software company.
13

 Note that this 1985 version of copyleft was

written solely for the GNU Emacs programming editor. It was not until four years later that

9
 Eric Raymond, ‘Hacker Ethic’ in The New Hacker’s Dictionary at

<http://www.catb.org/jargon/html/H/hacker-ethic.html> accessed 30 May 2013

10
 Stallman, ‘The GNU Operating System and the Free Software Movement’ in Chris DiBona, Sam Ockman

& Mark Stone (eds) Open Sources: Voices from the Open Source Revolution (O’Reilly, Sebastopol 1999) 53-70,

53

11
 In 1980, the US Congress officially extended its copyright law protection to cover software programs.

This is largely based on Melville Nimmer’s recommendation that software can be likened to literary works

where copyright should subsist. See Anthony Clapes, Patrick Lynch, and Mark R. Steinberg, ‘Silicon Epics and

Binary Bards: Determining the Proper Scope of Copyright Protection for Computer Programs’ (1987) 34 UCLA

Law Review 1493-1594

12
 In around 1983, Stallman witnessed the gradual decline of the hacker ethic in the MIT AI Lab due to the

propertisation of software. Levy, supra note 6, 419-427

13
 Christopher Kelty, Two Bits—The Cultural Significance of Free Software (Duke University Press,

Durham 2008) 188-199

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 5

Stallman turned this Emacs-specific licence into a generic licence known as the GNU

General Public License (GPL) that can be used for any free software project.
14

 The GPL

guarantees its users four kinds of ‘software freedom’ as listed by the Free Software

Definition:

 The freedom to run the program, for any purpose.

 The freedom to study how the program works, and adapt it to your needs.

 The freedom to redistribute copies so you can help your neighbour.

 The freedom to improve the program, and release your improvements to the public, so

that the whole community benefits.
15

The attempt to save and revive the hacker culture by using GNU GPL later went beyond

Stallman’s own GNU project. In the early 1990s, Stallman was invited to give a public

speech about free software in Finland. In the audience was Linus Torvalds, who was then a

college student from Helsinki University.
16

 Torvalds was very intrigued by the idea of

copyleft and when he released his fledgling Linux kernel program, he did not hesitate to

license it under the GPL, which enjoined all contributors to share their contributions with the

project. The GPL created a snowballing effect in the growth of the kernel, which integrated a

huge number of contributions into one legally compatible collective work. It is noteworthy

that Linux is not the whole operating system but only a kernel. It is surrounded by many

non-kernel user-space programs to form an entire workable operating system.
17

 Stallman’s

own GNU project has produced many widely used non-kernel programs, but its attempt to

produce its own kernel known as ‘Hurd’ has not been successful. As the Linux kernel filled

nicely into this gap in the GNU project, Stallman insisted that the whole operating system

should be named ‘GNU/Linux’ instead of just ‘Linux’. This naming controversy is a good

example showing that FOSS programmers care deeply about authorial attribution concerning

their work.
18

In 1998, the success of ‘GNU/Linux’ further inspired Eric Raymond—an ambitious hacker

who disagreed with Stallman’s ‘free software’ puritanism—to coin the term ‘open source’,

which signalled a new determination to integrate non-proprietary software into the

14

 This is GNU GPL 1.0 (1989) followed by GPL 2.0 (1991) and GPL 3.0 (2007)

15
 Richard Stallman, The Free Software Definition (2013) at <http://www.gnu.org/philosophy/free-sw.html>

accessed 30 May 2013

16
 Linus Torvalds and David Diamond, Just for Fun—The Story of an Accidental Revolutionary

(HarperBusiness, New York 2001) 58

17
 The kernel is the innermost part, i.e., the core, of an operating system. Applications such as the compilers are

user-space utilities that surround the kernel. See Ellen Siever, Stephen Figgins and Robert Love, Arnold

Robbins, Linux in a Nutshell, 6
th

 ed. (O’Reilly, Sebastopol 2009) p.1; Robert Love, Linux Kernel

Development, 3
rd

 ed. (Addison-Wesley, Upper Saddle River 2010) p.4

18
 Richard Stallman, ‘What’s in a Name?’ (2007) at <http://www.gnu.org/gnu/why-gnu-linux.html>

accessed 30 May 2013

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 6

commercial mainstream.
19

 ‘Open source’ is a more business-friendly approach that asserts

itself to be a software development methodology superior to its proprietary counterpart. It

contains a detailed list of requirements known as the ‘Open Source Definitions’ (OSD) that

all open source licensing schemes should conform to. The OSD not only addresses the issues

that have already been mentioned in the Free Software Definition, but it also touches upon

programmers’ reputation management in relation to their code. Section 4 of the OSD stresses

the necessity to protect the ‘integrity of the author’s source code’. An open source licence

‘may require derived works to carry a different name or version number from the original

software’
20

 in order to distinguish the original code from the modified one. This is based on

the rationale that open-source licences should play a role in protecting the reputation of the

‘author’ of the relevant code:

Encouraging lots of improvement is a good thing, but users have a right to know who is

responsible for the software they are using. Authors and maintainers have reciprocal

right to know what they’re being asked to support and protect their reputations.
21

2.2 Filling the Lacuna: The Prevalent Authorial Attribution Requirement

In the spirit of Section 4 of the OSD, almost all FOSS licences require downstream

distributors to retain the attribution information about the original contributors in all future

public redistributions. Legal scholars have been well aware that there is a strong norm of

attribution in the FOSS community, where licences are employed to make sure that credit

goes to the right source. Fisk observes that ‘[a]ttribution is important to many participants in

the open source movement, even though exclusivity is shunned’.
22

 In a similar vein, the Free

Software Act (FSA) as proposed by the Free Software Consortium summarises the licensing

norm of attribution in three points:

 The author of any free software program retains the right of attribution to his/her

work.

 Any modifier must acknowledge the authorship of the original program and the

authorship of the modification.

 All authorship must always be correctly attributed.
23

19

Eric Raymond, The Cathedral and the Bazaar, 2000, version 3.0 at

<http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/> accessed 30 May 2013

20
 Section 4, OSD at <http://opensource.org/osd-annotated> accessed 30 May 2013

21
 Rationale of Section 4 of the OSD, ibid.

22
 Catherine Fisk, ‘Credit Where It’s Due: The Law and Norms of Attribution’ (2006) 95 Georgetown Law

Journal 49-117, 89

23
 Jaco Aizenman, Maureen O’Sullivan, Martin Pedersen, Pedro Rezende, Shilu Shah, Pia Smith and Jorge

Villa, Free Software Act (Draft) (2004) 1 (4) SCRIPT-ed

<http://www.law.ed.ac.uk/ahrc/script-ed/issue4/FS-Act.pdf> accessed 30 May 2013

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 7

The above list registers an obvious desire to build a fair and effective attribution system

among FOSS programmers. If fully realised, it would amount to a regime akin to the Berne

Convention’s moral right of ‘attribution’, which is also known as authors’ right of ‘paternity’.

Strictly speaking, authors’ paternity right is independent from authors’ economic right of

property, but it is a type of personality right. Article 6bis of the Berne Convention makes it

clear that the paternity right is distinguishable from ‘author’s economic rights, and even after

transfer of the said rights, the author shall have the right to claim authorship of the work

[…].’
24

On top of the paternity right, the same Article 6bis also names another

non-economic moral right ‘to object to any distortion, mutilation or other modification of, or

other derogatory action in relation to, the said work, which would be prejudicial to his honour

or reputation’
25

. This right is commonly known as the author’s right of ‘integrity’.

One should not confuse the Berne Convention’s right of ‘integrity’ with the meaning of the

word in the phrase ‘Integrity of The Author’s Source Code’ as referred to in Section 4 of the

Open Source Definitions (OSD). Although the term ‘integrity’ is used on both occasions, the

scopes of the two are not exactly the same. Under the Berne Convention, authors’ right of

integrity is for preventing the authorial work from being distorted, mutilated or derogatorily

modified. In contrast, FOSS licensing compatible with the OSD gives users the software

freedom to modify the code in any manner, which may even include ‘distortion’ or

‘mutilation’ of the code, so long as the ‘distorted’ or ‘mutilated’ code is not misattributed to

the original programmers.
26

 Conversely, if a follow-up programmer makes good (rather than

derogatory) modification of original code, FOSS licensing will also make sure this

improvement is not attributed to the original programmers either. As Fisk observes:

‘Although the explanation of the attribution requirements contained in the licenses are more

focused on preventing wrongful attributions of blame than credit, presumably if a modification

proves to be wonderful, the original authors will not get credit either.’
27

 In this sense, Section

4 of the OSD regarding ‘Integrity of The Author’s Source Code’ is really about a right

against false attribution, which is closer to the ‘paternity’ right than the ‘integrity’ right

under the Berne Convention.

Unfortunately, the paternity right under the Berne Convention is not directly applicable to

software programmers, according to Anglo-American copyright law. This has created a

significant lacuna that seems to be in need of being filled by FOSS licensing as a private

arrangement of attribution.
28

 In the US, only visual artists but not computer programmers are

24

 Berne Convention for the Protection of Literary and Artistic Works (1971 revision with 1979

amendments)

25
 Ibid.

26
 Bruce Perens, ‘Open Source Definition’ in Chris DiBona, Sam Ockman & Mark Stone (eds) Open

Sources: Voices from the Open Source Revolution (O’Reilly & Associates, Sebastopol 1999) 171-188, 178

27
 Fisk, supra note 22 at 90

28
 At the moment, contractual arrangements seem to be the only basis of attribution in the Anglo-American

context, as statutory law excludes programmers from moral rights protection on both sides of the Atlantic.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 8

entitled to the moral right of attribution.
29

 In the UK, computer programmers are expressly

excluded from having the right to be identified as author
30

, and this attribution right is only

conferred to some categories of non-programming creators who affirmatively assert their

attributional interest.
31

 However, the British copyright law traditionally gives authors a right

against ‘false attribution’, which may still be applicable to computer programmers. This

British indigenous moral right is not derived from the Berne Convention, but it harks back to

the UK Fine Arts Copyright Act 1862, and has its reincarnations respectively in Section 43 of

the Copyright Act 1956 and Section 84 of CDPA 1988.
32

 Lai argues that this right against

false attribution is a historical ‘anomaly’ and that it makes little sense for computer

programmers to have it without having the right of attribution in the first place.
33

 In

comparison, US programmers do not readily have a similar right against false authorial

attribution under their copyright law, but they may have an analogue trademark device to

protect the authorial origin under the common law action of ‘passing off’ as codified in

Section 43(a) of the Lanham Act.
34

In 2001, the Lanham Act was successfully used to

protect the authorial origin of a FOSS project known as ‘Coolmail’.
35

 However, two years

later, the protection of the paternity right under the Lanham Act was put to an end by a US

Supreme Court decision, which ruled that trademark law should not function as a kind of

‘mutant copyright’ to protect authorial attribution in Dastar v Twentieth Century Fox.
36

 In

short, although software programmers are classified as ‘literary’ authors under

Anglo-American copyright law, their moral rights are not fully recognised. In this sense,

programmers may be seen as a group of second-class authors under present law.

To summarise, the prevalent attribution requirement of attribution in FOSS licensing,

following the spirit of Section 4 of the OSD, has effectively mandated a limited
37

 private

regime of software programmers’ moral right of attribution that has not been recognised by

the US copyright legislation.

By doing so, open-source licences pose a real conundrum for

lawyers to grapple with: do these licences really subvert the mainstream proprietary culture

of software ownership or do they simply strengthen this culture by adding an extra layer of

29

 Visual Artists Right Act 17 U.S.C s.106A ,

30
 CDPA Section 79 (2) (a)

31
 CDPA Section 77

32
 Hugh Laddie, Peter Prescott, Mary Vitoria, Adrian Speck & Lindsay Lane, The Modern Law of Copyright

and Designs (Butterworth, London, Edinburgh & Dublin 2000) 585-6
33

 Stanley Lai, The Copyright Protection of Computer Software in the United Kingdom (Oxford & Portland,

Oregon: Hart Publishing, 2000), 20

34
 Section 43 (a) of Lanham Act is mainly used against misrepresenting the commercial origin of goods and

service. However, it has also been successfully used to protect authors’ moral rights in the US. See, for example,

Gilliam v ABC 538 F.2d 14 (2d Cir.1976); Follett v New American Library 497 F. Supp. 304 (SDNY, 1980)

35
 Planetary Motion v. Techsplosion 261 F.3d 1188 (11th Cir.2001)

36
 539 US 23 (2003), 34

37
 This private moral right regime is limited in the sense that it only intends to protect FOSS programmers’

authorial attribution, but not their artistic integrity.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 9

attribution right protection? The following analysis tries to show that the attribution clause in

FOSS licensing is largely a makeshift solution or a ‘hack’ into the existing copyright law. Far

from a complete overhaul of the law, this solution can be likened to a kind of software ‘patch’

created to fix a particular problem in a buggy system rather than devising an alternative

solution from scratch. In this light, the attribution clause does not really weaken current

copyright law, but the enforceability of the former relies on the latter. In fact, it will be shown

later that, in judicial practice, the FOSS programmers’ attribution right tends to be aligned

with copyright owners’ pecuniary interests as represented in the landmark ruling Jacobsen v

Katzer.
38

 In Section 4 of this article, I will offer a detailed critique of the Jacobsen ruling

from the vantage point of the craftsmanship theory, which proposes a moral right of

attribution detached from the proprietary copyright system. Before unravelling this critique, I

need to explain what is meant by ‘craftsmanship’ as opposed to the Romantic and

postmodern aesthetics.

3. Rehabilitating Craftsmanship: Authorial Personas of FOSS Programmers

This section examines three authorial personas of FOSS programmers, under Romanticism,

postmodernism and the craftsmanship theory, respectively. It first traces the influence of the

idea of the Romantic author in software copyright law. This is then followed by a brief

account of the postmodern critique, which declares the ‘death’ of the author. The analysis

will show that FOSS authorship is driven neither solely by Romanticism nor postmodernism,

but that it can be better understood under the authorial persona of ‘craftsman’, whose

practical mode of problem finding and problem solving is completely in line with the

indigenous hacker tradition of FOSS programmers.

3.1 The Lingering Romantic Aesthetic in Software Copyright

The individual ‘author’, who can be credited as the sole originator of a creative work, is a

construct of relatively recent pedigree. It largely stems from the Romantic movement since

the late eighteenth century when literary writers were elevated to the position of self-inspired

‘genius’
39

. This elevation emphasised the ability of an individual writer who could derive

inspiration from his inner mind rather than an external source such as God or a muse.

38

 535 F.3d 1373 (Fed. Cir. 2008)

39
 Romantic authorship can also be seen as an aesthetical façade of authors’ legally enforceable moral

rights as opposed to their economic rights. Historically, the Romantic vision plays a role in justifying and

propelling the legal protection of authors’ autonomy in self-expression, however unsatisfactory this justification

may be. See Christopher Aide, ‘A More Comprehensive Soul: Romantic Conceptions of Authorship and the

Copyright Doctrine of Moral Right’ (1990) 48 University of Toronto Faculty of Law Review 211-28. For the

historical context of Romantic authorship, see also, the discussion of the ‘authorship norm’ as opposed to the

‘marketplace norm’ by Paul Edward Geller, ‘Must Copyright Be For Ever Caught Between Marketplace and

Authorship Norms?" in Alain Strowel (ed.) Of Authors and Origins: Essays on Copyright Law (Clarendon Press,

Oxford 1994) 159-201

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 10

Woodmansee argues that the rise of Romanticism comes with the suppression of the

non-imaginative ‘craftsmanship’ element in the creative process, whereby the literary writer

produces a special kind of private ‘property’ based on the expression of his unique

personality.

[Romantic writers] minimized the element of craftsmanship (in some instances they

simply discarded it) in favor of inspiration, and they internalized the source of that

inspiration. That is, the inspiration for a work came to be regarded as emanating not from

outside or above, but from within the writer himself. ‘Inspiration’ came to be explicated in

terms of original genius, with the consequence that the inspired work was made peculiarly

and distinctively the product—and the property—of the writer.
40

 (original emphasis)

The literary writer’s rise from ‘craftsman’ to ‘author-genius’ is sometimes likened to a shift

from ‘mirror’ to ‘lamp’ as a consequence of the Romantic movement.
41

 The pre-Romantic

craftsman is like a mirror that merely reflects the external world, while the Romantic author

is like a lamp that emits creation like a source of light. A Romantic author-genius is

distinguished by his ability to generate ‘original’ creation ex nihilo as exemplified by

Wordsworth’s testimony that ‘[g]enius is the introduction of a new element into the

intellectual universe […]’.
42

 The growing eminence of the Romantic ‘cult of the genius’
43

also had its repercussion in the development of modern copyright law
44

. It is argued that that

today’s copyright regime is precisely built upon the cult of the Wordsworthian author-genius:

Our laws of intellectual property are rooted in the century-long reconceptualization of

the creative process which culminated in high Romantic pronouncements like

Wordsworth’s to the effect that this process ought to be solitary, or individual, and

introduce ‘a new element into the intellectual universe.’ Both Anglo-American

‘copyright’ and Continental ‘authors’ rights’ achieve their modern form in this critical

ferment, and today a piece of writing or other creative product may claim legal

40

 Woodmansee, supra note 1 at 427

41
 Meyer Abrams, The Mirror and the Lamp: Romantic Theory and Critical Tradition (Oxford University

Press, Oxford 1971)

42
 William Wordsworth, ‘Essay, Supplementary to the Preface’, quoted in Woodmansee, ‘On the Author

Effect: Recovering Collectivity’ (1992) 10 Cardozo Arts and Entertainment Law Journal 279-92, 280

43
 Tim Blanning, The Romantic Revolution (Orion Books, London 2010) 31-36

44
 It is worth remembering that the birth of modern copyright, which is conventionally marked by the Statute

of Anne of 1709, happens in the age of enlightenment, which precedes the Romantic era. Geller points out that

copyright has historically been caught between the enlightenment value (also known as the ‘marketplace norm’)

concerning the dissemination of knowledge and the Romantic authorship norm concerning the authorial

autonomy of self-expression. Geller, supra note 39

 The relatively short history of FOSS licensing also reflects this struggle. The licensing terms that allow re-use

and re-mix embodies the enlightenment value, while the attribution clause has largely reified the authorship

norm.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 11

protection only insofar as it is determined to be a unique, original product of the

intellection of a unique individual (or identifiable individuals).
45

 (original emphasis)

Now zoom in onto the more specific area of software copyright, where there has been no

shortage of academic works that bear out Woodmansee’s worry about copyright law’s

uncritical acceptance of literary Romanticism. Jaszi, a champion of Woodmansee’s thesis,

observes that ‘lawyers and judges have invoked the vision of the Romantic “author-genius”

in rationalizing the extension of copyright protection to computer software’, because software

programs are ‘no less inspired than traditional literal works, and that the imaginative

processes of the programmer are analogous to those of the literary “author”.’
46

 It is

noteworthy that the main source that Jaszi relies upon to make his observation comes from an

earlier article entitled ‘Silicon Epics and Binary Bards’ written by a team of IBM lawyers in

1987
47

. ‘Silicon Epics and Binary Bards’ straightforwardly likens software to the ‘epic poetry

of the Information Age’
48

 and a programmer is correspondingly the ‘poet’ of his imaginative

creation. Note that this programmer-as-poet vision is not preached for the first time either, but

is derived from Frederick Brooks’s classical 1975 work on software design, which forcefully

articulates a Romantic vision about software programming as a creative process coming out

of a poetic programmer’s imagination:

The programmer, like the poet, works only slightly removed from pure thought-stuff. He

builds his castles in the air, from air, creating by exertion of the imagination. Few media

of creation are so flexible, so easy to polish and rework, so readily capable of realizing

grand conceptual structures[…]
49

Under this logic, software programming is by no means a mindless job but involves a

programmer-poet’s active ‘exertion of the imagination’ that impresses his unique personality

into the code.
50

 This view resonates strongly with the rationale behind the legislative

extension of US copyright law to cover software in 1980 based on the copyright scholar

Melville Nimmer’s recommendation to the US National Commission on New Technological

Uses of Copyrighted Works (CONTU).
51

It is worth noting that the influence of Romanticism has already been eroded in current

copyright. It is difficult to have the Romantic persona to account for the whole picture of

45

 Woodmansee, supra note 42, 291-2

46
 Peter Jaszi, ‘On the Author Effect: Contemporary Copyright and Collective Creativity’ (1992) 10

Cardozo Arts and Entertainment Law Journal 293-320, 297-8

47
 Clapes, Lynch and Steinberg, supra note 11

48
 Ibid., 1584

49
 Brooks, Mythical Man-Month, 7-8, quoted in ibid., 1497

50
 Arthur R. Miller, ‘Copyright Protection for Computer Programs, Databases, and Computer-Generated

Works: Is Anything New Since CONTU’ (1993) 106 Harvard Law Review 977-1073, 983-4

51
 Clapes, Lynch and Steinberg, supra note 11, 1583

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 12

copyright doctrines, such as issues dealing with the actual length of copyright duration,

collective works, limitations and exceptions.
52

 More specifically, the Romantic-author vision

that treats software as the poetic expression of a programmer’s original personality can be

subject to at least two strands of criticism. First, the Romantic view derives from an

author-centred perspective where the programming author-genius is deemed as the sole

source of creation. It profoundly ignores the other side of the equation which is software

users’ contribution to a software product. Especially in a FOSS environment, this problem

becomes quite obvious because all users are potential ‘co-developers’ who can participate in

the collaborative programming process.
53

 Second, when the Romantic view is skewed

one-sidedly towards the analogy that software programming is a literary expressive activity, it

ignores the fact that programming is also an engineering discipline that involves making

functional objects. In order to counterbalance this bias, it is also important to see software

programmers as practical ‘craftsmen’ who make workable things that do not necessarily have

to be a vehicle of expressing programmers’ personalities. As these two strands of criticism

are hugely important to form a panoramic picture of FOSS authorship, I will deal with the

first one in the context of the postmodern critique of Romanticism and elaborate in some

detail on the second one in relation to the craftsmanship model.

3.2 The Postmodern Critique of the Romantic Author

Postmodernist critics do not see the author as an authoritative figure who can exert a total and

despotic control over a creative work. Instead, the putative ‘author’ fades away after the

creative process is instigated by its initiating creator. A postmodern literary work is in fact a

discourse in progress and its future development is dependent on the participation of its

readers. Barthes in his 1967 essay famously declared the ‘death’ of the original author. This

metaphoric death reduces the ‘author’ to the bare status of a ‘scriptor’ who merely scribbles

52

 For a detailed evaluation of the lingering influence of Romanticism in US copyright, see Mark Lemley,

‘Romantic Authorship and the Rhetoric of Property’ (1997) 75 Texas Law Review 873-906

In particular, the declining influence of Romanticism is also shown in its presence in copyright’s dealing with

collaborative works with multiple authors, which certainly goes beyond the Romantic solitary author model. It is

worth noting that different terminologies are used by the UK and US copyright systems to describe collective

works. In the UK, copyright subsists in ‘compilation’ (s3(1)a, CDPA 1988) as a type of collective undivided

‘literary work’. Legal scholars such as Bainbridge believes that software is exactly such copyrightable

‘compilation’ comprising many undivided components rather than a ‘database’ comprising separable individual

components under the UK law. In the US context, the term ‘compilation’ has a slightly different meaning,

because it also covers ‘collective works’ comprising separable works. 17 USC 101. In the case of FOSS, I am

inclined to agree with Bainbridge, who argues that software is better seen as an undivided collective work (or

‘compilation’ under the UK law), and I will show later in this article that the job of those FOSS project leaders

is exactly to aggregate individually contributed code into undivided whole that can run on its own two feet.

Bainbridge, Legal Protection of Computer Software (Tottel Publishing, Heywards Heath 2008) 67

53
 Raymond, supra note 19

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 13

down the text but claims no interpretive authority over the text.
54

 Two years later, Michel

Foucault, in an equally celebrated essay ‘What Is an Author?’, indicates that the ‘author’ in

question may not be an irreversibly ‘dead’ corpse. Instead, the authorial death sentence is

commuted to the so-called ‘author function’ which is employed as the ‘principle of thrift in

the proliferation of meaning’.
55

 A Foucauldian author relinquishes the total control over the

work, but he still plays a role in restricting the uncontrolled and free-flowing interpretive

process that can be participated in by readers. This thrifty non-proliferation ‘author’ is better

seen as an instigator or founder of

a discursive activity that may be further shaped by

participation of readers and he shall have no monopoly on determining the final shape of the

collectively produced creation.

Despite the subtle difference between Barthes and Foucault, both theorists articulate a

reader-centred perspective of literary creation in stark contrast to the author-centred

Romanticism. Most interestingly, this reader-centred perspective has already radiated out into

theorisation about FOSS production, where software ‘users’ take the place of literary

‘readers’.

The legal scholar Dusollier argues that the practice of FOSS licensing has largely

fleshed out Foucault’s postmodern production of the collective work as an ongoing discourse

between software developers and users. These FOSS developers are ‘authors’, who

consciously choose to use FOSS licensing schemes (especially copyleft) in order to give

software freedom to their users. By doing so, they are effectively ‘authoring’ a Foucauldian

collective work in the manner of conducting an open-ended discourse that allows

contributions from users:

 The author is not only the initial founder of a discourse and instigator of a creation of

which her contribution is only the first stage. She is also the figure by whom the whole of

the collective creation finds itself marked by the stamp of freedom. In the chain of

contributions, of works which will come to add incrementally to the first act, none will be

able to escape the refusal of intellectual property rights exerted in a proprietary and

exclusive manner. Foucault’s desire for greater cultural freedom is brought to life in

copyleft.
56

Furthermore, the use of FOSS licences not only marks a shift of focus from Romantic

‘author’ to software ‘user’, but it also signals a different understanding of the concept of the

authorial ‘work’. Under the Romantic aesthetic, a work published by the author tends to be a

finished product that is solely produced and fully owned by its creator. In other words, this

Romantic authorial work is an objectification of an author’s private labour, which may be

54

 Roland Barthes, ‘The Death of the Author’ in Image, Music and Text trans. by Stephen Heath (Fontana,

London 1977) 142-148, 145

55
 Michel Foucault, ‘What is an Author’ in Josue E. Harari (ed), Textual Strategies: Perspectives in

Post-Structuralist Criticism (Cornell University Press, Ithaca 1979) 141-160, 159

56
 Dusollier, supra note 2, 294-5

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 14

traded as alienable commercial property on the market.
57

 In contrast, the postmodern

aesthetic suggests that a ‘work’ is always a piece of work in progress that can be understood

as an ongoing discourse. The postmodern work is started but not finished by its inaugural

creator and it welcomes readers or users to make their contribution. So it is mostly likely to

be a collective work that keeps evolving and expanding for an indefinitely long duration. As a

consequence, it is much more difficult to commercialise a piece of ever-expanding

postmodern work due to its lack of the sole author-ownership and discrete boundary.

3.3 Engaging with the Code: Craftsmanship and FOSS Programming

Compared with the author-centred Romanticism and the reader/user-centred postmodernism,

the study of FOSS programmers as ‘craftsmen’ shifts the focus further to the work in itself.

Here the craftsmanship ‘work’ does not just mean the literary expressive ‘work’ as dealt with

by Romanticism, but it also refers to software as functional objects.
58

 The craftsmanship

model urges researchers to see programming not just as a literary activity but also as a

practical craft. Craftsmanship in FOSS programming is an important but understudied

phenomenon. In fact, it was not until the recent publication of the sociologist Richard

Sennett’s seminal book The Craftsman
59

 that the connection between FOSS programming

and craftsmanship was rendered clear. Sennett, by searching a long historical development of

craftsmanship since the Homeric hymn to Hephaestus (master god of craftsmen), finds that

FOSS programming as represented by the Linux kernel project is a prime example of the

modern-day work-centred craftsmanship: Programmers ‘who participate in “open source”

computer software, particularly in the Linux operating system, are craftsmen who embody

some of the elements first celebrated in the hymn to Hephaestus’.
60

 This is because Linux

embodies craftsmen’s dedication to the quality of the work in itself, or in Sennett’s own

words, it is ‘focused on achieving quality, on doing good work, which is the craftsman’s

primordial mark of identity.’
61

3.3.1 Two Traits of Programmer as Craftsman

Programming as a work-centred practical craft has two salient traits that have been ignored

by Romanticism. The first trait of craftsmanship challenges a deeply entrenched bias that

privileges ‘having ideas’ over ‘making objects’ in Western society.
62

 Sennett observes that

57

 Peter Jaszi, ‘Toward a Theory of Copyright: The Metamorphosis of “Authorship” ’ (1991) 2 Duke Law

Review 455-502, 471-480

58
 Recall that software is both textual (as in human-readable source code) and machine-like (as in

machine-readable object code). See Kretschmer, supra note 7

59
 Sennett, supra note 8

60
 Ibid., 24

61
 Ibid., 25

62
 Peter Dormer, ‘The Status of Craft’, in Dormer (ed.) The Culture of Craft (Manchester University Press,

Manchester 1997) 18-19, 18

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 15

the historical trend ‘has drawn fault lines dividing practice and theory, technique and

expression, craftsman and artist, maker and user’.
63

 Countering this trend, craftsmanship is

against the arbitrary divide between the ‘high’ creative activity as conceiving original ideas

and the ‘low’ creative activity as merely implementing those ideas. It is an attempt to

reconnect ‘hand’ with ‘head’ by building ‘a dialogue between concrete practices and

thinking’
64

 and thus rehabilitate the craftsmanship element that has been discarded by the

Romantic movement.
65

 In the context of FOSS, the craftsmanship argument is in line with

Steven Weber’s observation that FOSS is ‘first and foremost an engineering culture—bottom

up, pragmatic, and grounded heavily in experience rather than theory.’
66

 This argument,

when fully spelt out, may also provide useful ammunition to support some legal scholars’

proposal to replace the generic copyright law with a sui generis regime for protecting

software as functional objects.
67

The second trait of FOSS craftsmanship is programmers’ dedication to the quality of their

work for its own sake. In Sennett’s words, this dedication ‘represents the special human

condition of being engaged’ and ‘people become engaged practically but not necessarily

instrumentally.’
68

 The craftspeople’s practical engagement, in the computer hacker tradition,

simply means the use of the hacking skills to take care of the created work. Burrell Smith, an

early designer of the Macintosh computer, comments that computer hacking is not

‘necessarily high tech’ but ‘it has to do with craftsmanship and caring about what you’re

doing.’
69

The hackers’ commitment to engage with or care about their creation does not result

in the total ownership of the created work. Instead, it is more a matter of taking stewardship

responsibility for software, which needs to be taken care of like a living object. In this sense,

63

 Sennett, supra note 8, 11

64
 Sennett urges readers to see the connection between hand and head in craftsmanship: ‘Every good

craftsman conducts a dialogue between concrete practices and thinking; this dialogue evolves into sustaining

habits, and these habits establish a rhythm between problem solving and problem finding.’ Ibid., 9

65
 The Romanticist prejudice of ‘head’ over ‘hand’ is not entirely unfamiliar to copyright lawyers. It has its

reincarnation in one of modern copyright law’s authorship principles, which stipulates that ‘authorship places

mind over muscle’. Ginsburg, supra note 5, 1072

66
 Steven Weber, The Success of Open Source (Harvard University Press, Cambridge, Mass. 2004) 164

67
 Pamela Samuelson, Randall Davis, Mitchell D. Kapor, and J. H. Reichman, ‘A Manifesto Concerning the

Legal Protection of Computer Programs’, (1994) 94 (8) Columbia Law Review 2308-2431

 The recognition of the ‘hands on’ functional element in software creativity does not equal a support of

‘software patent’ or ‘software-related invention patent’. FOSS programmers (such as Richard Stallman) have

been hostile to patenting software. This is because patent offers a much stronger monopoly than copyright, which

still allows for many user/reader exceptions. The craftsmanship argument only seeks to accurately describe the

dual nature of software, which is both expression and function. It is merely a reaction against current copyright’s

unsatisfactory classification of software as a type of ‘literary works’, which arbitrarily separate expressions from

functions in software development.

68
 Sennett, supra note 8, 20

69
 Levy, supra note 6, 434

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 16

a few leading FOSS programmers have already made a distinction between ‘ownership’ and

‘stewardship’ in relation to their creation: ‘Ownership is something that is fully transferable

from one owner to another without loss of values. [….] Stewardship, on the other hand,

applies when something undergoes change, when it evolves, or when it has some kind of life

cycle.’
70

 Most importantly, a carefully stewarded FOSS project is often cared by a small

group of lead programmers (such as Torvalds for the Linux Kernel), and it tends to nurture a

long-term collaborative relation. The craftsmen’s care by a core stewarding group of

dedicated lead programmers is exactly the reason behind the longevity of many FOSS

projects.
71

Furthermore, FOSS programmers’ stewardship responsibility to care about the quality of their

work is also in line with computer hackers’ meritocratic tradition, in which a programmer’s

merit is evaluated purely by the quality of his work rather than his personal attributes or

social status. It follows the hacker ethic stipulating that ‘[h]ackers should be judged by their

hacking, not bogus criteria such as degrees, age, race or position.’
72

This meritocratic

principle shows that the hacker ethic as a work-centred ethic is almost the opposite of the

creators’ personality cult. Sennett observes that craftsmanship’s focus on the quality of work

has an ‘impersonal character’, which can be rather ‘unforgiving’, but it is well present in the

Linux community.
73

This programmer-craftsmen’s favour of work’s quality over

programmers’ personality is also corroborated by Eric Raymond’s observation of the ‘strict

meritocracy’ in the hacker community, where

‘the best craftsmanship wins’ by the quality of

the code in itself:

In the hacker community […] one’s work is one’s statement. There is a very strict

meritocracy (the best craftsmanship wins) and there’s a strong ethos that quality should

(indeed must) be left to speak for itself. The best brag is code that ‘just works’, and that

any competent programmer can see is good stuff. Thus, the hacker culture’s knowledge

base increases rapidly.
74

3.3.2 Differences between Craftsmanship and Postmodernism

On the surface, the above two traits of craftsmanship seem to share a similar postmodernist

urge to deconstruct the Romantic cult of genius. However, a closer scrutiny reveals that the

craftsmanship perspective is also subtly different from the postmodernist critique of the

Romantic author in two aspects. The first is about individual programmers’ motivation to

70

 Chris DiBona, Danese Cooper, and Mark Stone, ‘Introduction’ in DiBona, Cooper, and Stone (eds), Open

Sources 2.0, (O’Reilly, Sebastopol 2006) xxxvii

71
 Ibid., xxxviii

72
 Levy, supra note 6, 43

73
Sennett, supra note 8,

27

74
 Eric Raymond, ‘Homesteading the Noosphere’, (2002) at

<http://www.catb.org/~esr/writings/homesteading/homesteading/> accessed 30 May 2013

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 17

contribute to a FOSS project, while the second deals with coordination of individually made

contributions into a functional whole. I will unravel each of them to show that the

craftsmanship model represents an attempt to reconstruct, more than deconstruct, the role of

individual programmers in FOSS collaboration as a cooperative craft.

Firstly, for the postmodern critique, it is not entirely clear why individual rank-and-file FOSS

contributors are motivated to contribute to a collaborative project. Postmodernists simply

avoid asking what the motivational forces are behind individual programmers; they assume

that the collective work is capable of organising itself automatically after an author’s ‘death’.

(Understandably, there is no point in asking why a ‘dead’ author should be motivated.) In

contrast, the craftsmanship model does attempt to provide an explanation about the motivation

issue: programmer-craftsmen are primarily driven by their intrinsic satisfaction or pleasure of

writing code for its own sake. Linus Torvalds famously names this intrinsic pleasure-driven

motivation the ‘Entertainment with the capital E’ within the Linux community.
75

‘Entertainment’ of code writing is believed to draw thousands of Linux programmers into the

kernel project because ‘Entertainment is something intrinsically interesting and challenging’.
76

Torvalds’ ‘Entertainment’ as motivation does not cover every type of recreational activities.

Rather, he sets limits on what qualifies, indicating that the ‘Entertainment’ should be linked

with craftsmanship skills, which may be improved or perfected in practice. Examples of this

kind of skill-based ‘Entertainment’ can be found in ‘chess’ games, ‘painting’ or ‘mental

gymnastics involved in trying to explain the universe’

and, of course, software programming

77
.

Over the course of FOSS collaboration, Linux contributors are likely to improve their

programming skills, and as a virtuous circle, when they become more skilled, they tend to

derive more ‘Entertainment’ and thus do more programming.
78

 It is thus appropriate to see

FOSS programming as an intellectual sport, where programmers derive satisfaction from

coding just as professional athletes enjoy their sports:

A very complex project like Apache or the Linux kernel brings the satisfaction of the

ultimate in intellectual exercise. Much like the rush a runner feels while running a race, a

true programmer will feel this same rush after writing a perfect routine or tight piece of

code. […] The point is that many programmers code because it is what they love to do,

and in fact it is how they define their intellect. Without coding, a programmer feels less of

75

 Linus Torvalds, ‘What Make Hackers Tick? a.k.a. Linus’s Law’ as a prologue to The Hacker Ethic and

the Spirit of the Information Age, by Pekka Himanen, (Random House, NY 2001) xvi

76
 Ibid., xv

77
 Ibid.

78
 This virtuous circle is often known as Isaac Stern rule (named after the famous virtuoso violinist) in

musicianship: ‘the better your technique, the longer you can rehearse without becoming bored.’ Sennett, supra

note 8, 38

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 18

a person, much like an athlete deprived of an opportunity to compete.
79

The second aspect of FOSS craftsmanship that is different from postmodernism concerns the

coordination issue. Although the postmodern critique correctly points out that FOSS is

collectively created, it does not further specify how the individually made contributions are

actually integrated into a functional whole. For this reason, the postmodern critique has been

accused of creating an imagined heroic ‘Romantic collective author’, who is no different

from the subject it intends to critique, i.e., the Romantic individual author.
80

The craftsmanship model is different from postmodernism (or Romantic collectivism) in the

sense that it does not assume that collective works can organise themselves. Instead, it

believes that a core group of lead programmers’ deliberate efforts are needed to coordinate

individually contributed code into a functional work. The annual reports published by the

Linux Foundation since 2008 have consistently shown that the Linux kernel project is

coordinated or stewarded by a small number of lead developers (known as the subsystem

maintainers), who play a crucial role in integrating a huge number of contributions into final

releases. This team of maintainers are quite like academic journals’ editors or peer-reviewers

who act as communities’ gatekeepers. They are responsible for vetting and testing all

submitted patches, which may be either rejected or approved into the mainline kernel.
81

 This

review process reflects Linux’s practical need for quality control of their collective work and

it has little to do with the expression of individual programmers’ unique personalities. Kelty

illustrates how the Linux maintainers led by Torvalds do their daily job to coordinate

individuals’ programming virtuosity into a collective functional work:

Almost all of the decisions made by Torvalds and lieutenants were of a single kind:

whether or not to incorporate a piece of code submitted by a volunteer. Each such

decision was technically complex: insert the code, recompile the kernel, test to see if it

works or if it produces any bugs, decide whether it is worth keeping, issue a new version

with a log of the changes that were made. Although the various official leaders were

given the authority to make such changes, coordination was still technically informal.

Since they were all working on the same complex technical object, one person (Torvalds)

ultimately needed to verify a final version, containing all the subparts, in order to make

sure that it worked without breaking.
82

79

 Chris DiBona, Sam Ockman & Mark Stone, ‘Introduction’ in DiBona, Ockman & Stone (eds), Open

Sources—Voices from the Open Source Revolution (O’Reilly, Sebastopol 1999) 1-17, 13

80
 Margaret Chong, ‘The Romantic Collective Author’ (2012) 14 (4) Vanderbilt Journal of Entertainment

and Technology Law 829-49

81
 Jonathan Corbet, Greg Kroah-Hartman, Amanda McPherson, Linux Kernel Development: How Fast it is

Going, Who is Doing It, What They are Doing, and Who is Sponsoring It, March 2012,

<go.linuxfoundation.org/who-writes-linux-2012> accessed 30 May 2013

82
 Kelty, supra note 13, 220

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 19

It is not difficult to find that Torvalds and his fellow subsystem maintainers’ review work

hardly amounts to the level of Wordsworthian ‘originality’ that generates absolutely new

things ex nihilo. Instead, their job is about testing and combining other people’s contributions

and thus much more mundane than expressing their own imaginative personalities. However,

it is still nonetheless a job of critical importance for the purpose of making a functional

software object that can technologically stand by itself. This responsibility to review

reinforces the two traits of craftsmanship as mentioned above. First, the review process

reflects the first trait of craftsmanship, which seeks to build a dialogue between concrete

practice and thinking—between that of ‘hand’ and ‘head’—in collaborative programming

activities. To test and then possibly integrate a submitted patch into the final project is largely

a practical exercise of trial and error. This is a process where individually composed code is

vetted against a practical criterion: whether it works with the rest of the software system as a

whole. To implement an idea
83

 into the final collective software work is as significant as to

conceive that initial idea at the individual level. In other words, the final review process is

exactly where the practical ‘hand’ element in craftsmanship reaches parity with the rarefied

‘head’ element when a programming idea is first conceived.

Secondly, the coordination process that involves Torvalds and his fellow-reviewers is also a

matter of quality control, which aims to weed out the bad code and retain the good one for the

collective work. It reflects FOSS programmer-craftsmen’s second trait, which is their

dedication to the quality of the work for its own sake.
84

 The way that FOSS programmers

measure and monitor the quality of software patches for their project bears a strong

resemblance to the peer review process in the scientific community, which also deeply cares

about the quality of its work. It is in line with at least two of the norms identified in Robert

Merton’s scientific ethos.
85

 One is the norm of ‘universalism’ and the other the norm of

‘organised scepticism’. The former judges the merit of a piece of scientific work on

‘preestablished impersonal criteria’
86

, while the latter is ‘a methodological and an

institutional mandate’
87

 necessary for verifying scientific claims’ validity through the

83

 US copyright excludes non-expressive elements such as ‘ideas’ from copyright protection. 17 USC

102(b). Its case law also provides a safety net by excluding those expressions that are inseparable from ideas

under the ‘merger’ doctrine. Baker v Selden 101 U.S. 99 (1879); Lex mark v Static Control Components, 387

F.3d 522 (6th Cir. 2004). This merger doctrine is largely in line with the craftsmanship argument, which treats

expressions and non-expressions (ideas or function) as inseparable in software development.

84
 Here the coordination among programmers puts a further emphasis on dedication to the quality of the

collective work as a whole, while the quality issue discussed earlier on is mainly about the work done by each

individual craftsman.

85
 For a detailed account of Merton’s sociology of science, see Aaron L. Panofsky, ‘A Critical

Reconsideration of the Ethos and Autonomy of Science’ in Craig Calhoun (ed), Robert Merton: Sociology of

Science and Sociology as Science (Columbia University Press, New York 2010) 140-163

86
 Robert K. Merton, On Social Structure and Science, ed. by Piotr Sztompka (The University of Chicago

Press, Chicago & London 1996) 269

87
 Ibid., 276

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 20

self-checking mechanism of peer review. The two norms point in the same direction of

building a meritocratic system that focuses on the quality
88

 of scientific work without relying

on certain individuals’ genius status.

To summarise, under the craftsmanship model, individual programmers are real human

creators who are motivated by the intrinsic pleasure of coding. At the same time, a small

group of lead programmers undertake extra responsibility to coordinate individually

submitted code into a collective executable program. In contrast, a postmodern software

project seems to

disown its individual authors after the code is written, based on the assumption

that individually contributed code may automatically aggregate into a functional whole. In fact,

without the coordination by a core group of lead programmers, this kind of postmodern

‘authorless’ work may well be a collection of unrelated software fragments that would fall

apart in the end. In short, the craftsmanship approach has at least two advantages over

postmodernism in explaining FOSS authorship. First, it explains individual rank-and-file

programmers’ motivation as craftsmen’s enjoyment of coding for its own sake. Postmodernism

avoids dealing with this ‘motivation’ issue, while the craftsmanship theory tackles it head-on.

Second, individually contributed lines of code cannot be used straight away, but it needs to be

aggregated into a functional whole coordinated by lead FOSS programmers. Postmodernist

thought seems to imply that creative works are self-organised without conscious efforts of

coordination. The craftsmanship theory gives full recognition to the authorial role of a small

group of lead programmers (such as Linus Torvalds or Richard Stallman) for their stewardship

responsibility in coordinating a project as a whole. This coordination effort is perfectly in line

with programmer-craftsmen’s dedication to the quality of their work.

3.4 Intermediate Conclusion: Why Does Craftsmanship Matter?

The above discussion has surveyed three authorial personas that may be possibly assumed by

FOSS programmers. The craftsmanship approach, which is championed by this article, has at

least two layers of significance. First, it is more direct and accurate in describing FOSS

programmers’ authorial persona from their indigenous hacker tradition. It does not have to

stretch the Romantic or postmodern aesthetic, which is originally developed in literary and

artistic criticism. Second, the craftsmanship theory can also build a conceptual bridge, from

programmers’ ‘authorial’ persona, towards their corresponding ‘legal’ persona as constructed

through FOSS licensing schemes. As the first layer has just been discussed above, I will

now move onto the second layer, which deals with the legal persona marked by the prevalent

authorial attribution licensing requirement in the following section.

4. Re-inventing the Legal Persona for FOSS Authorship

88

 I do not imply that quality is a standard for software protection. As will be shown in below Section 4,

the craftsmanship persona, when translated into the licensing language, is only limited to the requirement of

authorial attribution, and it does not set a quality threshold for copyright protection.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 21

This section deals with programmers’ legal persona as manifested through FOSS licensing

schemes. FOSS programmers’ legal persona would appear to be neither a direct translation of

literary Romanticism nor that of the postmodern authorless creativity. On the one hand, it

does not fit with the lone Romantic author because FOSS licensing does welcome users to

modify and redistribute the original author’s creation. On the other hand, postmodernism

cannot explain the ubiquitous ‘attribution’ clause in FOSS licensing whereby licensees are

required to credit the creators of the relevant code. Again, this attribution requirement seems

to be better explained under the quality-centred craftsmanship model: in a meritocratic FOSS

community, programmers are assessed by the quality of their work, while an attribution

system plays precisely the necessary role in linking FOSS programmers’ names with the

relevant code. The craftsmanship theory will eventually lead to a normative call for a limited

moral right regime recognising programmers’ attribution right for its own sake, which should

be detached from an economically minded proprietary copyright system.
89

4.1 Jacobsen v Katzer: Failure to Depart from ‘Authorship as Property’

To build an authorial link between programmers and code under FOSS licensing is important

in two important aspects. First, it gives benefit, such as reputational gains, to programmers

who contribute the code. Second, it shows programmers’ willingness to take responsibility

for making work that guarantees software freedom. These two aspects respectively

correspond to two different schools of thought about the nature of authorial attribution. One

treats attribution as an economic benefit derived from programmers’ work as private property,

while the other treats attribution as a badge of authorial responsibility for taking

craftsmanship care of the code. In the following analysis, I use ‘authorship as property’ as a

shorthand for the first school and ‘authorship as responsibility’ for the second. I will show

that the landmark ruling in Jacobsen v Katzer is skewed towards ‘authorship as property’ but

ignores ‘authorship as responsibility’, the latter of which can be equally crucial to the success

of FOSS collaboration based on the craftsmanship model.

Although US copyright law has largely failed to reproduce a Berne-type attribution regime to

protect programmers, this lacuna
90

 may be filled by private property licensing schemes made

by programmers wearing the legal persona of copyright owner of the software code. This has

been essentially achieved, through FOSS licensing schemes, by having programmers’

attribution right ride on the proprietary interests as owned by FOSS developers. Lastowka

argues that US copyright only recognises authors’ attribution right ‘in a collateral fashion’,

which protects ‘works of creative authorship as property’ through the copyright licensing

mechanism:

It might be argued that copyright protects attribution in a collateral fashion. By

89

 Note that this article does not plead for a fully-fledged moral rights regime for computer programmers. The

policy implication is limited only to FOSS developers’ moral right of ‘attribution’ but not the right of ‘integrity’.

90
 The legal lacuna has been explained in some detail in Section 2.2 of this article.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 22

protecting works of creative authorship as property, copyright enables the contractual

protection of attribution. If an author can control the dissemination and reproduction of

her work pursuant to copyright law, copyright law will grant her the contractual leverage

to protect her attribution interests.
91

 (emphasis added)

The above paragraph precisely articulates what I have called ‘authorship-as-property’

approach to programmers’ paternity right under current US law. In other words, although

attribution is not directly protected for its own sake under copyright legislation, it is disguised

as a proprietary interest of the author-owner through a licensing scheme.

The possibility of securing collateral protection of authorial attribution as property has been

recently vindicated in the landmark FOSS licensing case Jacobsen v Katzer.
92

 This case

involves a dispute over a FOSS project known as ‘Java Model Railroad Interface’ (JMRI) led

by Professor Robert Jacobsen, who is a Berkeley physicist by profession and a model train

hobbyist in his spare time. The JMRI code under dispute was then released under Artistic

License (AL) 1.0. It is generally believed that AL has effectively created a private regime of

droit moral enabling JMRI developers to have wider authorial control than allowed under the

statutory language of the US copyright law. The Preamble of AL1.0 makes no effort to

conceal this intent: ‘The intent of [AL] is to state the conditions under which a Package may

be copied, such that the Copyright Holder maintains some semblance of artistic control over

the development of the package […]’.
93

 (emphasis added) Fabricius comments that ‘the

essential novelty’ of AL lies precisely in its ‘granting the author more attribution and creative

control than would be granted in the ordinary case of a copyright license to copy, distribute,

and prepare derivative works’.
94

In this way, JMRI programmers are given ‘a private moral

right’ that is akin to Section 106A of the US Visual Artists Right Act providing attribution

right to certain visual artists.
95

The actual dispute in Jacobsen revolves around a program called DecoderPro, which is a

sub-project of the JMRI. In September 2006, the JMRI developers discovered that Matthew

Katzer had copied and modified some DecoderPro files into his own proprietary product. At

the same time Katzer deliberately removed the following information that would have

identified JMRI contributors as authors of their code:

 the authors’ names

 JMRI copyright notices

91

 Greg Lastowka, ‘The Trademark Function of Authorship’ (2005) 85 Boston University Law Review

1171-1241, 1214

92
 535 F.3d 1373 (Fed. Cir. 2008)

93
 Preamble, Artistic License 1.0 at <http://opensource.org/licenses/Artistic-1.0> accessed 30 May 2013

94
 Erich M. Fabricius, ‘Jacobsen v. Katzer: Failure of the Artistic License and Repercussions for Open

Source’ (2008) North Carolina Journal of Law & Technology 65-88, 85

95
 Ibid.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 23

 references to the COPYING file

 and identification of SourceForge or JMRI as the original source of the definition files,

and

 a description of how the files or computer code had been changed from the original

source code.
96

Katzer did not dispute his act of copying, but he contended that non-attribution of JMRI

authors was not a cause of action under the US copyright law. So the difficult question is

whether Katzer’s act of deleting attribution information would lead to the infringement of the

copyright of DecoderPro software. The trial court took the view that the attribution

requirement was merely a contractual covenant, the breach of which is not a copyright

infringement as such: ‘The condition that the user insert a prominent notice of attribution

does not limit the scope of the license’ and it ‘does not create liability for copyright

infringement where it would not otherwise exist.’
97

Failing to get an injunction from the trial court, Jacobsen then appealed the case to the US

Court of Appeals for the Federal Circuit (CAFC), which reversed the trial court ruling by

arguing that attribution of JMRI developers is a crucial condition for the public to use their

copyrighted FOSS code in the first place. The failure to fulfil this condition would lead to

infringement of copyright and thus give rise to the remedy of injunctive relief against the

breacher. Most interestingly, the CAFC does not straightforwardly enforce JMRI authors’

attribution for its own sake, but it unsurprisingly adopts the ‘authorship-as-property’ strategy

through two steps. The first step denies that the case involves an ‘attribution’ dispute per se:

‘Open source licensing restrictions are easily distinguished from mere “author attribution”

cases. Copyright law does not automatically protect the rights of authors to credit for

copyrighted materials.’
98

 The second step dresses up the attribution requirement as a

property claim
99

 that furthers copyright owners’ economic rights under the licensing

conditions:

The clear language of the Artistic License creates conditions to protect the economic

rights at issue in the granting of a public license. These conditions govern the rights to

modify and distribute the computer programs and files included in the downloadable

software package. The attribution and modification transparency requirements directly

serve to drive traffic to the open source incubation page and to inform downstream users

of the project, which is a significant economic goal of the copyright holder that the law

96

 535 F.3d 1373, 1376

97
 The District Court’s decision was quoted by CAFC, 535 F.3d 1373, 1380

98
 535 F.3d 1373, FN5 1382

99
 Note that the court’s strategy to dress up an attribution claim as a property claim comes exactly from

the ‘legal lacuna’ in US statutory law that refuses to give software programmers a paternity right. See above

Section 2.2 of this article.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 24

will enforce.
100

 (emphasis added)

Although Jacobsen, as the first Anglo-American ruling that affirms the enforceability of a

leading FOSS licence, is commendable in many ways
101

, CAFC’s overly economic

interpretation of the case may also attract at least two types of criticism. The first criticises

CAFC for making no real break from established proprietary information product licensing

jurisprudence as started by law-and-economics judge Easterbrook over a decade before.
102

The second possible criticism is that the Jacobsen ruling is a missed opportunity to apply the

craftsmanship theory in explaining FOSS programmers’ legal persona. As the first criticism

has been recently discussed in the legal literature
103

, I will focus only on the second criticism,

which is essentially a normative call from the craftsmanship model to recognise the FOSS

programmers’ pride of doing their job well for its own sake independent from economically

motivated incentives.

4.2 Crafting Stewardship: A Normative Call for ‘Authorship as Responsibility’

The craftsmanship model argues that attribution is not just a matter of authors’ privately

owned ‘property’, but is also deeply connected with their stewardship ‘responsibility’ to take

care of the code in their craftsman persona. Again, in order to spell out this

‘authorship-as-responsibility’ argument, there are two significant issues worthy of attention

in the context of the Jacobsen case. One concerns programmers’ motivation (especially in

terms of the reputational motivation that is linked with attribution) and the other concerns the

coordination of individual contributions into a whole project (especially in terms of a

project’s collective reputation or goodwill). Both of these will be elaborated on in turn.

Firstly, the CAFC’s reasoning seems to be underlined by an assumption that FOSS

programmers are simply motivated by ‘economic benefits’ brought to them by contributing to

a FOSS project. In particular, it points out that programmers’ reputational gain can fall under

these ‘economic benefits’: ‘a programmer or company may increase its national or

international reputation by incubating open source projects.’
104

This view is in tune with Eric

Raymond’s economic interpretation of FOSS programmers’ motivation as driven by

individual utility maximisation: The FOSS community is a bazaar-like market made up of ‘a

100

 535 F.3d 1373, 1382

101
 Larry Rosen, ‘Bad Facts Make Good Law: The Jacobsen Case and Open Source’ (2009) 1 (1)

International Free and Open Source Software Law Review <http://www.ifosslr.org/ifosslr/article/view/5/9>

accessed 30 May 2013

102
 ProCD v Zeidenberg, 86 F.3d 1447 (7th Cir.)

103
 Benjamin I. Narodick, ‘Smothered by Judicial Love: How Jacobsen v. Katzer Could Bring Open Source

Software Development to a Standstill’ (2010) 16 Boston University Journal of Science and Technology Law 264,

279-281; Chen Zhu, “ ‘Copyleft’ Reconsidered: Why Software Licensing Jurisprudence Needs Insights from

Relational Contract Theory” (2013) 22(3) Social and Legal Studies 289-308, 299-304

104
 535 F.3d 1373, 1379

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 25

collection of selfish agents attempting to maximize utility which in the process produces a

self-correcting spontaneous order’.
105

What is unique about this FOSS bazaar is that money is

not primarily used as a measure of programmers’ utility. Instead, FOSS programmers use

‘reputational reward’ as an alternative, which is believed to play a similar ‘utility function’ as

money.
106

 Under this logic, the more contribution is made by a programmer, the more

reputational ‘utility’ can be generated to meet this creator’s economic aspiration. It is

interesting to note that this utilitarian interpretation of reputational reward is present not just

in Raymond’s writings, but is also accepted by some legal scholars who believe that highly

skilled individuals including computer programmers can own their reputation as property. As

Fisk comments: ‘If professional reputation were property, it would be the most valuable

property that most people own.’
107

In contrast, the craftsmanship model is much more inclusive than CAFC’s exclusively

economic approach when dealing with motivation. It believes that FOSS programmers are

motivated by a multiplicity of incentives and not just by the economic utility from the

reputational reward. Most importantly, as already mentioned, FOSS programmer-craftsmen

are primarily motivated by their intrinsic satisfaction from doing the work well for its own

sake. This craftsmanship theory of motivation has been corroborated by an important

empirical survey conducted by Lakhani and Wolf showing that the leading motivation of

FOSS programmers is indeed what Torvalds calls the skill-based ‘Entertainment with the

capital E’ comprising the intrinsic pleasure from programming and the prospect of improving

programming skills.
108

Interestingly enough, the Raymondian reputational reward also exists

according to the survey, but ranks relatively low in the list compared with the other

motivational forces that are most commonly recognised by programmers themselves.
109

Furthermore, even though the reputational reward is not the exclusive top motivation for

FOSS programmers, it can still work with (rather than against) the craftsmanship model that

focuses on the quality of programmers’ codes. This is because FOSS projects with an

effective attribution system can also use reputation as a quality measure of programmers’

work. Reputation as a quality measure suggests that reputation is not just a programmer’s

private property, but that the programmer is under a responsibility for his reputation to be

publicly assessed by peer programmers or software users. Weber finds that an individual

105

Note that Raymond’s utilitarian theory unfortunately deviates from his own ‘the-best-craftsmanship-wins’

argument as mentioned before. Raymond, supra notes 19 & 74

106
 Raymond, supra note 74

107
 Fisk, supra note 22, 50

108
 The survey finds that the following two motivational forces rank the highest: ‘Code for project is

intellectually stimulating to write’ (44.9%) and ‘Improve programming skills’ (41.3%). Karim Lakhani and

Robert Wolf, ‘Why Hackers Do What They Do: Understanding Motivation and Effort in Free/Open Source

Software Projects’ in Feller, Fitzgerald, Hissam & Lakhani (eds), Perspective on Free and Open Source

Software (MIT Press, Cambridge, Mass. 2005) 13-14

109
 The reputational motivation, according to the survey, is only at the bottom of the list. Ibid.

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 26

FOSS ‘author is too close to the work and needs external measures of quality in order to

know whether the work is good and how to improve it’.
110

In this sense, reputation is not just

a proxy-measure for individual utility as assumed by Raymond, but is also a proxy-measure

for the quality of code under the craftsmanship model:

As is true of many technical and artistic disciplines, the quality of a programmer’s mind

and work is not easy for others to judge in standardized metrics. To know what is really

good code and thus to assess the talent of a particular programmer takes a reasonable

investment of time. The best programmers, then, have a clear incentive to reduce the

energy that it takes for others to see and understand just how good they are. […] The

programmer participates in an open source project as a demonstrative act to show the

quality of her work. Reputation within a well-informed and self-critical community

becomes the most efficient proxy measure for that quality.
111

In addition to FOSS authors’ motivation, the second issue of ‘authorship as responsibility’ is

about the responsibility of a core group of lead programmers to coordinate individual

contributions into a whole FOSS project, which again is not adequately dealt with under the

‘authorship as property’ model. When these lead programmers coordinate a certain project

continuously over a long period, they should not only be credited for their individual

contribution, but more significantly, also receive credit for their stewardship work that

integrates other contributors’ submissions into a collective whole. In other words, instead of

owning reputation as property, lead programmers are also shouldering authorial responsibility

for taking care of the whole project under concern. To illustrate, Torvalds (as the leader of the

Linux kernel) may claim two types of authorship for his work. On the one hand, he is the

individual author of the code written by him; on the other hand, he is also the stewardship

author who reviews, approves and integrates other people’s contribution into the mainline

Linux kernel. The former is familiar to the Romantic mode of individuated authorship, while

the latter is a less familiar one but is crucial to the success of a large-scale collaborative FOSS

project.

It is worth noting that individual authorship and ownership may substantially overlap in a

small budding project in its early formative stage, when a main programmer’s individual

contributions account for the greatest part of the program. At this stage, his significant

individual authorship can easily give rise to project leadership, which is ‘essentially the same

as ownership’ as observed by Weber.
112

 However, when the project is scaled up into a much

larger one, the lead programmer’s individual authorship can be rapidly diluted to the extent

that he can no longer justify his ownership/leadership of the whole program. If this

programmer continues to be enthusiastic about taking the project forward, then the basis of

his leadership must shift from an ever-dwindling ownership of the software to an

110

 Weber, supra note 66, 141

111
 Ibid., 142

112
 Ibid., 166

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 27

ever-increasing stewardship responsibility in coordinating other programmers’ contributions

for the project.

This shift from ownership to stewardship is significant to a rounded understanding of project

leaders’ ‘authorship as responsibility’. Countering the Romantic assumption of self-inspired

authorship, the responsibility of FOSS leaders in stewardship seems to flesh out Kwall’s

thesis that conceptualises the ‘author as steward’.
113

 According to Kwall, there are two

components in author-stewardship. The first comes from an awareness that an author himself

is not the sole source of his creation. Instead, inspiration is externally endowed as a gift that

enables the author to make his own creation.
114

 In other words, the author-steward is not

self-inspired, but receives external inspiration as a gift in which certain unearned value is

bestowed upon him.

In a large-scale FOSS project, it is clear that every programmer benefits

from other people’s contribution, and no one can claim to be the sole source of the whole

program. Even many founding members of projects try hard to avoid reinventing the wheel if

there are existing technologies available for reuse. Linus Torvalds, for example, did not start

the Linux kernel from scratch in 1992, but obtained inspiration from the pedagogical Minix

system initially developed by the Amsterdam-based computer scientist Andrew Tanenbaum

in the late 1970s. Similarly, Stallman did not start the Emacs editor in the early 1980s from

nothing. Instead, the program has been co-developed since the 1970s by a few programmers

at the MIT Lab. The second component of author-stewardship goes against rewarding creators

with exclusive ownership right. Instead it evokes a sense of responsibility to offer the author’s

work as a return gift back to the community from which the author gets his externally endowed

inspiration in the first place. Or to put it in Kwall’s words, it is the author’s stewardship

responsibility to participate in ‘the cyclical dimension of creative enterprise’.
115

 Hyde thinks

that this responsibility actually comes from creators’ ‘labour of gratitude’ which spurs creators

to do something reciprocal for the external inspiration that is bestowed upon them early on.
116

In the history of FOSS development, Richard Stallman is a model of a programmer with a

strong sense of stewardship responsibility to offer his software back to the community. When

Stallman started his GNU project in 1983 (two years before the advent of the first copyleft

licence in 1985), his initial announcement of the project clearly indicated that he was driven by

an ethical responsibility to share his software with the community: ‘I consider that the golden

rule requires that if I like a program I must share it with other people who like it.’
117

 His later

experiment with the copyleft agreement, which makes programmers contribute modifications

or improvements back to the community, further institutionalises programmers’ stewardship

responsibility through the mechanism of software licensing. Fusing the two components

113

 Roberta Kwall, ‘The Author as Steward “For Limited Times” ’ (2008) Boston University Law Review

685-708

114
 Ibid., 703

115
 Ibid.

116
 Lewis Hyde, The Gift: Imagination and the Erotic Life of Property (Vintage Books, New York 1983) 47

117
 Stallman, GNU Initial Announcement, 1983 at <http://www.gnu.org/gnu/initial-announcement.html>

accessed 30 May 2013

Zhu_The Undeath of the ‘Author’ (2014) IJLIT Page 28

together, author-stewardship manages to bring to the foreground the ‘responsibility’ element

in the ‘authorship as responsibility’ model, and it significantly departs from the ‘authorship as

property’ model, which believes that the solitary self-inspired genius needs to be rewarded

with private ownership for their creative works.

To summarise, the analysis of the legal persona of FOSS programmers above is quite different

from that of their authorial persona in the previous section. The former is largely normative in

the form of a proposal to build the craftsmanship element into a moral right regime independent

from the property-oriented copyright, while the latter is predominantly descriptive in

foregrounding the programmer-craftsmen’s traits from the historical context of the hacker

tradition. In other words, the craftsmanship theory does not only excel in describing FOSS

programmers’ authorial persona as craftspeople who are obsessed with the quality of their

work, but it also has the potential in building a conceptual bridge towards programmers’

legal persona as constructed by corresponding licensing schemes calling for a limited moral

right regime of authorial attribution.

5. Conclusion

This article has sought to understand the authorial persona of FOSS programmers as shaped

by their licensing schemes. It has argued that neither the Romantic-author vision nor the

postmodern authorless creativity is suitable for defining FOSS programmers’ authorial

consciousness. Instead, it has found that Sennett’s ‘craftsmanship’ theory—which explains

craftsmen’s intrinsic motive to do a job well for its own sake—is more adequate for

addressing these programmers’ authorial personas. The craftsmanship persona is also

reflected in the prevalent ‘attribution’ clause in FOSS licensing, which enables the peer

assessment of the quality of programmers’ work associated with their reputation. However,

current US copyright law does not statutorily recognise software programmers’ moral right of

attribution, but effectively blurs the distinction between authors’ non-pecuniary moral rights

and their economic rights as defined by the Berne Convention. It is proposed that FOSS

authors’ legal persona should depart from the copyright ownership and be re-anchored in

their author-stewardship of the relevant projects, which are taken care of under FOSS

programmer-craftsmen’s authorial responsibility.

